Joint Sparse Local Linear Discriminant Analysis for Feature Dimensionality Reduction of Hyperspectral Images
Abstract
:1. Introduction
2. Methodology
2.1. Notations and Definitions
2.2. Linear Regression
2.3. Linear Discriminant Analysis
2.4. Formulation of JSLLDA
2.5. Optimization to JSLLDA
- Step 1: Fix W and E to update P. The problem Equation (10) is transformed into the following optimization problem:By evaluating the derivative of Equation (11) with respect to P and setting it to 0, the following can be obtained:
- Step 2: Fix P and E to update W. The solution to W can be obtained by minimizing the equivalence problem (7)Let , and problem (14) is rewritten asSuppose the SVD of isThen, the solution of W can be obtained by
- Step 3: Fix W and P to update E. Let us discuss a situation where W and P are provided. At this point, E can be solved using the following function:According to [42], E can be expressed as the following closed solution:
- Step 4: update ,
Algorithm 1: The Iterative Algorithm for Solving JSLLDA |
Input: Sample data X, label matrix Y, class compactness graph weight matrix S, reduced dimension m, parameters , , , and maximum number of iteration steps T. Initialize: , where 0 is zero matrix, initialize P as an orthogonal matrix. while not converge do 1. Update P by using (13), 2. Update W by using (17), 3. Update E by using (19), 4. Update , by using (20). 5. Check the convergence conditions end while Output: W, P, E. |
3. Experiments
3.1. Experimental Datasets
3.2. Evaluation Index
3.3. Experiment Setup
3.4. Experimental Results and Analysis
4. Model Analysis
4.1. Computational Complexity Analysis
4.2. Robustness Analysis
4.3. Ablation Study
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Luo, Q.; Liu, S. Application of hyperspectral imaging technology in quality inspection of agricultural products. In Proceedings of the 2022 International Conference on Computers, Information Processing and Advanced Education (CIPAE), Ottawa, ON, Canada, 26–28 August 2022; pp. 369–372. [Google Scholar]
- Manohar Kumar, C.V.S.; Nidamanuri, R.R.; Dadhwal, V.K. Sub-pixel discrimination of soil and crop in drone-based hyperspectral imagery. In Proceedings of the 2023 13th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Athens, Greece, 31 October–2 November 2023; pp. 1–4. [Google Scholar]
- Tang, X.J.; Liu, X.; Yan, P.F.; Li, B.X.; Qi, H.Y.; Huang, F. An MLP network based on residual learning for rice hyperspectral data classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6007405. [Google Scholar] [CrossRef]
- Liang, J.; Li, P.; Zhao, H.; Han, L.; Qu, M. Forest species classification of UAV hyperspectral image using deep learning. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 7126–7130. [Google Scholar]
- Singh, L.; Mutanga, O.; Mafongoya, P.; Peerbhay, K.; Crous, J. Hyperspectral remote sensing for foliar nutrient detection in forestry: A near-infrared perspective. Remote Sens. Appl. Soc. Environ. 2022, 25, 100676. [Google Scholar] [CrossRef]
- Nisha, A.; Anitha, A. Current advances in hyperspectral remote sensing in urban planning. In Proceedings of the 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT), Kannur, India, 11–12 August 2022; pp. 94–98. [Google Scholar]
- Ferreira, M.P.; Martins, G.B.; de Almeida, T.M.H.; da Silva Ribeiro, R.; da Veiga Júnior, V.F.; da Silva Rocha Paz, I.; de Siqueira, M.F.; Kurtz, B.C. Estimating aboveground biomass of tropical urban forests with UAV-borne hyperspectral and LiDAR data. Urban For. Urban Green. 2024, 96, 128362. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Guan, H.; Chen, K.; Zang, Y.; Yu, Y. Urban tree species classification using UAV-based multispectral images and LiDAR point clouds. J. Geovis. Spat. Anal. 2024, 8, 5. [Google Scholar] [CrossRef]
- Zhi, Z.; Liu, J.; Liu, J.; Li, A. Geospatial structure and evolution analysis of national terrestrial adjacency network based on complex network. J. Geovis. Spat. Anal. 2024, 8, 12. [Google Scholar] [CrossRef]
- Li, Z.; Yang, X.; Meng, D.; Cao, X. An adaptive noisy label-correction method based on selective loss for hyperspectral image-classification problem. Remote Sens. 2024, 16, 2499. [Google Scholar] [CrossRef]
- Durojaiye, A.I.; Olorunsogo, S.T.; Adejumo, B.A.; Babawuya, A.; Muhamad, I.I. Deep learning techniques for the exploration of hyperspectral imagery potentials in food and agricultural products. Food Humanit. 2024, 3, 100365. [Google Scholar] [CrossRef]
- Ren, L.; Hong, D.; Gao, L.; Sun, X.; Huang, M.; Chanussot, J. Orthogonal subspace unmixing to address spectral variability for hyperspectral image. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5501713. [Google Scholar] [CrossRef]
- Su, Y.; Jiang, M.; Gao, L.; You, X.; Sun, X.; Li, P. Graph-cut-based node embedding for dimensionality reduction and classification of hyperspectral remote sensing images. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 1720–1723. [Google Scholar]
- Uddin, M.P.; Mamun, M.A.; Hossain, M.A. PCA-based feature reduction for hyperspectral remote sensing image classification. IETE Tech. Rev. 2021, 38, 377–396. [Google Scholar] [CrossRef]
- Fabiyi, S.D.; Murray, P.; Zabalza, J.; Ren, J. Folded LDA: Extending the linear discriminant analysis algorithm for feature extraction and data reduction in hyperspectral remote sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 12312–12331. [Google Scholar] [CrossRef]
- Belkin, M.; Niyogi, P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 2003, 15, 1373–1396. [Google Scholar] [CrossRef]
- Wang, C.; Fu, W.; Huang, H.; Chen, J. Isomap-based three-dimensional operational modal analysis. Sci. Program. 2020, 2020. [Google Scholar] [CrossRef]
- Wang, A.; Zhao, S.; Liu, J.; Yang, J.; Liu, L.; Chen, G. Locality adaptive preserving projections for linear dimensionality reduction. Expert Syst. Appl. 2020, 151, 113352. [Google Scholar] [CrossRef]
- Qiao, Z.; Zhou, L.; Huang, J.Z. Sparse linear discriminant analysis with applications to high dimensional low sample size data. IAENG Int. J. Appl. Math. 2009, 39, 48–60. [Google Scholar]
- Cui, H.; Deng, Y.; Zhong, R.; Li, W.; Yu, C.; Danyushevsky, L.V.; Belousov, I.; Li, Z.; Wang, H. Determining the ore-forming processes of Dongshengmiao Zn-Pb-Cu deposit: Evidence from the linear discriminant analysis of pyrite geochemistry. Ore Geol. Rev. 2023, 163, 105782. [Google Scholar] [CrossRef]
- Ye, J.; Xiong, T. Null space versus orthogonal linear discriminant analysis. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 1073–1080. [Google Scholar]
- Zhang, T.; Tao, D.; Yang, J. Discriminative locality alignment. In Proceedings of the Computer Vision–ECCV 2008: 10th European Conference on Computer Vision, Marseille, France, 12–18 October 2008; Proceedings, Part I 10. Springer: Berlin/Heidelberg, Germany, 2008; pp. 725–738. [Google Scholar]
- Wang, J.; Wang, L.; Nie, F.; Li, X. A novel formulation of trace ratio linear discriminant analysis. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 5568–5578. [Google Scholar] [CrossRef]
- Zhu, F.; Gao, J.; Yang, J.; Ye, N. Neighborhood linear discriminant analysis. Pattern Recognit. 2022, 123, 108422. [Google Scholar] [CrossRef]
- Kwak, N. Principal Component Analysis Based on L1-Norm Maximization. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 1672–1680. [Google Scholar] [CrossRef]
- Wang, R.; Nie, F.; Yang, X.; Gao, F.; Yao, M. Robust 2DPCA With Non-greedy ℓ1 -Norm Maximization for Image Analysis. IEEE Trans. Cybern. 2015, 45, 1108–1112. [Google Scholar] [CrossRef]
- Lu, Y.; Yuan, C.; Lai, Z.; Li, X.; Wong, W.K.; Zhang, D. Nuclear norm-based 2DLPP for image classification. IEEE Trans. Multimed. 2017, 19, 2391–2403. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, F.; Zhao, M.; Zhang, L.; Yan, S. Robust neighborhood preserving projection by nuclear/L2,1-norm regularization for image feature extraction. IEEE Trans. Image Process. 2017, 26, 1607–1622. [Google Scholar] [CrossRef]
- Gu, J.; Cai, Q.; Gong, W.; Wang, H. L21-Norm-Based Common Spatial Pattern with Regularized Filters. In Proceedings of the 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 18–20 June 2021; Volume 4, pp. 1746–1751. [Google Scholar]
- Nie, F.; Tian, L.; Huang, H.; Ding, C. Non-greedy L21-norm maximization for principal component analysis. IEEE Trans. Image Process. 2021, 30, 5277–5286. [Google Scholar] [CrossRef]
- Zhang, T.; Long, C.F.; Deng, Y.J.; Wang, W.Y.; Tan, S.Q.; Li, H.C. Low-rank preserving embedding regression for robust image feature extraction. IET Comput. Vis. 2024, 18, 124–140. [Google Scholar] [CrossRef]
- Deng, Y.J.; Yang, M.L.; Li, H.C.; Long, C.F.; Fang, K.; Du, Q. Feature dimensionality reduction with L2,p-norm-based robust embedding regression for classification of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5509314. [Google Scholar] [CrossRef]
- Nie, F.; Huang, H.; Cai, X.; Ding, C. Efficient and robust feature selection via joint L2,1-norms minimization. Adv. Neural Inf. Process. Syst. 2010, 23, 1813–1821. [Google Scholar]
- Yang, Y.; Shen, H.T.; Ma, Z.; Huang, Z.; Zhou, X. L2,1-norm regularized discriminative feature selection for unsupervised learning. In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence-Volume Volume Two, Catalonia, Spain, 16–22 July 2011; IJCAI’11. AAAI Press: Barcelona, Spain, 2011; pp. 1589–1594. [Google Scholar]
- Wen, J.; Fang, X.; Cui, J.; Fei, L.; Yan, K.; Chen, Y.; Xu, Y. Robust sparse linear discriminant analysis. IEEE Trans. Circuits Syst. Video Technol. 2018, 29, 390–403. [Google Scholar] [CrossRef]
- Tang, C.; Liu, X.; Zhu, X.; Xiong, J.; Li, M.; Xia, J.; Wang, X.; Wang, L. Feature selective projection with low-rank embedding and dual Laplacian regularization. IEEE Trans. Knowl. Data Eng. 2020, 32, 1747–1760. [Google Scholar] [CrossRef]
- Li, C.N.; Li, Y.; Meng, Y.H.; Ren, P.W.; Shao, Y.H. L2,1-norm regularized robust and sparse linear discriminant analysis via an alternating direction method of multipliers. IEEE Access 2023, 11, 34250–34259. [Google Scholar] [CrossRef]
- Long, C.F.; Wen, Z.D.; Deng, Y.J.; Hu, T.; Liu, J.L.; Zhu, X.H. Locality preserved selective projection learning for rice variety identification based on leaf hyperspectral characteristics. Agronomy 2023, 13, 2401. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, X.; Bai, R. Bayesian modal regression based on mixture distributions. Comput. Stat. Data Anal. 2024, 199, 108012. [Google Scholar] [CrossRef]
- Lam, B.S.; Choy, S.; Yu, C.K. Linear discriminant analysis with trimmed and difference distribution modeling. Knowl.-Based Syst. 2024, 299, 112093. [Google Scholar] [CrossRef]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 2011, 3, 1–122. [Google Scholar]
- Yang, J.; Yin, W.; Zhang, Y.; Wang, Y. A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J. Imaging Sci. 2009, 2, 569–592. [Google Scholar] [CrossRef]
Class # | LDA | LPP | RSLDA | TRLDA | LRPER | -RER | JSLLDA |
---|---|---|---|---|---|---|---|
1 | 93.42 ± 6.41 | 98.48 ± 0.36 | 98.24 ± 1.81 | 96.74 ± 1.02 | 100 ± 0.00 | 98.85 ± 0.86 | 98.24 ± 1.50 |
2 | 98.77 ± 0.42 | 99.14 ± 0.20 | 98.53 ± 0.46 | 98.45 ± 0.33 | 99.45 ± 0.15 | 99.49 ± 0.22 | 99.91 ± 0.05 |
3 | 92.57 ± 2.96 | 94.65 ± 4.30 | 92.72 ± 4.58 | 86.93 ± 6.05 | 77.58 ± 6.60 | 92.79 ± 3.74 | 99.12 ± 0.75 |
4 | 96.52 ± 2.54 | 97.68 ± 0.99 | 97.48 ± 1.95 | 98.73 ± 0.92 | 97.54 ± 0.07 | 99.23 ± 0.46 | 99.41 ± 0.53 |
5 | 94.73 ± 2.51 | 96.66 ± 1.49 | 95.53 ± 1.31 | 93.87 ± 2.45 | 95.07 ± 3.21 | 91.83 ± 4.98 | 98.15 ± 0.75 |
6 | 99.65 ± 0.16 | 99.55 ± 0.12 | 98.83 ± 0.36 | 98.54 ± 1.02 | 98.92 ± 0.43 | 99.69 ± 0.10 | 99.71 ± 0.21 |
7 | 99.59 ± 0.19 | 99.46 ± 0.11 | 98.57 ± 0.46 | 80.92 ± 5.19 | 99.50 ± 0.13 | 99.77 ± 0.09 | 99.72 ± 0.12 |
8 | 92.20 ± 5.60 | 87.18 ± 1.97 | 85.23 ± 2.99 | 80.92 ± 5.19 | 82.27 ± 1.81 | 85.37 ± 2.51 | 86.25 ± 1.82 |
9 | 97.55 ± 1.24 | 98.94 ± 0.79 | 97.79 ± 1.08 | 96.99 ± 0.85 | 96.36 ± 1.41 | 99.27 ± 0.63 | 99.60 ± 0.29 |
10 | 90.57 ± 2.25 | 84.20 ± 6.80 | 86.61 ± 4.28 | 83.39 ± 5.38 | 84.33 ± 2.05 | 93.24 ± 3.08 | 93.87 ± 2.07 |
11 | 91.41 ± 1.61 | 91.92 ± 1.54 | 85.87 ± 6.61 | 90.79 ± 3.96 | 33.52 ± 4.22 | 90.02 ± 4.02 | 90.84 ± 3.27 |
12 | 94.87 ± 2.27 | 96.99 ± 4.01 | 94.92 ± 3.51 | 98.24 ± 1.79 | 78.83 ± 7.24 | 99.44 ± 0.57 | 99.39 ± 0.94 |
13 | 97.92 ± 0.43 | 97.62 ± 0.51 | 96.66 ± 1.31 | 96.16 ± 3.05 | 94.08 ± 1.99 | 98.51 ± 0.68 | 97.66 ± 1.20 |
14 | 95.26 ± 1.89 | 93.42 ± 1.29 | 90.49 ± 4.70 | 90.09 ± 4.93 | 84.87 ± 3.35 | 96.96 ± 1.13 | 94.58 ± 1.72 |
15 | 16.05 ± 12.54 | 48.85 ± 4.67 | 60.33 ± 3.93 | 53.67 ± 7.27 | 64.38 ± 4.87 | 67.75 ± 3.78 | 63.44 ± 3.68 |
16 | 95.28 ± 3.45 | 96.77 ± 1.78 | 91.29 ± 2.46 | 90.82 ± 0.63 | 90.09 ± 4.09 | 97.70 ± 1.05 | 98.30 ± 0.79 |
AA | 90.40 ± 0.73 | 92.59 ± 0.58 | 91.82 ± 0.70 | 86.05 ± 0.77 | 90.52 ± 0.86 | 94.37 ± 0.30 | 94.89 ± 0.22 |
OA | 84.61 ± 0.63 | 88.23 ± 0.64 | 88.64 ± 0.35 | 86.41 ± 0.55 | 86.09 ± 0.37 | 90.95 ± 0.50 | 91.15 ± 0.26 |
82.73 ± 0.74 | 86.84 ± 0.72 | 87.32 ± 0.39 | 84.83 ± 0.61 | 84.47 ± 0.42 | 89.91 ± 0.55 | 90.13 ± 0.29 |
Class # | LDA | LPP | RSLDA | TRLDA | LRPER | -RER | JSLLDA |
---|---|---|---|---|---|---|---|
1 | 66.89 ± 3.04 | 79.82 ± 4.30 | 84.86 ± 2.01 | 83.79 ± 2.07 | 83.06 ± 1.70 | 90.57 ± 1.97 | 87.01 ± 2.47 |
2 | 93.83 ± 2.06 | 90.81 ± 1.05 | 94.52 ± 1.83 | 92.17 ± 2.55 | 96.53 ± 1.18 | 93.98 ± 1.24 | 95.56 ± 1.22 |
3 | 46.97 ± 11.03 | 45.91 ± 3.49 | 49.66 ± 3.54 | 49.15 ± 4.88 | 50.19 ± 1.12 | 57.22 ± 6.11 | 63.16 ± 3.97 |
4 | 78.95 ± 5.22 | 82.23 ± 1.82 | 78.71 ± 5.21 | 79.27 ± 4.96 | 69.25 ± 5.31 | 81.87 ± 2.87 | 82.53 ± 3.81 |
5 | 99.78 ± 0.09 | 98.69 ± 0.43 | 98.43 ± 0.84 | 92.35 ± 4.13 | 95.61 ± 5.04 | 98.36 ± 1.28 | 98.47 ± 0.93 |
6 | 31.94 ± 11.53 | 48.88 ± 4.58 | 53.83 ± 7.57 | 48.76 ± 7.22 | 21.28 ± 3.25 | 70.43 ± 3.66 | 75.77 ± 2.97 |
7 | 40.62 ± 11.58 | 39.82 ± 8.08 | 68.63 ± 9.15 | 66.37 ± 9.75 | 53.76 ± 5.38 | 57.66 ± 10.74 | 73.02 ± 5.87 |
8 | 53.951 ± 9.65 | 49.23 ± 6.13 | 84.22 ± 2.58 | 83.10 ± 2.49 | 77.96 ± 2.50 | 74.97 ± 3.90 | 85.87 ± 2.01 |
9 | 79.30 ± 6.24 | 87.75 ± 2.85 | 99.57 ± 0.27 | 98.98 ± 0.46 | 98.40 ± 1.21 | 97.28 ± 2.68 | 99.54 ± 0.31 |
AA | 65.80 ± 3.20 | 69.24 ± 0.56 | 79.16 ± 1.24 | 77.10 ± 1.73 | 71.78 ± 0.97 | 80.26 ± 1.20 | 84.55 ± 0.82 |
OA | 73.79 ± 1.79 | 76.37 ± 0.42 | 83.45 ± 1.00 | 81.30 ± 1.25 | 78.45 ± 1.16 | 85.46 ± 0.51 | 88.03 ± 0.70 |
64.20 ± 2.57 | 68.20 ± 0.52 | 77.63 ± 1.37 | 74.78 ± 1.67 | 70.15 ± 1.64 | 80.55 ± 0.66 | 83.99 ± 0.94 |
Class # | LDA | LPP | RSLDA | TRLDA | LRPER | -RER | JSLLDA |
---|---|---|---|---|---|---|---|
1 | 73.83 ± 11.04 | 78.56 ± 4.76 | 87.61 ± 2.49 | 85.12 ± 2.45 | 90.86 ± 1.84 | 90.79 ± 2.29 | 91.37 ± 1.52 |
2 | 73.93 ± 6.91 | 77.56 ± 3.79 | 89.06 ± 6.26 | 98.78 ± 0.31 | 92.41 ± 1.04 | 96.63 ± 1.21 | 96.96 ± 0.88 |
3 | 64.60 ± 6.46 | 76.05 ± 2.44 | 84.83 ± 2.59 | 78.52 ± 3.52 | 81.84 ± 1.49 | 84.71 ± 0.12 | 89.54 ± 3.40 |
4 | 65.26 ± 8.21 | 49.41 ± 12.51 | 71.18 ± 5.70 | 77.08 ± 4.18 | 75.75 ± 9.39 | 86.45 ± 1.75 | 85.27 ± 4.90 |
5 | 83.17 ± 5.10 | 79.69 ± 6.05 | 88.68 ± 4.19 | 84.78 ± 3.56 | 94.25 ± 1.39 | 94.05 ± 1.42 | 96.04 ± 1.01 |
6 | 55.77 ± 4.31 | 78.82 ± 4.84 | 81.52 ± 5.65 | 83.82 ± 4.00 | 83.88 ± 4.39 | 89.64 ± 1.50 | 90.67 ± 3.50 |
7 | 61.68 ± 9.87 | 58.19 ± 11.89 | 69.51 ± 5.88 | 75.70 ± 4.98 | 80.49 ± 2.60 | 81.61 ± 9.01 | 91.64 ± 2.50 |
8 | 86.20 ± 5.68 | 82.11 ± 5.98 | 90.30 ± 3.42 | 78.50 ± 5.48 | 92.22 ± 1.90 | 90.09 ± 1.66 | 92.23 ± 2.85 |
AA | 70.56 ± 3.75 | 72.55 ± 1.73 | 82.84 ± 2.34 | 86.41 ± 1.55 | 86.17 ± 0.46 | 89.51 ± 1.44 | 92.09 ± 0.98 |
OA | 71.48 ± 5.69 | 75.57 ± 2.58 | 86.07 ± 2.07 | 86.80 ± 1.25 | 88.36 ± 0.99 | 90.91 ± 0.39 | 92.29 ± 0.68 |
63.40 ± 6.46 | 68.22 ± 3.06 | 81.39 ± 2.63 | 82.15 ± 1.65 | 84.30 ± 1.27 | 87.74 ± 0.47 | 89.58 ± 0.89 |
Dataset | LDA | LPP | RSLDA | TRLDA | LRPER | -RER | JSLLDA |
---|---|---|---|---|---|---|---|
Salinas | 0.018 | 0.054 | 0.2247 | 0.0943 | 20.7665 | 5.0521 | 2.6303 |
University of Pavia | 0.0056 | 0.0026 | 0.1156 | 0.0455 | 25.6457 | 2.5703 | 1.1550 |
HeiHe | 0.0113 | 0.0036 | 0.1159 | 0.0644 | 1.441 | 0.3218 | 0.2203 |
Metrics | LDA | LPP | RSLDA | TRLDA | LRPER | -RER | JSLLDA |
---|---|---|---|---|---|---|---|
OA | 46.53 ± 1.39 | 76.82 ± 0.93 | 85.63 ± 0.62 | 79.54 ± 3.05 | 82.85 ± 0.67 | 77.69 ± 4.33 | 88.77 ± 0.72 |
AA | 45.62 ± 1.23 | 77.34 ± 1.35 | 89.79 ± 0.96 | 80.78 ± 4.50 | 84.56 ± 0.74 | 75.37 ± 6.35 | 91.73 ± 0.57 |
40.80 ± 1.50 | 74.11 ± 1.03 | 83.95 ± 0.69 | 77.09 ± 3.41 | 80.87 ± 0.74 | 75.15 ± 4.83 | 87.48 ± 0.80 |
Metrics | LDA | LPP | RSLDA | TRLDA | LRPER | -RER | JSLLDA |
---|---|---|---|---|---|---|---|
OA | 44.91 ± 2.58 | 74.41 ± 0.22 | 80.02 ± 0.82 | 78.75 ± 1.03 | 61.56 ± 1.50 | 77.19 ± 2.12 | 80.13 ± 0.58 |
AA | 12.11 ± 1.85 | 68.08 ± 1.25 | 68.87 ± 2.11 | 66.53 ± 2.66 | 43.22 ± 2.85 | 67.05 ± 5.68 | 72.44 ± 2.15 |
3.30 ± 6.21 | 65.76 ± 0.27 | 72.59 ± 1.21 | 70.77 ± 1.50 | 46.25 ± 3.06 | 69.39 ± 2.85 | 73.35 ± 0.76 |
Metrics | LDA | LPP | RSLDA | TRLDA | LRPER | -RER | JSLLDA |
---|---|---|---|---|---|---|---|
OA | 40.23 ± 6.16 | 80.37 ± 2.31 | 84.93 ± 1.68 | 78.15 ± 1.76 | 65.13 ± 1.64 | 76.68 ± 2.64 | 86.49 ± 1.28 |
AA | 41.82 ± 4.56 | 79.34 ± 1.64 | 86.25 ± 1.15 | 76.04 ± 1.45 | 65.49 ± 0.39 | 71.58 ± 1.86 | 83.85 ± 0.82 |
28.49 ± 7.09 | 74.25 ± 2.82 | 80.09 ± 2.11 | 71.31 ± 2.13 | 56.08 ± 1.74 | 69.22 ± 3.23 | 82.01 ± 1.63 |
Baseline | RR | JS | LPP-R | OA | AA | |
---|---|---|---|---|---|---|
✓ | ✗ | ✗ | ✗ | 82.51 ± 0.97 | 85.52 ± 1.12 | 80.57 ± 1.07 |
✓ | ✓ | ✗ | ✗ | 85.96 ± 1.05 | 89.00 ± 1.57 | 84.25 ± 1.21 |
✓ | ✓ | ✓ | ✗ | 90.65 ± 0.42 | 94.75 ± 0.13 | 89.58 ± 0.47 |
✓ | ✓ | ✗ | ✓ | 88.67 ± 0.60 | 93.13 ± 0.47 | 87.35 ± 0.68 |
✓ | ✓ | ✓ | ✓ | 91.24 ± 0.35 | 95.07 ± 0.15 | 90.22 ± 0.39 |
Baseline | RR | JS | LPP-R | OA | AA | |
---|---|---|---|---|---|---|
✓ | ✗ | ✗ | ✗ | 73.79 ± 1.79 | 65.80 ± 3.20 | 64.20 ± 2.57 |
✓ | ✓ | ✗ | ✗ | 76.23 ± 0.75 | 66.28 ± 1.64 | 68.15 ± 1.01 |
✓ | ✓ | ✓ | ✗ | 87.19 ± 0.64 | 82.41 ± 1.55 | 82.86 ± 0.86 |
✓ | ✓ | ✗ | ✓ | 77.51 ± 0.83 | 68.45 ± 1.39 | 69.79 ± 1.09 |
✓ | ✓ | ✓ | ✓ | 87.64 ± 0.94 | 82.29 ± 2.21 | 83.49 ± 1.25 |
Baseline | RR | JS | LPP-R | OA | AA | |
---|---|---|---|---|---|---|
✓ | ✗ | ✗ | ✗ | 71.48 ± 5.69 | 70.56 ± 3.75 | 63.40 ± 6.46 |
✓ | ✓ | ✗ | ✗ | 72.58 ± 3.86 | 67.33 ± 4.20 | 64.21 ± 4.82 |
✓ | ✓ | ✓ | ✗ | 90.45 ± 2.33 | 90.91 ± 0.97 | 87.16 ± 2.98 |
✓ | ✓ | ✗ | ✓ | 71.57 ± 4.47 | 66.67 ± 2.60 | 63.06 ± 5.21 |
✓ | ✓ | ✓ | ✓ | 92.32 ± 0.67 | 92.16 ± 0.96 | 89.63 ± 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, C.-Y.; Li, M.-T.; Deng, Y.-J.; Ren, L.; Liu, Y.; Zhu, X.-H. Joint Sparse Local Linear Discriminant Analysis for Feature Dimensionality Reduction of Hyperspectral Images. Remote Sens. 2024, 16, 4287. https://doi.org/10.3390/rs16224287
Cao C-Y, Li M-T, Deng Y-J, Ren L, Liu Y, Zhu X-H. Joint Sparse Local Linear Discriminant Analysis for Feature Dimensionality Reduction of Hyperspectral Images. Remote Sensing. 2024; 16(22):4287. https://doi.org/10.3390/rs16224287
Chicago/Turabian StyleCao, Cong-Yin, Meng-Ting Li, Yang-Jun Deng, Longfei Ren, Yi Liu, and Xing-Hui Zhu. 2024. "Joint Sparse Local Linear Discriminant Analysis for Feature Dimensionality Reduction of Hyperspectral Images" Remote Sensing 16, no. 22: 4287. https://doi.org/10.3390/rs16224287
APA StyleCao, C. -Y., Li, M. -T., Deng, Y. -J., Ren, L., Liu, Y., & Zhu, X. -H. (2024). Joint Sparse Local Linear Discriminant Analysis for Feature Dimensionality Reduction of Hyperspectral Images. Remote Sensing, 16(22), 4287. https://doi.org/10.3390/rs16224287