Accuracy and Precision of Shallow-Water Photogrammetry from the Sea Surface
Abstract
:1. Introduction
2. Methods
2.1. Mapping Operations
- One photo of the screen of the GNSS receiver showing GPS time taken with the camera used for the survey
- Photos of the seafloor taken with the same camera (12 MP, 72 PPI)
- A csv file exported from the echosounder, containing position and depth information
- A gpx file exported from the GNSS receiver containing the track followed by the snorkelling operator
- A csv file with tidal values for the time of survey from a nearby tide gauge
2.2. Data Preprocessing
- Label. The image filename of the image.
- Latitude, Longitude. The coordinates extracted from the gpx file.
- Altitude. The average water level calculated from the tidal data.
- Hrz Accuracy. The horizontal accuracy of the photo position is set to 1 m.
- Vrt Accuracy. The vertical accuracy of the photo elevation is set to 0.2 m.
- Time difference. The difference (in seconds) between the photo time and the gpx time, saved for debugging purposes (normally, this value should be 0.0 s).
2.3. SfM/MVS Processing
2.4. Postprocessing
3. Test Results
3.1. Description of Products
3.2. Accuracy of Digital Bathymetric Models
3.3. Precision of Orthomosaics and Digital Bathymetric Models
4. Discussion
4.1. Cost of the Platform
4.2. Resolution of Final Products
4.3. Accuracy and Precision of DBMs
4.4. Future Improvements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Agisoft Metashape Processing Reports
Appendix A.1. 28 July 2020
Appendix A.2. 30 July 2020
Appendix A.3. 7 August 2020
Appendix A.4. 13 August 2020
Appendix B. Supplementary Figures
References
- Makowski, C.; Finkl, C.W. History of modern seafloor mapping. In Seafloor Mapping Along Continental Shelves: Research and Techniques for Visualizing Benthic Environments; Springer: Cham, Switzerland, 2016; pp. 3–49. [Google Scholar]
- Hughes Clarke, J.E. Multibeam Echosounders. In Submarine Geomorphology; Micallef, A., Krastel, S., Savini, A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 25–41. [Google Scholar] [CrossRef]
- Lurton, X. Swath bathymetry using phase difference: Theoretical analysis of acoustical measurement precision. IEEE J. Ocean. Eng. 2000, 25, 351–363. [Google Scholar] [CrossRef]
- Liu, J.; Pang, Y.; Yan, L.; Zhu, H. An Image Quality Improvement Method in Side-Scan Sonar Based on Deconvolution. Remote Sens. 2023, 15, 4908. [Google Scholar] [CrossRef]
- Rizzo, A.; De Giosa, F.; Donadio, C.; Scardino, G.; Scicchitano, G.; Terracciano, S.; Mastronuzzi, G. Morpho-bathymetric acoustic surveys as a tool for mapping traces of anthropogenic activities on the seafloor: The case study of the Taranto area, southern Italy. Mar. Pollut. Bull. 2022, 185, 114314. [Google Scholar] [CrossRef] [PubMed]
- Leblond, I.; Bertholom, A.; Delumeau, I. Sidescan sonar mosaicing improvements using a tracking algorithm combining forward looking sonar images and ship heading oscillations. Proc. Mtgs. Acoust. 2021, 44, 070012. [Google Scholar]
- Harris, D.L.; Webster, J.M.; Vila-Concejo, A.; Duce, S.; Leon, J.X.; Hacker, J. Defining multi-scale surface roughness of a coral reef using a high-resolution LiDAR digital elevation model. Geomorphology 2023, 439, 108852. [Google Scholar] [CrossRef]
- Giordano, F.; Mattei, G.; Parente, C.; Peluso, F.; Santamaria, R. Integrating Sensors into a Marine Drone for Bathymetric 3D Surveys in Shallow Waters. Sensors 2015, 16, 41. [Google Scholar] [CrossRef]
- Sotelo-Torres, F.; Alvarez, L.V.; Roberts, R.C. An Unmanned Surface Vehicle (USV): Development of an Autonomous Boat with a Sensor Integration System for Bathymetric Surveys. Sensors 2023, 23, 4420. [Google Scholar] [CrossRef]
- Collin, A.; Ramambason, C.; Pastol, Y.; Casella, E.; Rovere, A.; Thiault, L.; Espiau, B.; Siu, G.; Lerouvreur, F.; Nakamura, N.; et al. Very high resolution mapping of coral reef state using airborne bathymetric LiDAR surface-intensity and drone imagery. Int. J. Remote. Sens. 2018, 39, 5676–5688. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, N.; Liu, Z.; Yang, B.; Yang, F.; Wang, X.H.; Li, S. Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets. Remote Sens. Environ. 2020, 250, 112047. [Google Scholar] [CrossRef]
- Rossi, L.; Mammi, I.; Pelliccia, F. UAV-derived multispectral bathymetry. Remote Sens. 2020, 12, 3897. [Google Scholar] [CrossRef]
- Alevizos, E.; Oikonomou, D.; Argyriou, A.V.; Alexakis, D.D. Fusion of drone-Based RGB and multi-spectral imagery for shallow water bathymetry inversion. Remote Sens. 2022, 14, 1127. [Google Scholar] [CrossRef]
- Casella, E.; Collin, A.; Harris, D.; Ferse, S.; Bejarano, S.; Parravicini, V.; Hench, J.L.; Rovere, A. Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques. Coral Reefs 2017, 36, 269–275. [Google Scholar] [CrossRef]
- Casella, E.; Lewin, P.; Ghilardi, M.; Rovere, A.; Bejarano, S. Assessing the relative accuracy of coral heights reconstructed from drones and structure from motion photogrammetry on coral reefs. Coral Reefs 2022, 41, 869–875. [Google Scholar] [CrossRef]
- Chirayath, V.; Earle, S.A. Drones that see through waves–preliminary results from airborne fluid lensing for centimetre-scale aquatic conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 2016, 26, 237–250. [Google Scholar] [CrossRef]
- Dietrich, J.T. Bathymetric Structure-from-Motion: Extracting shallow stream bathymetry from multi-view stereo photogrammetry. Earth Surf. Process. Landforms 2017, 42, 355–364. [Google Scholar] [CrossRef]
- Pulido Mantas, T.; Roveta, C.; Calcinai, B.; di Camillo, C.G.; Gambardella, C.; Gregorin, C.; Coppari, M.; Marrocco, T.; Puce, S.; Riccardi, A.; et al. Photogrammetry, from the land to the sea and beyond: A unifying approach to study terrestrial and marine environments. J. Mar. Sci. Eng. 2023, 11, 759. [Google Scholar] [CrossRef]
- David, C.G.; Kohl, N.; Casella, E.; Rovere, A.; Ballesteros, P.; Schlurmann, T. Structure-from-Motion on shallow reefs and beaches: Potential and limitations of consumer-grade drones to reconstruct topography and bathymetry. Coral Reefs 2021, 40, 835–851. [Google Scholar] [CrossRef]
- Fallati, L.; Saponari, L.; Savini, A.; Marchese, F.; Corselli, C.; Galli, P. Multi-Temporal UAV Data and object-based image analysis (OBIA) for estimation of substrate changes in a post-bleaching scenario on a maldivian reef. Remote Sens. 2020, 12, 2093. [Google Scholar] [CrossRef]
- Agrafiotis, P.; Skarlatos, D.; Forbes, T.; Poullis, C.; Skamantzari, M.; Georgopoulos, A. Underwater photogrammetry in very shallow waters: Main challenges and caustics effect removal. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-2, 15–22. [Google Scholar] [CrossRef]
- Agrafiotis, P.; Karantzalos, K.; Georgopoulos, A. Seafloor-Invariant Caustics Removal From Underwater Imagery. IEEE J. Ocean. Eng. 2023, 48, 1300–1321. [Google Scholar] [CrossRef]
- Balletti, C.; Beltrame, C.; Costa, E.; Guerra, F.; Vernier, P. 3D reconstruction of marble shipwreck cargoes based on underwater multi-image photogrammetry. Digit. Appl. Archaeol. Cult. Herit. 2016, 3, 1–8. [Google Scholar] [CrossRef]
- McCarthy, J.; Benjamin, J.; Winton, T.; Van Duivenvoorde, W. The rise of 3D in maritime archaeology. In 3D Recording and Interpretation for Maritime Archaeology; Springer: Cham, Switzerland, 2019; pp. 1–10. [Google Scholar]
- Reich, J.; Steiner, P.; Ballmer, A.; Emmenegger, L.; Hostettler, M.; Stäheli, C.; Naumov, G.; Taneski, B.; Todoroska, V.; Schindler, K.; et al. A novel Structure from Motion-based approach to underwater pile field documentation. J. Archaeol. Sci. Rep. 2021, 39, 103120. [Google Scholar] [CrossRef]
- Rossi, P.; Castagnetti, C.; Capra, A.; Brooks, A.J.; Mancini, F. Detecting change in coral reef 3D structure using underwater photogrammetry: Critical issues and performance metrics. Appl. Geomat. 2020, 12, 3–17. [Google Scholar] [CrossRef]
- Remmers, T.; Grech, A.; Roelfsema, C.; Gordon, S.; Lechene, M.; Ferrari, R. Close-range underwater photogrammetry for coral reef ecology: A systematic literature review. Coral Reefs 2024, 43, 35–52. [Google Scholar] [CrossRef]
- Raber, G.T.; Schill, S.R. Reef Rover: A Low-Cost Small Autonomous Unmanned Surface Vehicle (USV) for Mapping and Monitoring Coral Reefs. Drones 2019, 3, 38. [Google Scholar] [CrossRef]
- Lange, I.D.; Perry, C.T. A quick, easy and non-invasive method to quantify coral growth rates using photogrammetry and 3D model comparisons. Methods Ecol. Evol. 2020, 11, 714–726. [Google Scholar] [CrossRef]
- Bayley, D.T.I.; Mogg, A.O.M. A protocol for the large-scale analysis of reefs using Structure from Motion photogrammetry. Methods Ecol. Evol. 2020, 11, 1410–1420. [Google Scholar] [CrossRef]
- Ventura, D.; Grosso, L.; Pensa, D.; Casoli, E.; Mancini, G.; Valente, T.; Scardi, M.; Rakaj, A. Coastal benthic habitat mapping and monitoring by integrating aerial and water surface low-cost drones. Front. Mar. Sci. 2023, 9, 1096594. [Google Scholar] [CrossRef]
- Specht, M. Methodology for Performing Bathymetric and Photogrammetric Measurements Using UAV and USV Vehicles in the Coastal Zone. Remote Sens. 2024, 16, 3328. [Google Scholar] [CrossRef]
- Ventura, D.; Mancini, G.; Casoli, E.; Pace, D.S.; Lasinio, G.J.; Belluscio, A.; Ardizzone, G. Seagrass restoration monitoring and shallow-water benthic habitat mapping through a photogrammetry-based protocol. J. Environ. Manag. 2022, 304, 114262. [Google Scholar] [CrossRef]
- Solana Rubio, S.; Salas Romero, A.; Cerezo Andreo, F.; González Gallero, R.; Rengel, J.; Rioja, L.; Callejo, J.; Bethencourt, M. Comparison between the Employment of a Multibeam Echosounder on an Unmanned Surface Vehicle and Traditional Photogrammetry as Techniques for Documentation and Monitoring of Shallow-Water Cultural Heritage Sites: A Case Study in the Bay of Algeciras. J. Mar. Sci. Eng. 2023, 11, 1339. [Google Scholar] [CrossRef]
- Nocerino, E.; Menna, F.; Gruen, A.; Troyer, M.; Capra, A.; Castagnetti, C.; Rossi, P.; Brooks, A.J.; Schmitt, R.J.; Holbrook, S.J. Coral Reef Monitoring by Scuba Divers Using Underwater Photogrammetry and Geodetic Surveying. Remote Sens. 2020, 12, 3036. [Google Scholar] [CrossRef]
- Figueira, W.; Ferrari, R.; Weatherby, E.; Porter, A.; Hawes, S.; Byrne, M. Accuracy and Precision of Habitat Structural Complexity Metrics Derived from Underwater Photogrammetry. Remote Sens. 2015, 7, 16883–16900. [Google Scholar] [CrossRef]
- Jaud, M.; Delsol, S.; Urbina-Barreto, I.; Augereau, E.; Cordier, E.; Guilhaumon, F.; Le Dantec, N.; Floc’h, F.; Delacourt, C. Low-Tech and Low-Cost System for High-Resolution Underwater RTK Photogrammetry in Coastal Shallow Waters. Remote Sens. 2023, 16, 20. [Google Scholar] [CrossRef]
- Hatcher, G.A.; Warrick, J.A.; Kranenburg, C.J.; Ritchie, A.C. Accurate Maps of Reef-Scale Bathymetry with Synchronized Underwater Cameras and GNSS. Remote Sens. 2023, 15, 3727. [Google Scholar] [CrossRef]
- Abadie, A.; Boissery, P.; Viala, C. Georeferenced underwater photogrammetry to map marine habitats and submerged artificial structures. Photogramm. Rec. 2018, 33, 448–469. [Google Scholar] [CrossRef]
- Mauz, B.; Vacchi, M.; Green, A.; Hoffmann, G.; Cooper, A. Beachrock: A tool for reconstructing relative sea level in the far-field. Mar. Geol. 2015, 362, 1–16. [Google Scholar] [CrossRef]
- Gewelt, M.; Fierro, G. Le beach-rock de Capo Noli (Finale Ligure, Italie): Datation 14C et variations diurnes du pH dans des cuvettes. MOM Éd. 1984, 8, 55–66. [Google Scholar]
- Lau, L. Chapter 4—GNSS multipath errors and mitigation techniques. In GPS and GNSS Technology in Geosciences; Petropoulos, G., Srivastava, P.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 77–98. [Google Scholar] [CrossRef]
- Hatcher, G.A.; Warrick, J.A.; Ritchie, A.C.; Dailey, E.T.; Zawada, D.G.; Kranenburg, C.; Yates, K.K. Accurate Bathymetric Maps From Underwater Digital Imagery Without Ground Control. Front. Mar. Sci. 2020, 7, 525. [Google Scholar] [CrossRef]
- Lo, E.; Lozano Bravo, H.; Hui, N.; Nocerino, E.; Menna, F.; Rissolo, D.; Kuester, F. Evaluation of the Accuracy of Photogrammetric Reconstruction of Bathymetry Using Differential GNSS Synchronized with an Underwater Camera. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2024, XLVIII-2-2024, 211–218. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, W.; Ren, P. Self-organized underwater image enhancement. ISPRS J. Photogramm. Remote Sens. 2024, 215, 1–14. [Google Scholar] [CrossRef]
- Boyden, P.; Weil-Accardo, J.; Deschamps, P.; O’Leary, M.; Rovere, A. Revisiting Battisitini: Refining Uncertainties in Classic Last Interglacial Field Sites. In Proceedings of the American Geophysical Union Fall Meeting 2019, San Francisco, CA, USA, 9–13 December 2019; p. PP24A–02. [Google Scholar]
- Lyard, F.H.; Allain, D.J.; Cancet, M.; Carrère, L.; Picot, N. FES2014 global ocean tide atlas: Design and performance. Ocean. Sci. 2021, 17, 615–649. [Google Scholar] [CrossRef]
- Raoult, V.; David, P.A.; Dupont, S.F.; Mathewson, C.P.; O’Neill, S.J.; Powell, N.N.; Williamson, J.E. GoPros™ as an underwater photogrammetry tool for citizen science. PeerJ 2016, 4, e1960. [Google Scholar] [CrossRef] [PubMed]
- Casella, E.; Rovere, A. Data, Pre- and Post-processing scripts for shallow-water photogrammetry applications. Zenodo 2024. [Google Scholar] [CrossRef]
Date | Start Time (hh:mm UTC) | Survey Duration (Minutes) | Area Surveyed (sqm) | Number of Images (% Aligned) | Orthomosaic Resolution (mm/pix) | DBM Resolution (mm/pix) | Number of Echosounder Points | Postprocessing Vertical Correction (m) |
---|---|---|---|---|---|---|---|---|
28 July 2020 | 07:31 | 21 | 420 | 1682 (88%) | 1.14 | 2.28 | 336 | −0.04 |
30 July 2020 | 07:16 | 21 | 437 | 1838 (82%) | 1.05 | 2.1 | 326 | 0.13 |
7 August 2020 | 07:21 | 27 | 440 | 1812 (79%) | 1.08 | 2.15 | 370 | 0.04 |
13 August 2020 | 06:14 | 21 | 488 | 1778 (100%) | 1.17 | 2.33 | 388 | 0.05 |
Date | Total Processing Time (hh:mm) | Point Cloud Filtering Operations |
---|---|---|
28 July 2020 | 02:06 | Filtered out points with confidence less or equal to 1 |
30 July 2020 | 02:10 | Filtered out points with confidence less or equal to 2 |
7 August 2020 | 01:52 | Filtered out points with confidence less or equal to 1 Smooth point cloud: radius (m) 0.02 |
13 August 2020 | 02:59 | Filtered out points with confidence less or equal to 3 |
Base DBM | Target DBM | Average Difference (m) | RMSE (m) |
---|---|---|---|
13/08 | 30/07 | 0.14 | 0.19 |
13/08 | 28/07 | −0.001 | 0.06 |
28/07 | 30/07 | 0.15 | 0.19 |
07/08 | 30/07 | 0.10 | 0.17 |
07/08 | 13/08 | −0.04 | 0.14 |
07/08 | 28/07 | −0.04 | 0.13 |
Item | Model | 2024 Cost (€) |
---|---|---|
Android phone | HuaweiP20 Pro | 150 |
Echosounder | Deeper Pro | 180 |
Action camera | GoPro Hero 4 Silver | 100 * |
Bluetooth GNSS | BadElf GPS Pro+ ** | 460 |
Diving buoy | Cressi Signal | 80 |
Other tools | Waterproof box | 10 |
Other tools | Ice brick | 5 |
Total | 885 | |
SfM/MVS software | Agisoft Metashape *** | 510 |
Workstation **** | 2600 | |
Total | 3110 |
Reference | Technique | Average Accuracy (m) | RMSE or StDev Accuracy (m) | Average Precision (m) | RMSE or StDev Precision (m) |
---|---|---|---|---|---|
This work * | SfM/MVS from surface platform (one camera) with no ground control points (GCPs), non-differential GNSS positioning and fishfinder echosounder depth control. | 0.01 0.04 0.006 −0.006 | 0.43 0.29 0.39 0.38 | 0.14 −0.001 0.15 0.10 −0.04 −0.04 | 0.19 0.06 0.19 0.17 0.14 0.13 |
Lo et al. [44] * | SfM/MVS from surface platform connected with RTK GNSS. Accuracy assessed against 5 CPs placed on the seafloor. | - | 0.003 0.002 0.003 0.002 0.003 | - | - |
Hatcher et al. [38] | SfM/MVS from surface platform (five cameras) with no GCPs and RTK GNSS camera positioning. Water depth accuracy tested against fixed plates on the seafloor. Precision tested with overlapping DBMs taken during two surveys. | 0.004 | 0.018 | 0.001 | 0.01 |
Jaud et al. [37] | SfM/MVS from surface platform (two cameras) with no GCPs and RTK GNSS camera positioning. Accuracy tested against test on-land SfM at high tide and precision tested on repeated surveys. | 0.052 | 0.046 | −0.017 0.013 0.030 | 0.063 0.062 0.078 |
Ventura et al. [33] * | SfM/MVS from diver operator with GCPs measured with RTK GNSS, accuracy tested on check points (CPs) and multibeam bathymetry (transects). | n/a 0.18 | 0.016 0.3 | - | - |
Hatcher et al. [43] | SfM/MVS from surface platform (five cameras) with no GCPs and RTK GNSS camera positioning. Water depth accuracy tested against two fixed plates on the seafloor. Precision tested with a subset area of the DBM taken during two surveys. | ~0.03 | - | 0.008 | 0.003 |
Nocerino et al. [35] * | Diver-operated camera (different cameras and different distance of acquisition) with network of GCPs (used for referencing the point cloud) and CPs (used to assess precision) measured with RTK GNSS. | - | - | - | 0.002 0.005 |
Abadie et al. [39] ** | SfM/MVS from surface platform (one camera) with accuracy tested against multibeam echosounder. | - | - | - | 0.48 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casella, E.; Scicchitano, G.; Rovere, A. Accuracy and Precision of Shallow-Water Photogrammetry from the Sea Surface. Remote Sens. 2024, 16, 4321. https://doi.org/10.3390/rs16224321
Casella E, Scicchitano G, Rovere A. Accuracy and Precision of Shallow-Water Photogrammetry from the Sea Surface. Remote Sensing. 2024; 16(22):4321. https://doi.org/10.3390/rs16224321
Chicago/Turabian StyleCasella, Elisa, Giovanni Scicchitano, and Alessio Rovere. 2024. "Accuracy and Precision of Shallow-Water Photogrammetry from the Sea Surface" Remote Sensing 16, no. 22: 4321. https://doi.org/10.3390/rs16224321
APA StyleCasella, E., Scicchitano, G., & Rovere, A. (2024). Accuracy and Precision of Shallow-Water Photogrammetry from the Sea Surface. Remote Sensing, 16(22), 4321. https://doi.org/10.3390/rs16224321