Secchi Depth Retrieval in Oligotrophic to Eutrophic Chilean Lakes Using Open Access Satellite-Derived Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
Geography and Limnology | Lanalhue 1 | Villarrica 2 | Panguipulli 3 |
---|---|---|---|
Latitude South | 37°55′ | 39°25′ | 39°43′ |
Longitude West | 73°18′ | 72°09′ | 72°13′ |
Altitude (m a.s.l) | 12 | 215 | 130 |
Catchment area (km2) | 438 | 2884 | 3811 |
Area (km2) | 31.9 | 173.9 | 117 |
Mean depth (m) | 13 | 120 | 126 |
Maximum depth (m) | 26 | 165 | 268 |
Trophic state | Eutrophic | Oligo to mesotrophic | Oligotrophic |
2.2. Transparency and Water Quality Data
2.3. Trophic State Index
2.4. Satellite Imagery
2.5. Image Processing
2.6. Quality and Uncertainty of C2RCC, C2X and C2XC
2.7. Spatial Filtering of Datasets
2.8. Statistical Analysis and Transparency Product Match-Ups
3. Results
3.1. Inspection of the Dataset via Trophic State Index
3.2. SD Match-Up in Eutrophic Lake Lanalhue
3.3. SD Match-Up in Oligo-Mesotrophic Lake Villarrica
3.4. SD Match-Up for Ultra-Oligotrophic Lake Panguipulli
3.5. Evaluation of the Significance Differences Between NNs
4. Discussion
4.1. Selection of the Correct NNs
4.2. C2RCC-NNs and Lakes with Low Trophic Index
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ogashawara, I.; Mishra, D.R.; Gitelson, A.A. Chapter 1—Remote Sensing of Inland Waters: Background and Current State-of-the-Art. In Bio-Optical Modeling and Remote Sensing of Inland Waters; Mishra, D.R., Ogashawara, I., Gitelson, A.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–24. [Google Scholar]
- Palmer, S.C.J.; Kutser, T.; Hunter, P.D. Remote sensing of inland waters: Challenges, progress and future directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed]
- Topp, S.N.; Pavelsky, T.M.; Jensen, D.; Simard, M.; Ross, M.R.V. Research Trends in the Use of Remote Sensing for Inland Water Quality Science: Moving Towards Multidisciplinary Applications. Water 2020, 12, 169. [Google Scholar] [CrossRef]
- Zielinski, O. The History and Future of the Secchi Disk. In Angelo Secchi and Nineteenth Century Science: The Multidisciplinary Contributions of a Pioneer and Innovator; Chinnici, I., Consolmagno, G., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 215–224. [Google Scholar]
- Dodds, W.K.; Whiles, M.R. Chapter 3—Movement of Light, Heat, and Chemicals in Water. In Freshwater Ecology, 2nd ed.; Dodds, W.K., Whiles, M.R., Eds.; Academic Press: London, UK, 2010; pp. 45–64. [Google Scholar]
- Kirk, J.T. Light and Photosynthesis in Aquatic Ecosystems; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Zhang, Y.; Zhang, Y.; Shi, K.; Zhou, Y.; Li, N. Remote sensing estimation of water clarity for various lakes in China. Water Res. 2021, 192, 116844. [Google Scholar] [CrossRef]
- Secchi, P.A. Relazione delle esperienze fatte a bordo della pontificia pirocorvetta Imacolata Concezione per determinare la trasparenza del mare. Il Nuovo Cimento 1864, 20, 205–238. [Google Scholar]
- Lee, Z.; Shang, S.; Hu, C.; Du, K.; Weidemann, A.; Hou, W.; Lin, J.; Lin, G. Secchi disk depth: A new theory and mechanistic model for underwater visibility. Remote Sens. Environ. 2015, 169, 139–149. [Google Scholar] [CrossRef]
- Benavides, G. Redefinición de la Red Mínima de Lagos; Dirección General de Aguas Santiago: Santiago, Chile, 2009. [Google Scholar]
- Huovinen, P.; Ramírez, J.; Caputo, L.; Gómez, I. Mapping of spatial and temporal variation of water characteristics through satellite remote sensing in Lake Panguipulli, Chile. Sci. Total Environ. 2019, 679, 196–208. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Alvarez, D.; Bustos Usta, D.; Duran-Llacer, I.; Bravo Alvarez, L.; Fagel, N.; Bourrel, L.; Frappart, F.; Urrutia, R. Chlorophyll-a Detection Algorithms at Different Depths Using In Situ, Meteorological, and Remote Sensing Data in a Chilean Lake. Remote Sens. 2024, 16, 647. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Duran-Llacer, I.; Bravo Alvarez, L.; Lami, A.; Urrutia, R. Recovery of Water Quality and Detection of Algal Blooms in Lake Villarrica through Landsat Satellite Images and Monitoring Data. Remote Sens. 2023, 15, 1929. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Duran-Llacer, I.; González-Rodríguez, L.; Abarca-del-Rio, R.; Cárdenas, R.; Parra, O.; Martínez-Retureta, R.; Urrutia, R. Spectral analysis using LANDSAT images to monitor the chlorophyll-a concentration in Lake Laja in Chile. Ecol. Inform. 2020, 60, 101183. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; González-Rodríguez, L.; Duran-Llacer, I.; Cardenas, R.; Urrutia, R. Spatio-temporal analysis of chlorophyll in six Araucanian lakes of Central-South Chile from Landsat imagery. Ecol. Inform. 2021, 65, 101431. [Google Scholar] [CrossRef]
- Yépez, S.; Velásquez, G.; Torres, D.; Saavedra-Passache, R.; Pincheira, M.; Cid, H.; Rodríguez-López, L.; Contreras, A.; Frappart, F.; Cristóbal, J.; et al. Spatiotemporal Variations in Biophysical Water Quality Parameters: An Integrated In Situ and Remote Sensing Analysis of an Urban Lake in Chile. Remote Sens. 2024, 16, 427. [Google Scholar] [CrossRef]
- Barraza-Moraga, F.; Alcayaga, H.; Pizarro, A.; Félez-Bernal, J.; Urrutia, R. Estimation of Chlorophyll-a Concentrations in Lanalhue Lake Using Sentinel-2 MSI Satellite Images. Remote Sens. 2022, 14, 5647. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Duran-Llacer, I.; González-Rodríguez, L.; Cardenas, R.; Urrutia, R. Retrieving Water Turbidity in Araucanian Lakes (South-Central Chile) Based on Multispectral Landsat Imagery. Remote Sens. 2021, 13, 3133. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- De Keukelaere, L.; Sterckx, S.; Adriaensen, S.; Knaeps, E.; Reusen, I.; Giardino, C.; Bresciani, M.; Hunter, P.; Neil, C.; Van der Zande, D. Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data using iCOR algorithm: Validation for coastal and inland waters. Eur. J. Remote Sens. 2018, 51, 525–542. [Google Scholar] [CrossRef]
- Sayler, K.; Zanter, K. Landsat 8 Collection 2 (C2) Level 2 Science Product (L2SP) Guide LSDS-1619; Version 2.0; EROS Sioux Falls: South Dakota, SD, USA, 2021. [Google Scholar]
- Brockmann, C.; Doerffer, R.; Peters, M.; Kerstin, S.; Embacher, S.; Ruescas, A. Evolution of the C2RCC neural network for Sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters. In Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; p. 54. [Google Scholar]
- Pahlevan, N.; Mangin, A.; Balasubramanian, S.V.; Smith, B.; Alikas, K.; Arai, K.; Barbosa, C.; Bélanger, S.; Binding, C.; Bresciani, M. ACIX-Aqua: A global assessment of atmospheric correction methods for Landsat-8 and Sentinel-2 over lakes, rivers, and coastal waters. Remote Sens. Environ. 2021, 258, 112366. [Google Scholar] [CrossRef]
- Ogashawara, I.; Kiel, C.; Jechow, A.; Kohnert, K.; Ruhtz, T.; Grossart, H.-P.; Hölker, F.; Nejstgaard, J.C.; Berger, S.A.; Wollrab, S. The Use of Sentinel-2 for Chlorophyll-a Spatial Dynamics Assessment: A Comparative Study on Different Lakes in Northern Germany. Remote Sens. 2021, 13, 1542. [Google Scholar] [CrossRef]
- Ogashawara, I.; Jechow, A.; Kiel, C.; Kohnert, K.; Berger, S.A.; Wollrab, S. Performance of the Landsat 8 Provisional Aquatic Reflectance Product for Inland Waters. Remote Sens. 2020, 12, 2410. [Google Scholar] [CrossRef]
- Parra, O.; Valdovinos, C.; Urrutia, R.; Cisternas, M.; Habit, E.; Mardones, M. Caracterización y tendencias tróficas de cinco lagos costeros de Chile Central. Limnetica 2003, 22, 51–83. [Google Scholar] [CrossRef]
- Centro EULA, Universidad de Concepción. Estudio Limnológico para Sustentar Anteproyecto de la Norma Secundaria de Calidad Ambiental (NSCA) del Lago Lanalhue, Provincia de Arauco, Región del Biobío; Licitación Pública: ID 608897-30-LQ18; Ministerio de Medio Ambiente: Concepción, Chile, 2020. [Google Scholar]
- Secretaría Regional Ministerial del Medio Ambiente, Región de la Araucanía. Informe Técnico de Antecedentes para Declarar a la Cuenca del Lago Villarrica Como Zona Saturada por Clorofila-”a”, Transparencia y Fósforo Disuelto; Departamento de Conservación de Ecosistemas Acuáticos, División de Recursos Naturales y Biodiversidad del Ministerio de Medio Ambiente: La Araucanía, Chile, 2017. [Google Scholar]
- Aguayo, M.; Pauchard, A.; Azócar, G.; Parra, O. Cambio del uso del suelo en el centro sur de Chile a fines del siglo XX: Entendiendo la dinámica espacial y temporal del paisaje. Rev. Chil. Hist. Nat. 2009, 82, 361–374. [Google Scholar] [CrossRef]
- Pizarro, J.; Vergara, P.M.; Cerda, S.; Briones, D. Cooling and eutrophication of southern Chilean lakes. Sci. Total Environ. 2016, 541, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Nimptsch, J.; Woelfl, S.; Osorio, S.; Valenzuela, J.; Moreira, C.; Ramos, V.; Castelo-Branco, R.; Leão, P.N.; Vasconcelos, V. First record of toxins associated with cyanobacterial blooms in oligotrophic North Patagonian lakes of Chile—A genomic approach. Int. Rev. Hydrobiol. 2016, 101, 57–68. [Google Scholar] [CrossRef]
- Almanza, V.; Pedreros, P.; Dail Laughinghouse, H.; Félez, J.; Parra, O.; Azócar, M.; Urrutia, R. Association between trophic state, watershed use, and blooms of cyanobacteria in south-central Chile. Limnologica 2019, 75, 30–41. [Google Scholar] [CrossRef]
- Campos, H.; Arenas, J.; Steffen, W.; Agüero, G. Morphometrical, physical and chemical limnology of Lake Panguipulli (Valdivia, Chile). Neues Jahrb. Für Geol. Und Paläontologie Monatshefte 1981, 10, 603–625. [Google Scholar] [CrossRef]
- Alvial Chandía, I.E.; Dirección General de Aguas; Ingeniería y Gestión Ambiental Enlaces SPA. Evaluación de la Condición Trófica en Cuerpos Lacustres; DGA, Departamento de Conservación y Protección de los Recursos Hídricos. 2018. Available online: https://bibliotecadigital.ciren.cl/items/6e146774-36cb-4a12-8f20-52b931810e5b (accessed on 14 March 2024).
- Juri, G.; Dirección General de Aguas. Materia: Análisis de la Relación Entre Clorofila “a” y la Transparencia de los Lagos Monitoreados por la Red de Calidad de la DGA, y Elaboración de un Ranking de Lagos Basado en el Estado Trófico Otorgado por Estos Parámetros; Dirección General de Aguas, Minuta DCPRH N°10: Santiago, Chile, 2018. [Google Scholar]
- Centro Eula. Monitoreo Limnológico de Áreas de Vigilancia Propuestas para una Futura Norma Secundaria de Calidad Ambiental (NSCA) en el Lago Lanalhue, Provincia de Arauco, Región del BioBío; Ministerio de Medio Ambiente: Concepción, Chile, 2022. [Google Scholar]
- Ministerio de Medio Ambiente. Sexto Informe Nacional de Biodiversidad de Chile ante el Convenio Sobre la Diversidad Biológica (CDB); Ministerio de Medio Ambiente: Santiago, Chile, 2019. [Google Scholar]
- Centro EULA. Recopilación, Sistematización y Análisis de Información Disponible para la Elaboración de Normas Secundarias de Calidad Ambiental para la Protección de las Aguas de los Lagos Nor-Patagónicos de Chile; Dirección General de Aguas: Concepción, Chile, 2021. [Google Scholar]
- Carlson, R.E. A trophic state index for lakes. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef]
- Zuhlke, M.; Fomferra, N.; Brockmann, C.; Peters, M.; Veci, L.; Malik, J.; Regner, P. SNAP (sentinel application platform) and the ESA sentinel 3 toolbox. In Proceedings of the Sentinel-3 for Science Workshop, Venice, Italy, 2–5 June 2015; p. 21. [Google Scholar]
- Werdell, P.J.; Bailey, S.W. An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation. Remote Sens. Environ. 2005, 98, 122–140. [Google Scholar] [CrossRef]
- Nechad, B.; Ruddick, K.; Schroeder, T.; Oubelkheir, K.; Blondeau-Patissier, D.; Cherukuru, N.; Brando, V.; Dekker, A.; Clementson, L.; Banks, A.C.; et al. CoastColour Round Robin data sets: A database to evaluate the performance of algorithms for the retrieval of water quality parameters in coastal waters. Earth Syst. Sci. Data 2015, 7, 319–348. [Google Scholar] [CrossRef]
- Ruescas, A. C2X-Complex. Available online: https://forum.step.esa.int/t/c2x-complex/29392 (accessed on 12 June 2023).
- Preisendorfer, R.W. Secchi disk science: Visual optics of natural waters 1. Limnol. Oceanogr. 1986, 31, 909–926. [Google Scholar] [CrossRef]
- Doerffer, R.; Goryl, P.; Brockmann, C.; Bourg, L. Algorithm Theoretical Bases Document (ATBD) for L2 processing of MERIS data of case 2 waters, 4 th reprocessing. Rapp. Tech. 2015, 2, 3–20. [Google Scholar]
- Llodrà-Llabrés, J.; Martínez-López, J.; Postma, T.; Pérez-Martínez, C.; Alcaraz-Segura, D. Retrieving water chlorophyll-a concentration in inland waters from Sentinel-2 imagery: Review of operability, performance and ways forward. Int. J. Appl. Earth Obs. Geoinf. 2023, 125, 103605. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual comparisons by ranking methods. Biom. Bull. 1945, 1, 80–83. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L.; Gege, P. Inter-Comparison of Methods for Chlorophyll-a Retrieval: Sentinel-2 Time-Series Analysis in Italian Lakes. Remote Sens. 2021, 13, 2381. [Google Scholar] [CrossRef]
- Soriano-González, J.; Urrego, E.P.; Sòria-Perpinyà, X.; Angelats, E.; Alcaraz, C.; Delegido, J.; Ruíz-Verdú, A.; Tenjo, C.; Vicente, E.; Moreno, J. Towards the Combination of C2RCC Processors for Improving Water Quality Retrieval in Inland and Coastal Areas. Remote Sens. 2022, 14, 1124. [Google Scholar] [CrossRef]
- Ayala Izurieta, J.E.; Beltrán Dávalos, A.A.; Jara Santillán, C.A.; Godoy Ponce, S.C.; Van Wittenberghe, S.; Verrelst, J.; Delegido, J. Spatial and Temporal Analysis of Water Quality in High Andean Lakes with Sentinel-2 Satellite Automatic Water Products. Sensors 2023, 23, 8774. [Google Scholar] [CrossRef]
- Deutsch, E.S.; Cardille, J.A.; Koll-Egyed, T.; Fortin, M.-J. Landsat 8 Lake Water Clarity Empirical Algorithms: Large-Scale Calibration and Validation Using Government and Citizen Science Data from across Canada. Remote Sens. 2021, 13, 1257. [Google Scholar] [CrossRef]
- Spyrakos, E.; O’Donnell, R.; Hunter, P.D.; Miller, C.; Scott, M.; Simis, S.G.H.; Neil, C.; Barbosa, C.C.F.; Binding, C.E.; Bradt, S.; et al. Optical types of inland and coastal waters. Limnol. Oceanogr. 2018, 63, 846–870. [Google Scholar] [CrossRef]
- Neil, C.; Spyrakos, E.; Hunter, P.D.; Tyler, A.N. A global approach for chlorophyll-a retrieval across optically complex inland waters based on optical water types. Remote Sens. Environ. 2019, 229, 159–178. [Google Scholar] [CrossRef]
- Mobley, C. Light and Water: Radiative Transfer in Natural Waters; Academic Press: New York, NY, USA, 1994; Volume 565. [Google Scholar]
- Maciel, D.A.; Pahlevan, N.; Barbosa, C.C.F. Water Quality and Remote Sensing Reflectance Data for Global Inland, Coastal and Ocean Waters [Dataset]. PANGAEA. 2023. Available online: https://doi.pangaea.de/10.1594/PANGAEA.961720 (accessed on 4 November 2024).
- Zhang, Y.; Shi, K.; Sun, X.; Zhang, Y.; Li, N.; Wang, W.; Zhou, Y.; Zhi, W.; Liu, M.; Li, Y.; et al. Improving remote sensing estimation of Secchi disk depth for global lakes and reservoirs using machine learning methods. GIScience Remote Sens. 2022, 59, 1367–1383. [Google Scholar] [CrossRef]
- Khan, R.M.; Salehi, B.; Niroumand-Jadidi, M.; Mahdianpari, M. Mapping Water Clarity in Small Oligotrophic Lakes Using Sentinel-2 Imagery and Machine Learning Methods: A Case Study of Canandaigua Lake in Finger Lakes, New York. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 4674–4688. [Google Scholar] [CrossRef]
Lake | Parameter * | Min | Max | Mean | Median | StdDev ** |
---|---|---|---|---|---|---|
Lanalhue (n = 32) | SD (m) | 0.60 | 5.00 | 2.20 | 2.50 | 1.15 |
Tw (°C) | 21.4 | 22.70 | 22.0 | 21.8 | 0.57 | |
Villarrica (n = 61) | SD (m) | 3.50 | 11.00 | 6.43 | 7.00 | 2.02 |
Tw (°C) | 15.60 | 25.00 | 21.60 | 21.90 | 1.92 | |
Panguipulli (n = 26) | SD (m) | 6.50 | 16.83 | 11.92 | 12.00 | 1.98 |
Tw (°C) | 17.62 | 23.08 | 20.20 | 20.18 | 1.89 |
Trophic Status | TSI Range | TSI | SD (m) |
---|---|---|---|
Oligotrophic | <30 | 0 | 64 |
10 | 32 | ||
20 | 16 | ||
30 | 8 | ||
Mesotrophic | 30 < TSI < 60 | 40 | 4 |
50 | 2 | ||
60 | 1 | ||
Eutrophic | 60 < TSI < 90 | 70 | 0.50 |
80 | 0.25 | ||
90 | 0.12 | ||
Hypereutrophic | 90 < TSI < 100 | 100 | 0.06 |
Lake | Tile | Satellite Overpass | Product ID | Temporal Offset (Days) |
---|---|---|---|---|
Lanalhue | T18HXD | 13 February 2018 | GS2A_20180213T143751_013821_N02.06 | 0 |
18 January 2022 | GS2B_20220118T143719_025433_N03.01 | 0 | ||
22 February 2023 | GS2B_20230222T143729_031153_N05.09 | 0, +1 | ||
Villarrica | T18HYB | 25 February 2019 | GS2A_20190225T142751_019212_N02.07 | +1 |
28 February 2019 | GS2A_20190225T142751_019212_N02.07 | −1 | ||
9 February 2021 | GS2B_20210209T142729_020528_N02.09 | +1 | ||
1 March 2021 | GS2B_20210301T142729_020814_N02.09 | +1 | ||
4 March 2021 | GS2B_20210304T143729_020857_N02.09 | −1 | ||
13 January 2023 | GS2B_20230113T143719_030581_N05.09 | 0 | ||
2 February 2023 | GS2B_20230202T143729_030867_N05.09 | 0 | ||
24 January 2024 | GS2A_20240123T143741_044852_N05.10 | −1 | ||
Panguipulli | T18GYA/ T18HYB | 2 December 2018 | GS2B_20181202T142749_009088_N02.07 | +1 |
31 January 2019 | GS2B_20190131T142759_009946_N02.07 | −1 | ||
24 February 2021 | GS2A_20210224T142731_029651_N05.00 | +1 | ||
6 November 2021 | GS2B_20211106T142729_024389_N05.00 | 0, +1 | ||
11 March 2022 | GS2A_20220311T142741_035085_N04.00 | 0, −1 | ||
18 January 2023 | GS2A_20230118T143721_039561_N05.09 | 0 |
Processor | apig (m−1) | adet (m−1) | agelb (m−1) | bwit (m−1) | bpart (m−1) | btot (m−1) |
---|---|---|---|---|---|---|
C2RCC | ~0–5.3 | ~0–5.9 | ~0–1 | ~0–60 | ~0–60 | - |
C2X | ~0–51 | ~0–60 | ~0–60 | ~0–590 | ~0–590 | - |
C2XC | ~0–30.81 | ~0–17 | ~0–4.25 | - | - | ~0–1000 |
Net | rs | p-Value | RMSE (m) | nRMSE (%) | MAE (m) | nMAE (%) | bias (m) | nbias (%) |
---|---|---|---|---|---|---|---|---|
C2RCC | 0.852 | <0.05 | 1.383 | 56.88 | 0.913 | 37.53 | 0.897 | 36.89 |
C2X | 0.849 | <0.05 | 1.054 | 43.35 | 0.894 | 36.79 | −0.725 | −29.84 |
C2XC | 0.889 | <0.05 | 0.806 | 33.13 | 0.572 | 23.51 | 0.208 | 8.57 |
Net | rs | p-Value | RMSE (m) | nRMSE (%) | MAE (m) | nMAE (%) | bias (m) | nbias (%) |
---|---|---|---|---|---|---|---|---|
C2RCC | 0.739 | <0.05 | 2.100 | 32.98 | 1.614 | 25.36 | 1.227 | 19.27 |
C2X | 0.49 | <0.05 | 2.284 | 35.87 | 1.755 | 27.56 | −1.024 | −16.08 |
C2XC | 0.618 | <0.05 | 1.571 | 24.67 | 1.3216 | 20.67 | 0.268 | 4.21 |
Net | rs | p-Value | RMSE (m) | RMSE (%) | MAE (m) | MAE (%) | bias (m) | nbias (%) |
---|---|---|---|---|---|---|---|---|
C2RCC | 0.533 | 0.013 | 4.908 | 40.67 | 4.060 | 33.64 | 3.682 | 30.51 |
C2X | −0.313 | 0.167 | 5.178 | 42.90 | 4.203 | 34.82 | 1.248 | 10.34 |
C2XC | −0.408 | 0.067 | 4.596 | 38.08 | 3.995 | 33.10 | −3.265 | −27.05 |
Lake | Comparison | Positive Ranks | Negative Ranks | Z-Score | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
n | Mean | Sum | n | Mean | Sum | ||||
Lanalhue | C2RCC vs. C2X | 27 | 14 | 378 | 0 | 0 | 0 | −4.54 | <0.05 |
C2RCC vs. C2XC | 25 | 15 | 373 | 2 | 2 | 5 | −4.24 | <0.05 | |
C2X vs. C2XC | 1 | 8 | 8 | 26 | 15 | 370 | 15.00 | <0.05 | |
Villarrica | C2RCC vs. C2X | 42 | 29 | 1251 | 9 | 8 | 75 | −4.71 | <0.05 |
C2RCC vs. C2XC | 40 | 28 | 1140 | 11 | 17 | 186 | −3.01 | <0.05 | |
C2X vs. C2XC | 11 | 10 | 110 | 40 | 30 | 1216 | 6.85 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera-Ruiz, D.; Arumí, J.L.; Lillo-Saavedra, M.; Esse, C.; Arancibia-Ávila, P.; Urrutia, R.; Portuguez-Maurtua, M.; Ogashawara, I. Secchi Depth Retrieval in Oligotrophic to Eutrophic Chilean Lakes Using Open Access Satellite-Derived Products. Remote Sens. 2024, 16, 4327. https://doi.org/10.3390/rs16224327
Rivera-Ruiz D, Arumí JL, Lillo-Saavedra M, Esse C, Arancibia-Ávila P, Urrutia R, Portuguez-Maurtua M, Ogashawara I. Secchi Depth Retrieval in Oligotrophic to Eutrophic Chilean Lakes Using Open Access Satellite-Derived Products. Remote Sensing. 2024; 16(22):4327. https://doi.org/10.3390/rs16224327
Chicago/Turabian StyleRivera-Ruiz, Daniela, José Luis Arumí, Mario Lillo-Saavedra, Carlos Esse, Patricia Arancibia-Ávila, Roberto Urrutia, Marcelo Portuguez-Maurtua, and Igor Ogashawara. 2024. "Secchi Depth Retrieval in Oligotrophic to Eutrophic Chilean Lakes Using Open Access Satellite-Derived Products" Remote Sensing 16, no. 22: 4327. https://doi.org/10.3390/rs16224327
APA StyleRivera-Ruiz, D., Arumí, J. L., Lillo-Saavedra, M., Esse, C., Arancibia-Ávila, P., Urrutia, R., Portuguez-Maurtua, M., & Ogashawara, I. (2024). Secchi Depth Retrieval in Oligotrophic to Eutrophic Chilean Lakes Using Open Access Satellite-Derived Products. Remote Sensing, 16(22), 4327. https://doi.org/10.3390/rs16224327