Synergistic Coupling of Multi-Source Remote Sensing Data for Sandy Land Detection and Multi-Indicator Integrated Evaluation
Abstract
:1. Introduction
2. Study Area and Data Description
2.1. Study Area
2.2. Data Acquisition and Preprocessing
2.2.1. Remote Sensing Data
2.2.2. Data Preprocessing
2.2.3. Field Data
3. Methodology
3.1. Overall Approach
3.2. Sandy Land Detection
3.2.1. Sandy Land Detection Based on Optical Data
3.2.2. Sandy Land Detection Based on Radar Data
3.2.3. Synergistic Coupling of Multi-Source Data for Sandy Land Detection
3.3. Integrated Multi-Indicator Model for Evaluating Sandy Land
3.3.1. Evaluation Parameter Indicator of Sandy Land Based on Optical Data
3.3.2. Evaluation Indicators of Sandy Land Based on Radar Data
3.3.3. Construction of an Integrated Multi-Indicator Model for Sandy Land Evaluation
3.3.4. Accuracy Assessment Based on Field Data
4. Results
4.1. Detection of Sandy Land
4.1.1. Methods of Sandy Land Detection
4.1.2. Detection and Verification of Sandy Land in Gansu Province
4.2. Integrated Multi-Indicator Model for Evaluating Sandy Land
4.2.1. Multi-Indicator Analysis of Sand Characteristics Based on Optical Data
4.2.2. Multi-Indicator Analysis of Sand Characteristics Based on Radar Data
4.2.3. Construction of an Integrated Multi-Indicator Model for Evaluating Sandy Land
4.2.4. Sandy Land Evaluation in Gansu Province
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.L.; Gao, J.; Brierley, G.; Qiao, Y.M.; Zhang, J.; Yang, Y.W. Rangeland degrandtion on the Qinghai-Tibet Planteau:Imaplications for rehabilitation. Land Degrad. Dev. 2013, 24, 72–80. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Tong, S.; Guo, E. Monitoring the trends of aeolian desertified lands based on time-series remote sensing data in the Horqin Sandy Land, China. Catena 2017, 157, 286–298. [Google Scholar] [CrossRef]
- Turk, K.G.B.; Pradhan, B.; Buchroithne, M.F.; Makeschin, F. Land Use/Land Cover Change Analysis and Its Impact on Soil Properties in the Northern Part of Gadarif Region, Sudan. Land Degrad. Dev. 2013, 24, 90–102. [Google Scholar] [CrossRef]
- Gísladóttir, G.; Stocking, M. Land degradation control and its global environmental benefits. Land Degrad. Dev. 2005, 16, 99–112. [Google Scholar] [CrossRef]
- Miyasaka, T.; Okuro, T.; Zhao, X.; Takeuchi, K. Classification of Land Use on Sand-Dune Topography by Object-Based Analysis, Digital Photogrammetry, and GIS Analysis in the Horqin Sandy Land, China. Environments 2016, 3, 17. [Google Scholar] [CrossRef]
- Liu, Q.S.; Liu, G.H.; Huang, C.; Li, H. Remote Sensing Monitoring of Surface Characteristics in the Badain Jaran, Tengger, and Ulan Buh Deserts of China. Chin. Geogr. Sci. 2019, 29, 151–165. [Google Scholar] [CrossRef]
- Duan, H.-C.; Wang, T.; Xue, X.; Liu, S.-L. Dynamics of aeolian desertification and its driving forces in the Horqin Sandy Land, Northern China. Environ. Monit. Assess. 2014, 186, 6083–6096. [Google Scholar] [CrossRef]
- Chen, W.; Sakai, T.; Moriya, K.; Koyama, L.; Cao, C. Estimation of Vegetation Coverage in Semi-arid Sandy Land Based on Multivariate Statistical Modeling Using Remote Sensing Data. Environ. Model. Assess. 2013, 18, 547–558. [Google Scholar] [CrossRef]
- Waweru, M.N.; Jahjah, M.; Laneve, G. Spatial change analysis using temporal remote sensing and ancillary data for desertification change detection. Univ. Degli Studi Roma Sapienza 2004, 5239, 345–356. [Google Scholar]
- Zeng, Y.; Feng, Z. Spatial and Temporal Changes of Desertification in the Headwater Area of the Yellow River Using Remote Sensing. Acta Geogr. Sin.-Chin. Ed. 2007, 62, 529–536. [Google Scholar] [CrossRef]
- Aqeel ur, R.; Abbasi, A.Z.; Islam, N.; Shaikh, Z.A. A review of wireless sensors and networks’ applications in agriculture. Comput. Stand. Interfaces 2014, 36, 263–270. [Google Scholar] [CrossRef]
- Cowie, A.L.; Orr, B.J.; Sanchez, V.M.C.; Chasek, P. Land in balance: The scientific conceptual framework for Land Degradation Neutrality. Environ. Sci. Policy 2018, 79, 25–35. [Google Scholar] [CrossRef]
- Sun, D.; Dawson, R.; Li, H.; Li, B. Modeling desertification change in Minqin County, China. Environ. Monit. Assess. 2005, 108, 169–188. [Google Scholar] [CrossRef]
- Pu, J.; Zhao, X.; Dong, P.; Wang, Q.; Yue, Q. Extracting Information on Rocky Desertification from Satellite Images: A Comparative Study. Remote Sens. 2021, 13, 2497. [Google Scholar] [CrossRef]
- Yang, R.-M.; Zhang, G.-L.; Liu, F.; Lu, Y.-Y.; Yang, F.; Yang, F.; Yang, M.; Zhao, Y.G.; Li, D.C. Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecol. Indic. 2016, 60, 870–878. [Google Scholar] [CrossRef]
- Lu, P.; Wang, L.; Niu, Z.; Li, L.; Zhang, W. Prediction of soil properties using laboratory VIS-NIR spectroscopy and Hyperion imagery. J. Geochem. Explor. 2013, 132, 26–33. [Google Scholar] [CrossRef]
- Schillaci, C.; Acutis, M.; Lombardo, L.; Lipani, A.; Fantappie, M.; Marker, M.; Saia, S. Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: The role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling. Sci. Total Environ. 2017, 601, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Vagen, T.G.; Winowiecki, L.A.; Tondoh, J.E.; Desta, L.T.; Gumbricht, T. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 2016, 263, 216–225. [Google Scholar] [CrossRef]
- Wu, J.; Li, Z.; Gao, Z.; Wang, B.Y.; Bai, L.N.; Sun, B.; Li, C.L.; Ding, X.Y. Degraded land detection by soil particle composition derived from multispectral remote sensing data in the Otindag Sandy Lands of China. Geoderma 2015, 241, 97–106. [Google Scholar] [CrossRef]
- Montzka, C.; Moradkhani, H.; Weihermuller, L.; Franssen, H.J.H.; Canty, M.; Vereecken, H. Hydraulic parameter estimation by remotely-sensed top soil moisture observations with the particle filter. J. Hydrol. 2011, 399, 410–421. [Google Scholar] [CrossRef]
- Wu, J.J.; Gao, Z.H.; Liu, Q.H.; Li, Z.Y.; Zhong, B. Methods for sandy land detection based on multispectral remote sensing data. Geoderma 2018, 316, 89–99. [Google Scholar] [CrossRef]
- Wu, J. Research on Quantitative Extraction and Evaluation Method of Desertified Land by Remote Sensing; Chinese Academy of Forestry: Beijing, China, 2015. [Google Scholar]
- Fadhil, A.M. Land degradation detection using geo-Information technology for some sites in Iraq. Al-Nahrain J. Sci. 2009, 12, 94–108. [Google Scholar]
- Sahar, A.A.; Rasheed, M.J.; Uaid, D.A.A.H.; Jasim, A.A. Mapping Sandy Areas and their changes using remote sensing. A Case Study at North-East Al-Muthanna Province, South of Iraq. Rev. Teledetección 2021, 58, 39–52. [Google Scholar] [CrossRef]
- Marzouki, A.; Dridri, A. Normalized Difference Enhanced Sand Index for desert sand dunes detection using Sentinel-2 and Landsat 8 OLI data, application to the north of Figuig, Morocco. J. Arid. Environ. 2022, 198, 104693. [Google Scholar] [CrossRef]
- Li, Y.; Wu, J.; Zhong, B.; Shi, X.; Xu, K.; Ao, K.; Sun, B.; Ding, X.; Wang, X.; Liu, Q.; et al. Methods of Sandy Land Detection in a Sparse-Vegetation Scene Based on the Fusion of HJ-2A Hyperspectral and GF-3 SAR Data. Remote Sens. 2022, 14, 1203. [Google Scholar] [CrossRef]
- Zhao, Q.; Feng, D.; Li, Y. SAR Image Wetland Classification Based on Optimal Polarization Feature Combination. J. Geoinf. Sci. 2021, 23, 723–736. [Google Scholar]
- Di, F. Classification of Wetland Covering Types of Ganggennuoer Lake Based on Multi-Frequency and Multi-Polarization SAR Data. Master’s Thesis, Inner Mongolia Teaching University, Hohhot, China, 2019. [Google Scholar]
- Wang, W.; Yang, X.; Li, X.; Chen, K.; Liu, G.; Li, Z.; Gade, M. A Fully Polarimetric SAR Imagery Classification Scheme for Mud and Sand Flats in Intertidal Zones. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1734–1742. [Google Scholar] [CrossRef]
- Zerrouki, Y.; Harrou, F.; Zerrouki, N.; Dairi, A.; Sun, Y. Desertification Detection Using an Improved Variational Autoencoder-Based Approach Through ETM-Landsat Satellite Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 202–213. [Google Scholar] [CrossRef]
- Wei, H.; Wang, J.; Han, B. Desertification Information Extraction Along the China–Mongolia Railway Supported by Multisource Feature Space and Geographical Zoning Modeling. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 392–402. [Google Scholar] [CrossRef]
- Tan, W.; Sun, B.; Xiao, C.; Huang, P.; Xu, W.; Yang, W. A Novel Unsupervised Classification Method for Sandy Land Using Fully Polarimetric SAR Data. Remote Sens. 2021, 13, 355. [Google Scholar] [CrossRef]
- Yu, D.Y.; Shi, P.J.; Han, G.Y.; Zhu, W.Q.; Du, S.Q.; Xun, B. Forest ecosystem restoration due to a national conservation plan in China. Ecol. Eng. 2011, 37, 1387–1397. [Google Scholar] [CrossRef]
- Xiao, J.; Shen, Y.; Tateishi, R.; Bayaer, W. Development of topsoil grain size index for monitoring desertification in arid land using remote sensing. Int. J. Remote Sens. 2006, 27, 2411–2422. [Google Scholar] [CrossRef]
- Long, J. Remote Sensing Evaluation Method of Sandy Land. Land Resour. Remote Sens. 2005, 17–19. [Google Scholar]
- Huo, A.; Zhang, G.; Wu, S.; Yue, M. Evaluation of desertified land using MODIS-NDVI—Taking the northern part of Shaanxi Province as an example. Dryland Agric. Res. 2008, 154–158. [Google Scholar]
- Lamchin, M.; Lee, J.Y.; Lee, W.K.; Lee, E.J.; Kim, M.; Lim, C.H.; Choi, H.A.; Kim, S.R. Assessment of land cover change and desertification using remote sensing technology in a local region of Mongolia. Adv. Space Res. 2016, 57, 64–77. [Google Scholar] [CrossRef]
- Becerril-Piña, R.; Mastachi-Loza, C.A.; González-Sosa, E.; Díaz-Delgado, C. Assessing desertification risk in the semi-arid highlands of central Mexico. J. Arid. Environ. 2015, 120, 4–13. [Google Scholar] [CrossRef]
- Wang, S. Study on Desertification Level Evaluation Based on Multi-Source Data. Master’s Thesis, Shandong University of Technology, Zibo, China, 2021. [Google Scholar]
- Farnell, E.; Kvinge, H.; Kirby, M.; Peterson, C. Endmember Extraction on the Grassmannian. In 2018 IEEE Data Science Workshop (DSW); IEEE: New York, NY, USA, 2018; pp. 71–75. [Google Scholar]
- Xu, K. Research on polarimetric SAR image classification based on polarimetric scattering feature and SVM. Mater’s Thesis, Inner Mongolia Normal University, Hohhot, China, 2024. [Google Scholar]
- Liang, S.; Bai, R.; Chen, X.; Chen, J. A review of the development of quantitative remote sensing of China’s land surface in 2019. J. Remote Sens. 2020, 24, 618–671. [Google Scholar] [CrossRef]
- Zhang, C.; Lou, Y.; Li, Y.; Ji, X.; Dong, M. Variation of Vegetation Coverage in Funiu Mountain Area Based on Pixel Dichotomy Model. Soil Water Conserv. Res. 2020, 27, 301–307. [Google Scholar] [CrossRef]
- Liu, H.; Huang, Y.; Zheng, L.; Wang, M. Changes in vegetation coverage before and after the establishment of the Poyang Lake Ecological Economic Zone. Surv. Mapp. Sci. 2020, 45, 161–167. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q. An error and sensitivity analysis of the atmospheric- and soil-correcting variants of the NDVI for the MODIS-EOS. IEEE Trans. Geosci. Remote Sens. 1994, 32, 897–905. [Google Scholar] [CrossRef]
- Kouadio, L.; Newlands, N.K.; Davidson, A.; Zhang, Y.S.; Chipanshi, A. Assessing the Performance of MODIS NDVI and EVI for Seasonal Crop Yield Forecasting at the Ecodistrict Scale. Remote Sens. 2014, 6, 10193–10214. [Google Scholar] [CrossRef]
- Kim, J.; Kang, S.; Seo, B.; Narantsetseg, A.; Han, Y. Estimating fractional green vegetation cover of Mongolian grasslands using digital camera images and MODIS satellite vegetation indices. Giscience Remote Sens. 2020, 57, 49–59. [Google Scholar] [CrossRef]
- Guo, Q. Research on Dynamic Monitoring and Quantitative Evaluation of Desertification in Northern China by Remote Sensing. Ph.D. Thesis, Chinese Academy of Sciences University, Beijing, China, 2018. [Google Scholar]
- Li, J. Remote Sensing Monitoring and Driving Force Analysis of Temporal and Spatial Variation Characteristics of Grassland Desertification in Horqin Sandy Land. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2014. [Google Scholar]
- Pan, J.; Li, T. Remote Sensing Evaluation of Land Desertification Based on Spectral Mixture Analysis and Albedo-Vegetation Cover Feature Space. J. Nat. Resour. 2010, 25, 1960–1969. [Google Scholar]
- Pan, J.; Qin, X. Remote Sensing Extraction of Desertification Information Based on Vegetation Index-Albedo Feature Space—A Case Study of Zhangye Oasis and Its Surrounding Areas. Surv. Mapp. Sci. 2010, 35, 193–195. [Google Scholar] [CrossRef]
- You, Y.; Li, Z.; Huang, C.; Zeng, H. Spatial-temporal change analysis of desertification in Zoige Plateau from 1990 to 2016. J. Ecol. Environ. 2017, 26, 1671–1680. [Google Scholar] [CrossRef]
- Zhang, Y.; Tao, Y.; Luo, X.; Liu, M. Hyperspectral Image Classification Based on Feature Importance. Infrared Technol. 2020, 42, 1185–1191. [Google Scholar]
- Chen, S.; Ren, H.; Liu, R.; Tao, Y.; Zheng, Y.; Liu, H. Mapping Sandy Land Using the New Sand Differential Emissivity Index From Thermal Infrared Emissivity Data. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5464–5478. [Google Scholar] [CrossRef]
Data Type | Imaging Time | Spatial Resolution | Number of Scenes |
---|---|---|---|
Sentinel-1 | 2021.07–2021.08 | 10 m | 34 |
Landsat 8 OLI | 2021.07–2021.08 | 30 m | 50 |
Decomposition Method | Extract Features | Feature Meaning |
---|---|---|
H/A/α | α | α is the average polarization scattering angle of H/A/α decomposition, identifying the main scattering mechanism. |
H | H is the polarization entropy of H/A/α decomposition, which measures the degree of polarization. | |
A | A is the anisotropy of H/A/α decomposition, which measures the relative magnitude of non-dominant scattering. |
Fusion Methods | Fusion Effect |
---|---|
HSV Fusion | The edge information of the multispectral image, the target spectrum information, and the high-resolution features of the panchromatic image were retained, and the texture details of the image were enhanced. |
PCA Fusion | PCA is efficient in data compression and the first component contains the majority of information. When the panchromatic image was used to replace the first principal component for inverse transformation, the phenomenon of spectral distortion appeared to a certain extent. |
GS Fusion | The spectral information of the original multi-spectral image can be maintained, the spatial information was also significantly enhanced, and the spectral fidelity effect was better. |
Type of Sandy Land | Vegetation Cover Index |
---|---|
Shifting sand | Sandy terrain or dunes with vegetation cover less than 10%. |
Semi-fixed sand | Vegetation cover is 10–30% on the uniformly distributed sandy terrain (dunes), inhibiting the movement of wind-blown sand. |
Fixed sand | Sand dunes or sandy terrain with vegetation cover greater than 30%, where wind erosion is insignificant, and the surface is relatively stable. |
Sample Points | Shifting Sandy Land | Semi-Fixed Sandy Land | Fixed Sandy Land | Total |
---|---|---|---|---|
Total | 17 | 35 | 52 | 104 |
Modeling | 11 | 23 | 35 | 69 |
Verification | 6 | 12 | 17 | 35 |
Texture Feature | Formula |
---|---|
Mean | |
Homogeneity | |
Entropy | |
Energy | |
Dissimilarity | |
Contrast | |
Correlation |
Methods | Total Accuracy | Sandy Land Accuracy | Non-Sandy Land Accuracy |
---|---|---|---|
Sandy land detection based on Landsat 8 | 75.68% | 61.90% | 93.75% |
Sandy land detection based on Sentinel-1 | 83.78% | 95.24% | 68.75% |
Sandy land detection based on GS fusion | 81.08% | 80.95% | 81.25% |
Sandy land detection based on PCA fusion | 75.68% | 66.67% | 87.50% |
Sandy land detection based on HSV fusion | 75.68% | 71.43% | 81.25% |
Sandy land detection based on feature-level fusion | 89.19% | 90.47% | 87.5% |
Projects | Total Number | Sandy Land | Non-Sandy Land |
---|---|---|---|
Sample number | 314 | 104 | 210 |
Correct number | 271 | 93 | 178 |
Accuracy | 86.31% | 89.42% | 84.76% |
Indicator | Weights | Indicator | Weights |
---|---|---|---|
C22_Correlation | 0.062984 | C22_Entropy | 0.035900 |
FVC | 0.058598 | C22_Energy | 0.035632 |
MSAVI | 0.057848 | C22 | 0.035098 |
NDVI | 0 056949 | C22_contrast | 0.031950 |
C11 | 0.055700 | C11_Correlation | 0.030640 |
EVI | 0.052310 | C22_Dissimilarity | 0.028150 |
C11_Mean | 0.049878 | C11_Energy | 0.027598 |
Albedo | 0.047819 | C11_Entropy | 0.026110 |
LST_Median | 0.047159 | C22_Homogeneity | 0.025187 |
C22_Mean | 0046510 | C11_Homogeneity | 0.023315 |
LST_Max | 0.042202 | C11_Dissimilarity | 0.021639 |
LST_Mean | 0.041436 | C11_contrast | 0.020442 |
BSI | 0.038945 |
Sample Points | Shifting Sand | Semi-Fixed Sand | Fixed Sand | Total |
---|---|---|---|---|
Number of plots | 6 | 12 | 17 | 35 |
Number of correctly identified plots | 5 | 9 | 14 | 28 |
Accuracy | 83.3% | 75.0% | 82.4% | 80.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Li, Y.; Zhong, B.; Zhang, Y.; Liu, Q.; Shi, X.; Ji, C.; Wu, S.; Sun, B.; Li, C.; et al. Synergistic Coupling of Multi-Source Remote Sensing Data for Sandy Land Detection and Multi-Indicator Integrated Evaluation. Remote Sens. 2024, 16, 4322. https://doi.org/10.3390/rs16224322
Wu J, Li Y, Zhong B, Zhang Y, Liu Q, Shi X, Ji C, Wu S, Sun B, Li C, et al. Synergistic Coupling of Multi-Source Remote Sensing Data for Sandy Land Detection and Multi-Indicator Integrated Evaluation. Remote Sensing. 2024; 16(22):4322. https://doi.org/10.3390/rs16224322
Chicago/Turabian StyleWu, Junjun, Yi Li, Bo Zhong, Yan Zhang, Qinhuo Liu, Xiaoliang Shi, Changyuan Ji, Shanlong Wu, Bin Sun, Changlong Li, and et al. 2024. "Synergistic Coupling of Multi-Source Remote Sensing Data for Sandy Land Detection and Multi-Indicator Integrated Evaluation" Remote Sensing 16, no. 22: 4322. https://doi.org/10.3390/rs16224322
APA StyleWu, J., Li, Y., Zhong, B., Zhang, Y., Liu, Q., Shi, X., Ji, C., Wu, S., Sun, B., Li, C., & Yang, A. (2024). Synergistic Coupling of Multi-Source Remote Sensing Data for Sandy Land Detection and Multi-Indicator Integrated Evaluation. Remote Sensing, 16(22), 4322. https://doi.org/10.3390/rs16224322