Three-Dimensional Surface Motion Displacement Estimation of the Muz Taw Glacier, Sawir Mountains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data
3. Method
3.1. Inversion Method for 3D Surface Motion Displacement of Glacier
3.2. Estimation of the Displacement of Total 3D Surface Motion of Glacier
3.3. Estimation of 3D Surface Motion Displacement of Glacier in Each Season
4. Results
4.1. Overall Distribution Characteristics of Muz Taw Glacier Displacement
4.2. Seasonal Variation in Muz Taw Glacier Displacement
4.3. Variation in Muz Taw Glacier Displacement Along Centerline and Profiles
5. Discussion
5.1. Effect of Topography on the Surface Motion Displacement
- (1)
- Elevation
- (2)
- Slope
5.2. Effect of Glacier Thickness on the Surface Motion Displacement
5.3. Effect of Climate on the Surface Motion Displacement
6. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Satellite | Track Direction | Track | Acquired Time | Polarization Mode | Incidence Angle/° |
---|---|---|---|---|---|
Sentinel-1A | Ascending | Track_114 | 2017–08–22 | VV | 40.119 |
2017–09–03 | VV | 40.120 | |||
2017–09–15 | VV | 40.125 | |||
2017–09–27 | VV | 40.126 | |||
2017–10–09 | VV | 40.123 | |||
2017–10–21 | VV | 40.118 | |||
2017–11–14 | VV | 40.117 | |||
2017–11–26 | VV | 40.125 | |||
2017–12–08 | VV | 40.118 | |||
2017–12–20 | VV | 40.115 | |||
2018–01–01 | VV | 40.110 | |||
2018–01–13 | VV | 40.116 | |||
2018–01–25 | VV | 40.122 | |||
2018–02–06 | VV | 40.123 | |||
2018–02–18 | VV | 40.120 | |||
2018–03–02 | VV | 40.119 | |||
2018–03–14 | VV | 40.118 | |||
2018–03–26 | VV | 40.121 | |||
2018–04–07 | VV | 40.121 | |||
2018–04–19 | VV | 40.120 | |||
2018–05–01 | VV | 40.117 | |||
2018–05–13 | VV | 40.123 | |||
2018–05–25 | VV | 40.126 | |||
2018–06–06 | VV | 40.123 | |||
2018–06–30 | VV | 40.117 | |||
2018–07–12 | VV | 40.116 | |||
2018–07–24 | VV | 40.121 | |||
2018–08–05 | VV | 40.122 | |||
2018–08–17 | VV | 40.126 | |||
Sentinel-1B | Descending | Track_165 | 2017–08–20 | VV | 35.290 |
2017–09–01 | VV | 35.290 | |||
2017–09–13 | VV | 35.290 | |||
2017–09–25 | VV | 35.286 | |||
2017–10–07 | VV | 35.285 | |||
2017–10–19 | VV | 35.285 | |||
2017–11–12 | VV | 35.289 | |||
2017–11–24 | VV | 35.287 | |||
2017–12–06 | VV | 35.284 | |||
2017–12–18 | VV | 35.280 | |||
2017–12–30 | VV | 35.284 | |||
2018–01–11 | VV | 35.287 | |||
2018–01–23 | VV | 35.289 | |||
2018–02–04 | VV | 35.284 | |||
2018–02–16 | VV | 35.281 | |||
2018–02–28 | VV | 35.285 | |||
2018–03–12 | VV | 35.292 | |||
2018–03–24 | VV | 35.298 | |||
2018–04–05 | VV | 35.288 | |||
2018–04–17 | VV | 35.289 | |||
2018–04–29 | VV | 35.284 | |||
2018–05–11 | VV | 35.291 | |||
2018–05–23 | VV | 35.291 | |||
2018–06–04 | VV | 35.296 | |||
2018–06–28 | VV | 35.286 | |||
2018–07–10 | VV | 35.288 | |||
2018–07–22 | VV | 35.288 | |||
2018–08–03 | VV | 35.289 | |||
2018–08–15 | VV | 35.290 |
Track Directions | Master Images | Slave Images | Baseline (m) | Time Interval (d) |
---|---|---|---|---|
Ascending | 2017–08–22 | 2017–09–03 | −18.460 | 12 |
2017–08–22 | 2017–09–15 | −105.404 | 24 | |
2017–08–22 | 2017–09–27 | −120.308 | 36 | |
2017–09–03 | 2017–09–15 | −87.105 | 12 | |
2017–09–03 | 2017–09–27 | −102.160 | 24 | |
2017–09–03 | 2017–10–09 | −50.686 | 36 | |
2017–09–15 | 2017–09–27 | −16.363 | 12 | |
2017–09–15 | 2017–10–09 | 37.136 | 24 | |
2017–09–15 | 2017–10–21 | 116.345 | 36 | |
2017–09–27 | 2017–10–09 | 51.620 | 12 | |
2017–09–27 | 2017–10–21 | 131.213 | 24 | |
2017–10–09 | 2017–10–21 | 79.596 | 12 | |
2017–10–09 | 2017–11–14 | 96.690 | 36 | |
2017–10–21 | 2017–11–14 | 18.407 | 24 | |
2017–10–21 | 2017–11–26 | −108.162 | 36 | |
2017–11–14 | 2017–11–26 | −124.585 | 12 | |
2017–11–14 | 2017–12–08 | −26.450 | 24 | |
2017–11–14 | 2017–12–20 | 32.077 | 36 | |
2017–11–26 | 2017–12–08 | 99.078 | 12 | |
2017–11–26 | 2017–12–20 | 156.523 | 24 | |
2017–11–26 | 2018–01–01 | 227.984 | 36 | |
2017–12–08 | 2017–12–20 | 58.419 | 12 | |
2017–12–08 | 2018–01–01 | 129.361 | 24 | |
2017–12–08 | 2018–01–13 | 30.880 | 36 | |
2017–12–20 | 2018–01–01 | 71.630 | 12 | |
2017–12–20 | 2018–01–13 | −27.318 | 24 | |
2017–12–20 | 2018–01–25 | −113.047 | 36 | |
2018–01–01 | 2018–01–13 | −98.722 | 12 | |
2018–01–01 | 2018–01–25 | −183.973 | 24 | |
2018–01–01 | 2018–02–06 | −199.559 | 36 | |
2018–01–13 | 2018–01–25 | −85.547 | 12 | |
2018–01–13 | 2018–02–06 | −100.974 | 24 | |
2018–01–13 | 2018–02–18 | −59.494 | 36 | |
2018–01–25 | 2018–02–06 | −16.888 | 12 | |
2018–01–25 | 2018–02–18 | 27.917 | 24 | |
2018–01–25 | 2018–03–02 | 46.832 | 36 | |
2018–02–06 | 2018–02–18 | 41.835 | 12 | |
2018–02–06 | 2018–03–02 | 60.795 | 24 | |
2018–02–06 | 2018–03–14 | 72.955 | 36 | |
2018–02–18 | 2018–03–02 | 19.058 | 12 | |
2018–02–18 | 2018–03–14 | 31.280 | 24 | |
2018–02–18 | 2018–03–26 | −7.135 | 36 | |
2018–03–02 | 2018–03–14 | 14.409 | 12 | |
2018–03–02 | 2018–03–26 | −24.600 | 24 | |
2018–03–02 | 2018–04–07 | −37.135 | 36 | |
2018–03–14 | 2018–03–26 | −35.532 | 12 | |
2018–03–14 | 2018–04–07 | −48.957 | 24 | |
2018–03–14 | 2018–04–19 | −28.744 | 36 | |
2018–03–26 | 2018–04–07 | −13.893 | 12 | |
2018–03–26 | 2018–04–19 | 7.924 | 24 | |
2018–03–26 | 2018–05–01 | 61.492 | 36 | |
2018–04–07 | 2018–04–19 | 21.785 | 12 | |
2018–04–07 | 2018–05–01 | 75.004 | 24 | |
2018–04–07 | 2018–05–13 | −19.945 | 36 | |
2018–04–19 | 2018–05–01 | 54.326 | 12 | |
2018–04–19 | 2018–05–13 | −41.108 | 24 | |
2018–04–19 | 2018–05–25 | −93.753 | 36 | |
2018–05–01 | 2018–05–13 | −92.391 | 12 | |
2018–05–01 | 2018–05–25 | −147.020 | 24 | |
2018–05–01 | 2018–06–06 | −102.326 | 36 | |
2018–05–13 | 2018–05–25 | −55.120 | 12 | |
2018–05–13 | 2018–06–06 | −21.182 | 24 | |
2018–05–25 | 2018–06–06 | 46.807 | 12 | |
2018–05–25 | 2018–06–30 | 143.864 | 36 | |
2018–06–06 | 2018–06–30 | 98.497 | 24 | |
2018–06–06 | 2018–07–12 | 111.191 | 36 | |
2018–06–30 | 2018–07–12 | 12.864 | 12 | |
2018–06–30 | 2018–07–24 | −66.257 | 24 | |
2018–06–30 | 2018–08–05 | −86.142 | 36 | |
2018–07–12 | 2018–07–24 | −79.058 | 12 | |
2018–07–12 | 2018–08–05 | −98.865 | 24 | |
2018–07–12 | 2018–08–17 | −150.746 | 36 | |
2018–07–24 | 2018–08–05 | −20.232 | 12 | |
2018–07–24 | 2018–08–17 | −71.637 | 24 | |
2018–08–05 | 2018–08–17 | −51.861 | 12 | |
Descending | 2017–08–20 | 2017–09–01 | 0.784 | 12 |
2017–08–20 | 2017–09–13 | −6.517 | 24 | |
2017–08–20 | 2017–09–25 | 56.000 | 36 | |
2017–09–01 | 2017–09–13 | −6.074 | 12 | |
2017–09–01 | 2017–09–25 | 54.954 | 24 | |
2017–09–01 | 2017–10–07 | 75.721 | 36 | |
2017–09–13 | 2017–09–25 | 58.454 | 12 | |
2017–09–13 | 2017–10–07 | 79.601 | 24 | |
2017–09–13 | 2017–10–19 | 70.558 | 36 | |
2017–09–25 | 2017–10–07 | 23.372 | 12 | |
2017–09–25 | 2017–10–19 | 13.696 | 24 | |
2017–10–07 | 2017–10–19 | −9.181 | 12 | |
2017–10–07 | 2017–11–12 | −69.710 | 36 | |
2017–10–19 | 2017–11–12 | −60.185 | 24 | |
2017–10–19 | 2017–11–24 | −30.067 | 36 | |
2017–11–12 | 2017–11–24 | 31.245 | 12 | |
2017–11–12 | 2017–12–06 | 74.891 | 24 | |
2017–11–12 | 2017–12–18 | 131.818 | 36 | |
2017–11–24 | 2017–12–06 | 44.583 | 12 | |
2017–11–24 | 2017–12–18 | 100.864 | 24 | |
2017–11–24 | 2017–12–30 | 45.316 | 36 | |
2017–12–06 | 2017–12–18 | 57.231 | 12 | |
2017–12–06 | 2017–12–30 | 2.307 | 24 | |
2017–12–06 | 2018–01–11 | −40.529 | 36 | |
2017–12–18 | 2017–12–30 | −55.530 | 12 | |
2017–12–18 | 2018–01–11 | −97.706 | 24 | |
2017–12–18 | 2018–01–23 | −130.279 | 36 | |
2017–12–30 | 2018–01–11 | −42.073 | 12 | |
2017–12–30 | 2018–01–23 | −74.647 | 24 | |
2017–12–30 | 2018–02–04 | −7.197 | 36 | |
2018–01–11 | 2018–01–23 | −32.610 | 12 | |
2018–01–11 | 2018–02–04 | 35.048 | 24 | |
2018–01–11 | 2018–02–16 | 86.755 | 36 | |
2018–01–23 | 2018–02–04 | 67.590 | 12 | |
2018–01–23 | 2018–02–16 | 119.312 | 24 | |
2018–01–23 | 2018–02–28 | 58.512 | 36 | |
2018–02–04 | 2018–02–16 | 51.728 | 12 | |
2018–02–04 | 2018–02–28 | −11.106 | 24 | |
2018–02–04 | 2018–03–12 | −107.812 | 36 | |
2018–02–16 | 2018–02–28 | −61.105 | 12 | |
2018–02–16 | 2018–03–12 | −159.444 | 24 | |
2018–02–16 | 2018–03–24 | −245.536 | 36 | |
2018–02–28 | 2018–03–12 | −98.376 | 12 | |
2018–02–28 | 2018–03–24 | −184.456 | 24 | |
2018–02–28 | 2018–04–05 | −38.499 | 36 | |
2018–03–12 | 2018–03–24 | −86.084 | 12 | |
2018–03–12 | 2018–04–05 | 59.903 | 24 | |
2018–03–12 | 2018–04–17 | 50.809 | 36 | |
2018–03–24 | 2018–04–05 | 145.977 | 12 | |
2018–03–24 | 2018–04–17 | 135.923 | 24 | |
2018–03–24 | 2018–04–29 | 203.000 | 36 | |
2018–04–05 | 2018–04–17 | 67.284 | 12 | |
2018–04–05 | 2018–04–29 | 58.561 | 24 | |
2018–04–05 | 2018–05–11 | −50.565 | 36 | |
2018–04–17 | 2018–04–29 | 67.284 | 12 | |
2018–04–17 | 2018–05–11 | −39.954 | 24 | |
2018–04–17 | 2018–05–23 | −32.331 | 36 | |
2018–04–29 | 2018–05–11 | −107.075 | 12 | |
2018–04–29 | 2018–05–23 | −99.125 | 24 | |
2018–04–29 | 2018–06–04 | −172.657 | 36 | |
2018–05–11 | 2018–05–23 | 8.286 | 12 | |
2018–05–11 | 2018–06–04 | −65.776 | 24 | |
2018–05–23 | 2018–06–04 | −74.323 | 12 | |
2018–05–23 | 2018–06–28 | 68.422 | 36 | |
2018–06–04 | 2018–06–28 | 140.698 | 24 | |
2018–06–04 | 2018–07–10 | 108.773 | 36 | |
2018–06–28 | 2018–07–10 | −32.063 | 12 | |
2018–06–28 | 2018–07–22 | −34.368 | 24 | |
2018–06–28 | 2018–08–03 | −48.565 | 36 | |
2018–07–10 | 2018–07–22 | 11.028 | 12 | |
2018–07–10 | 2018–08–03 | −16.710 | 24 | |
2018–07–10 | 2018–08–15 | −25.851 | 36 | |
2018–07–22 | 2018–08–03 | −23.252 | 12 | |
2018–07–22 | 2018–08–15 | −29.908 | 24 | |
2018–08–03 | 2018–08–15 | −9.169 | 12 |
References
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davie, B.J.; Elmore, A.C.; et al. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.Y.; Zheng, Y.T.; Li, Y.; Lang, F.K.; Ruan, Z.X. A spatio-temporal variation analysis of Fedchenko and Grumm-Grzhimaylo glacier motion pattern with an efficient pixel-tracking method on spaceborne SAR imagery. Environ. Earth Sci. 2019, 78, 599. [Google Scholar] [CrossRef]
- Ahmad, Q.K. Climate change 1995: Economic and social dimensions of climate change. Contribution of working group III to the second assessment report of the intergovernmental panel on climate change. Glob. Environ. Chang. 1997, 7, 189–190. [Google Scholar] [CrossRef]
- Scherler, D.; Bookhagen, B.; Strecker, M.R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci. 2011, 4, 156–159. [Google Scholar] [CrossRef]
- Radic, V.; Hock, R. Glaciers in The Earth’s Hydrological Cycle: Assessments of Glacier Mass and Runoff Changes on Global and Regional Scales. Surv. Geophys. 2014, 35, 813–837. [Google Scholar] [CrossRef]
- Guo, W.; Liu, S.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Wei, J.; Bao, W.; Yu, P.; Liu, Q. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef]
- Yao, T.; Pu, J.; Lu, A.; Wang, Y.; Yu, W. Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arct. Antarct. Alp. Res. 2007, 39, 642–650. [Google Scholar] [CrossRef]
- Nesje, A.; Bakke, J.; Dahl, S.O.; Lie, Ø.; Matthews, J.A. Norwegian mountain glaciers in the past, present and future. Glob. Planet. Chang. 2008, 60, 10–27. [Google Scholar] [CrossRef]
- Shangguan, D.H.; Liu, S.Y.; Ding, Y.J.; Ding, L.F.; Li, G. Glacier Changes at the Head of Yurungkax Riverin the West Kunlun Mountains in the Past 32 Years. Acta Geographica Sinica 2004, 59, 855–862. (In Chinese) [Google Scholar]
- Ding, Y.; Liu, S.; Li, J.; Shangguan, D. The retreat of glaciers in response to recent climate warming in western China. Ann. Glaciol. 2006, 43, 97–105. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate change will afect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Bolch, T.; Pieczonka, T.; Benn, D.I. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosphere 2011, 5, 349–358. [Google Scholar] [CrossRef]
- Yao, T.D.; Thompson, L.; Yang, W.; Yu, W.S.; Gao, Y.; Guo, X.J.; Yang, X.X.; Duan, K.Q.; Zhao, H.B.; Xu, B.Q.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Florentine, C.; Harper, J.; Fagre, D. Parsing complex terrain controls on mountain glacier response to climate forcing. Glob. Planet. Chang. 2020, 191, 103209. [Google Scholar] [CrossRef]
- Huang, M.H.; Sun, Z.Z. Some flow characterstics of continental-Type Glaciers in China. J. Glaciol. Geocryol. 1982, 2, 35–45. (In Chinese) [Google Scholar]
- Paul, F.; Bolch, T.; Kääb, A.; Nagler, T.; Nuth, C.; Scharrer, K.; Shepherd, A.; Strozzi, T.; Ticconi, F.; Bhambri, R.; et al. The glaciers climate change initiative:methods for creating glacier area, elevation change and velocity products. Remote Sens. Environ. 2015, 162, 408–426. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhao, J.; Li, Z.Q.; Zhang, M.J.; Wang, Y.C.; Liu, J.L.; Yang, J.X.; Yang, Z.H. Retrieving and Verifying Three-Dimensional Surface Motion Displacement of Mountain Glacier from Sentinel-1 Imagery Using Optimized Method. Water 2021, 13, 1793. [Google Scholar] [CrossRef]
- Guan, W.J.; Cao, B.; Pan, B.T. Research of glacier flow velocity: Current situation and prospects. J. Glaciol. Geocryol. 2020, 42, 1101–1114. (In Chinese) [Google Scholar]
- Richardson, S.D.; Reynolds, J.M. An overview of glacial hazards in the Himalayas. Quat. Int. 2000, 65, 31–47. [Google Scholar] [CrossRef]
- Haeberli, W.; Kääb, A.; Paul, F.; Chiarle, M.; Mortara, G.; Mazza, A.; Deline, P.; Richardson, S. A surge-type movement at Ghiacciaio del Belvedere and a developing slope instability in the east face of Monte Rosa, Macugnaga, Italian Alps. Nor. Geogr. Tidsskr. Nor. J. Geol. 2002, 56, 104–111. [Google Scholar] [CrossRef]
- Kääb, A.; Reynolds, J.; Haeberli, W. Glacier and permafrost hazards in high mountains. Glob. Chang. Mt. Reg. 2005, 23, 225–234. [Google Scholar]
- Paul, F.; Strozzi, T.; Schellenberger, T.; Kääb, A. The 2015 surge of Hispar Glacier in the Karakoram. Remote Sens. 2017, 9, 888. [Google Scholar] [CrossRef]
- Yao, X.; Iqbal, J.; Li, L.; Zhou, Z. Characteristics of mountain glacier surge hazard: Learning from a surge event in NE Pamir, China. J. Mt. Sci. 2019, 16, 1515–1533. [Google Scholar] [CrossRef]
- Zhu, Q.; Ke, C.; Li, H. Monitoring glacier surges in the Kongur Tagh area of the Tibetan Plateau using Sentinel-1 SAR data. Geomorphology 2021, 390, 107869. [Google Scholar] [CrossRef]
- Benn, D.; Warren, C.; Mottra, R. Calving processes and the dynamics of calving glaciers. Earth-Sci. Rev. 2007, 82, 144–179. [Google Scholar] [CrossRef]
- Xu, S.Q.; E, D.C.; Wang, S.D. Glacier movement monitoring on Nelson Ice Cap, Antarctica. J. Geomat. 1988, 4, 30–35. (In Chinese) [Google Scholar]
- Jing, Z.F.; Zhou, Z.M.; Liu, L. Progress of the Research on Glacier Velocities in China. J. Glaciol. Geocryol. 2010, 32, 749–754. (In Chinese) [Google Scholar]
- Berthier, E.; Vadon, H.; Baratoux, D.; Arnaud, Y.; Vincent, C.; Feigl, K.; Remy, F.; Legresy, B. Surface motion of mountain glaciers derived from satellite optical imagery. Remote Sens. Environ. 2005, 95, 14–28. [Google Scholar] [CrossRef]
- Herman, F.; Anderson, B.; Leprince, S. Mountain glacier velocity variation during a retreat/advance cycle quantified using sub-pixel analysis of ASTER images. J. Glaciol. 2011, 57, 197–207. [Google Scholar] [CrossRef]
- Altena, B.; Scambos, T.; Fahnestock, M.; Kääb, A. Extracting recent short-term glacier velocity evolution over southern Alaska and the Yukon from a large collection of Landsat data. Cryosphere 2019, 13, 795–814. [Google Scholar] [CrossRef]
- Li, G.; Zhuoqi Chen, Z.Q.; Mao, Y.T.; Yang, Z.B.; Chen, X.; Cheng, X. Different glacier surge patterns revealed by Sentinel-2 imagery derived quasi-monthly flow velocity at west Kunlun Shan, Karakoram, Hindu Kush and Pamir. Remote Sens. Environ. 2024, 311, 114298. [Google Scholar] [CrossRef]
- Luo, H.Y.; Xu, Q.; Jiang, Y.N.; Pu, C.H. 3-D flow velocity time-series analysis from SAR-derived datasets towards maritime glaciers in the Namcha Barwa, Southeastern Tibetan Plateau. J. Hydrol. 2024, 635, 131190. [Google Scholar] [CrossRef]
- Van De Wal, R.S.W.; Boot, W.; Van Den Broeke, M.R.; Smeets, C.J.P.P.; Reijmer, C.H.; Donker, J.J.A.; Oerlemans, J. Large and Rapid Melt-Induced Velocity Changes in the Ablation Zone of the Greenland Ice Sheet. Science 2008, 321, 111–113. [Google Scholar] [CrossRef]
- Bartholomew, I.; Nienow, P.; Mair, D.; Hubbard, A.; King, M.A.; Sole, A. Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier. Nat. Geosci. 2010, 3, 408–411. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Engelhardt, H.; Kamb, B.; Frolich, R.M. Satellite radar interferometry for monitoring ice sheet motion: Application to an Antarctic ice stream. Science 1993, 262, 1525–1530. [Google Scholar] [CrossRef]
- Shepherd, A.; Wingham, D.J.; Mansley, J.A.D.; Corr, H.F.J. Inland thinning of Pine Island glacier, West Antarctica. Science 2001, 291, 862–864. [Google Scholar] [CrossRef]
- Burgess, E.W.; Forster, R.R.; Larsen, C.F. Flow velocities of Alaskan glaciers. Nat. Commun. 2013, 4, 2146. [Google Scholar] [CrossRef]
- Lemos, A.; Shepherd, A.; McMillan, M.; Hogg, A.E.; Hatton, E.; Joughin, I. Ice velocity of Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm, 2015–2017, from Sentinel 1-a/b SAR imagery. Cryosphere 2018, 12, 2087–2097. [Google Scholar] [CrossRef]
- Jia, B.; Hou, S.; Wang, Y. A Surging Glacier Recognized by Remote Sensing on the Zangser Kangri Ice Field, Central Tibetan Plateau. Remote Sens. 2021, 13, 1220. [Google Scholar] [CrossRef]
- Samsonov, S.; Tiampo, K.; Cassotto, R. SAR-derived flow velocity and its link to glacier surface elevation change and mass balance. Remote Sens. Environ. 2021, 258, 112343. [Google Scholar] [CrossRef]
- Friedl, P.; Seehaus, T.; Braun, M. Global time series and temporal mosaics of glacier surface velocities derived from Sentinel-1 data. Earth Syst. Sci. Data 2021, 13, 4653–4675. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Kraaijenbrink, P.D.A.; Shea, J.M.; Shrestha, A.B.; Pellicciotti, F.; Bierkens, M.F.P.; De Jong, S.M. High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles. Remote Sens. Environ. 2014, 150, 93–103. [Google Scholar] [CrossRef]
- Mohr, J.; Reeh, N.; Madsen, S. Three-dimensional glacial flow and surface elevation measured with radar interferometry. Nature 1998, 391, 273–276. [Google Scholar] [CrossRef]
- Rignot, E. Mass balance of East Antarctic glaciers and ice shelves from satellite data. Ann. Glaciol. 2002, 34, 217–227. [Google Scholar] [CrossRef]
- Peng, Y.; Li, Z.; Xu, C.; Zhang, H.; Han, W. Surface Velocity Analysis of Surge Region of Karayaylak Glacier from 2014 to 2020 in the Pamir Plateau. Remote Sens. 2021, 13, 774. [Google Scholar] [CrossRef]
- Feng, L.; Jiang, L.; Liu, L.; Sun, Y. Karayaylak glacier changes in the Kongur Mountain of eastern Pamir between 1973 and 2016 based on active and passive remote sensing technologies. Remote Sens. Land Resour. 2020, 32, 162–169. [Google Scholar]
- Wu, K.P.; Liu, S.Y.; Zhu, Y.; Liu, Q.; Jiang, Z.L. Dynamics of glacier surface velocity and ice thickness for maritime glaciers in the southeastern Tibetan Plateau. J. Hydrol. 2020, 590, 125527. [Google Scholar] [CrossRef]
- Cai, J.X.; Wang, X.W.; Wu, T.T.; Wu, R.Z.; Liu, G.X. Characterizing the kinematics of active rock glaciers in Daxue Shan, southeastern Tibetan plateau, using SAR interferometry and generalized boosted modeling. Remote Sens. Environ. 2024, 313, 114352. [Google Scholar] [CrossRef]
- Kumar, V.; Høgda, K.A.; Larsen, Y. Across-Track and Multi-Aperture InSAR for 3-D Glacier Velocity Estimation of the Siachen Glacier. Remote Sens. 2023, 15, 4794. [Google Scholar] [CrossRef]
- Fan, J.H.; Wamg, Q.; Liu, G.; Zhang, L.; Guo, Z.C.; Tong, L.Q.; Peng, J.H.; Yuan, W.L.; Zhou, W.; Perski, Z.; et al. Monitoring and Analyzing Mountain Glacier Surface Movement Using SAR Data and a Terrestrial Laser Scanner: A Case Study of the Himalayas North Slope Glacier Area. Remote Sens. 2021, 13, 5122. [Google Scholar] [CrossRef]
- Gudmundsson, S.; Gudmundsson, M.T.; Björnsson, H.; Sigmundsson, F.; Rott, H.; Carstensen, J.M. Three-dimensional glacier surface motion maps at the Gja’lp eruption site, Iceland, inferred from combining InSAR and other ice-displacement data. Ann. Glaciol. 2002, 34, 315–322. [Google Scholar] [CrossRef]
- Mohr, J.J.; Reeh, N.; Madsen, S.N. Accuracy of three-dimensional glacier surface velocities derived from radar interferometry and ice-sounding radar measurements. J. Glaciol. 2003, 49, 210–222. [Google Scholar] [CrossRef]
- Hu, J.; Li, Z.W.; Li, J.; Zhang, L.; Ding, X.L.; Zhu, J.J.; Sun, Q. 3-D movement mapping of the alpine glacier in Qinghai-Tibetan Plateau by integrating D-InSAR, MAI and Offset-Tracking: Case study of the Dongkemadi Glacier. Glob. Planet. Chang. 2014, 118, 62–68. [Google Scholar] [CrossRef]
- Reeh, N.; Madsen, S.N.; Mohr, J.J. Combining SAR interferometry and the equation of continuity to estimate the three-dimensional glacier surface-velocity vector. J. Glaciol. 1999, 45, 533–538. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.W.; Wu, L.X.; Xu, B.; Hu, J.; Zhou, Y.S.; Miao, Z.L. Deriving a time series of 3D glacier motion to investigate interactions of a large mountain glacial system with its glacial lake: Use of Synthetic Aperture Radar Pixel Offset-Small Baseline Subset technique. J. Hydrol. 2018, 559, 596–608. [Google Scholar] [CrossRef]
- Yang, L.Y.; Zhao, C.Y.; Zhong, L.; Yang, C.S.; Zhang, Q. Three-Dimensional Time Series Movement of the Cuolangma Glaciers, Southern Tibet with Sentinel-1 Imagery. Remote Sens. 2020, 12, 3466. [Google Scholar] [CrossRef]
- Barrand, N.E.; Murray, T. Multivariate controls on the incidence of glacier surging in the Karakoram Himalaya. Arct. Antarct. Alp. Res. 2006, 38, 489–498. [Google Scholar] [CrossRef]
- Hewitt, K. Tributary glacier surges: An exceptional concentration at Panmah Glacier, Karakoram Himalaya. J. Glaciol. 2007, 53, 181–188. [Google Scholar] [CrossRef]
- Kotlyakov, V.; Osipova, G.; Tsvetkov, D. Monitoring surging glaciers of the Pamirs, central Asia, from space. Ann. Glaciol. 2008, 48, 125–134. [Google Scholar] [CrossRef]
- Copland, L.; Sylvestre, T.; Bishop, M.P.; Shroder, J.F.; Seong, Y.B.; Owen, L.A.; Bush, A.; Kamp, U. Expanded and recently increased glacier surging in the Karakoram. Arct. Antarct. Alp. Res. 2011, 43, 503–516. [Google Scholar] [CrossRef]
- Yasuda, T.; Furuya, M. Short-term glacier velocity changes at West Kunlun Shan, Northwest Tibet, detected by Synthetic Aperture Radar data. Remote Sens. Environ. 2013, 128, 87–106. [Google Scholar] [CrossRef]
- Paul, F. Revealing glacier flow and surge dynamics from animated satellite image sequences: Examples from the Karakoram. Cryosphere 2015, 9, 2201–2214. [Google Scholar] [CrossRef]
- Guo, L.; Li, J.; Dehecq, A.; Li, Z.; Li, X.; Zhu, J. A new inventory of High Mountain Asia surging glaciers derived from multiple elevation datasets since the 1970s. Earth Syst. Sci. Data 2023, 15, 2841–2861. [Google Scholar] [CrossRef]
- Shangguan, D.H.; Liu, S.Y.; Ding, Y.J.; Guo, W.Q.; Xu, B.Q.; Xu, J.L.; Jiang, Z.L. Characterizing the May 2015 Karayaylak Glacier surge in the eastern Pamir Plateau using remote sensing. J. Glaciol. 2016, 62, 944–953. [Google Scholar] [CrossRef]
- Lv, M.Y.; Lu, X.C.; Guo, H.D.; Liu, G.; Ding, Y.X.; Ruan, Z.X.; Ren, Y.Z.; Yan, S.Y. A rapid glacier surge on Mount Tobe Feng, western China, 2015. J. Glaciol. 2016, 62, 407–409. [Google Scholar] [CrossRef]
- Tian, L.D.; Yao, T.D.; Gao, Y.; Thompson, L.; Mosley-Thompson, E.; Muhammad, S.; Zong, J.B.; Wang, C.; Jin, S.Q.; LI, Z.G. Two glaciers collapse in western Tibet. J. Glaciol. 2016, 63, 194–197. [Google Scholar] [CrossRef]
- Gilbert, A.; Leinss, S.; Kargel, J.; Kääb, A.; Gascoin, S.; Leonard, G.; Berthier, E.; Karki, A.; Yao, T.D. Mechanisms leading to the 2016 giant twin glacier collapses, Aru Range, Tibet. Cryosphere 2018, 12, 2883–2900. [Google Scholar] [CrossRef]
- Lei, Y.B.; Yao, T.D.; Tian, L.D.; Sheng, Y.W.; La, Z.; Liao, J.J.; Zhao, H.B.; Yang, W.; Yang, K.; Berthier, E.; et al. Response of downstream lakes to Aru glacier collapses on the western Tibetan Plateau. Cryosphere 2021, 15, 199–214. [Google Scholar] [CrossRef]
- Huai, B.J.; Li, Z.Q.; Wang, F.T.; Wang, P.Y.; Li, K.M. Ice Thickness Distribution and Ice Volume Estimation of Muz Taw Glacier in Sawir Mountains. Earth Sci. 2016, 41, 757–764. (In Chinese) [Google Scholar]
- Wang, Y.Q.; Zhao, J.; Li, Z.Q.; Zhang, M.J. Glacier changes in the Sawuer Mountain during 1977–2017 and their response to climate change. J. Nat. Resour. 2019, 34, 802–814. (In Chinese) [Google Scholar] [CrossRef]
- Wang, F.T.; Yue, X.Y.; Wang, L.; Li, K.L.; Du, Z.C.; Jing, M.; Li, Z.Q. Applying artificial snowfall to reduce the melting of the Muz Taw Glacier, Sawir Mountains. Cryosphere 2020, 14, 2597–2606. [Google Scholar] [CrossRef]
- Jiang, Z.L.; Liu, S.Y.; Peters, J.; Lin, J.; Long, S.C.; Han, Y.S.; Wang, X. Analyzing Yengisogat Glacier surface velocities with ALOS PALSAR data feature tracking, Karakoram, China. Environ. Earth Sci. 2012, 67, 1033–1043. [Google Scholar] [CrossRef]
- Yao, X.J.; Liu, S.Y.; Zhu, Y.; Gong, P.; An, L.N.; Li, X.F. Design and implementation of an automatic method for deriving glacier centerlines based on GIS. J. Glaciol. Geocryol. 2015, 37, 1563–1570. [Google Scholar]
- Li, J.; Li, Z.W.; Zhu, J.J.; Ding, X.L.; Wang, C.C.; Chen, J.L. Deriving surface motion of mountain glaciers in the Tuomuer-Khan Tengri Mountain Ranges from PALSAR images. Glob. Planet. Chang. 2013, 101, 61–71. [Google Scholar] [CrossRef]
- Zhang, S.S.; Zhang, Z.; Liu, S.Y.; Li, X.; Huang, D.N.; Xue, N.T. Terrain dependence characteristics of glacier flow velocity in northwest of the Karakoram Mountains. J. Glaciol. Geocryol. 2019, 41, 1015–1025. (In Chinese) [Google Scholar]
- Wang, P.Y.; Li, Z.Q.; Zhou, P.; Li, H.L.; Yu, G.B.; Xu, C.H.; Wang, L. Long-term change in ice velocity of Urumqi Glacier No. 1, Tian Shan, China. Cold Reg. Sci. Technol. 2018, 145, 177–184. [Google Scholar] [CrossRef]
Direction | Spring/m | Summer/m | Autumn/m | Winter/m |
---|---|---|---|---|
East displacement | 1.42 | 2.22 | 0.16 | 0.05 |
North displacement | 0.31 | 4.88 | 1.48 | 0.17 |
Vertical displacement | −0.82 | −1.96 | −0.31 | −0.09 |
Total 3D displacement | 2.58 | 5.95 | 1.97 | 1.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhao, J.; Li, Z.; Yang, Y.; Liu, J. Three-Dimensional Surface Motion Displacement Estimation of the Muz Taw Glacier, Sawir Mountains. Remote Sens. 2024, 16, 4326. https://doi.org/10.3390/rs16224326
Wang Y, Zhao J, Li Z, Yang Y, Liu J. Three-Dimensional Surface Motion Displacement Estimation of the Muz Taw Glacier, Sawir Mountains. Remote Sensing. 2024; 16(22):4326. https://doi.org/10.3390/rs16224326
Chicago/Turabian StyleWang, Yanqiang, Jun Zhao, Zhongqin Li, Yanjie Yang, and Jialiang Liu. 2024. "Three-Dimensional Surface Motion Displacement Estimation of the Muz Taw Glacier, Sawir Mountains" Remote Sensing 16, no. 22: 4326. https://doi.org/10.3390/rs16224326
APA StyleWang, Y., Zhao, J., Li, Z., Yang, Y., & Liu, J. (2024). Three-Dimensional Surface Motion Displacement Estimation of the Muz Taw Glacier, Sawir Mountains. Remote Sensing, 16(22), 4326. https://doi.org/10.3390/rs16224326