Initial Design for Next-Generation BeiDou Integrity Subsystem: Space–Ground Integrated Integrity Monitoring
Abstract
:1. Introduction
2. Current Status of GNSS Integrity Service
2.1. Current Status of BDS-3 Integrity Services
2.1.1. Fundamental Integrity Services of BDS-3
2.1.2. Integrity Services of BDSBAS
2.2. Current Status of Integrity Services of GPS, Galileo, and GLONASS
2.2.1. Fundamental Integrity Services
2.2.2. SBAS Integrity Services
2.3. Development Trends in GNSS Integrity Services
3. Integrity Monitoring Method of Space–Ground Integration
3.1. Architecture of Integrity Monitoring Method
3.2. LEO Satellites as Space Monitoring Stations
- (1)
- BeiDou Single-Satellite Autonomous Integrity Monitoring
- (2)
- Inter-satellite consistency check
- (3)
- LEO Integrity Enhancement
- (4)
- Integration of Integrity Monitoring for Medium, High, and Low Orbits
- (5)
- Ground verification
3.3. LEO Satellites as Navigation Satellites
3.4. Simulation Results and Sensitivity Analysis
3.4.1. LEO Constellation Simulation
3.4.2. Simulation of GNSS Integrity Service Performance Under LEO Constellation Enhancement
3.4.3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, W.; Zhou, W.; Tang, C.; Li, X.; Yuan, Y.; Hu, X. High-precision services of BeiDou navigation satellite system (BDS): Current state, achievements, and future directions. Satell. Navig. 2024, 5, 20. [Google Scholar] [CrossRef]
- China Satellite Navigation Office. Development of the BeiDou Navigation Satellite System. Available online: http://www.beidou.gov.cn/xt/gfxz/201912/P020191227430565455478.pdf (accessed on 1 July 2024).
- Lu, J.; Guo, X.; Su, C. Global capabilities of BeiDou Navigation Satellite System. Satell. Navig. 2020, 1, 27. [Google Scholar] [CrossRef]
- Yang, Y.; Mao, Y.; Sun, B. Basic performance and future developments of BeiDou global navigation satellite system. Satell. Navig. 2020, 1, 1. [Google Scholar] [CrossRef]
- Huo, L.; Shen, J.; Wang, S.; Zhai, Y.; Zhan, X. Integrity performance characterization of BeiDou B1C and B2a signal-in-space error. Aerosp. Syst. 2023, 6, 665–675. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Fang, K.; Dan, Z.; Zhu, Y. An Airborne Ionospheric Correction Approach for Single-frequency BDSBAS. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–20. [Google Scholar] [CrossRef]
- Wang, S.; Zhai, Y.; Chi, C.; Zhan, X.; Jiang, Y. Implementation and analysis of fault grouping for multi-constellation advanced RAIM. Adv. Space Res. 2023, 71, 4765–4786. [Google Scholar] [CrossRef]
- Wang, S.; Zhai, Y.; Zhan, X. Characterizing BDS signal-in-space performance from integrity perspective. Navigation 2021, 68, 157–183. [Google Scholar] [CrossRef]
- Khalil, J. China’s BeiDou Challenges US GPS Dominance. Available online: https://www.gpsworld.com/chinas-beidou-challenges-u-s-gps-dominance/ (accessed on 28 June 2024).
- China Satellite Navigation Office. Applications of the BeiDou Navigation Satellite Syste. Available online: http://www.beidou.gov.cn/xt/gfxz/201906/P020190605488535070471.pdf (accessed on 1 July 2024).
- International Civil Aviation Organization. Annex 10: Aeronautical Telecommunications, Volume I Radio Navigational Aids, 6th ed.; International Civil Aviation Organization: Montreal, QC, Canada, 2006. [Google Scholar]
- Du, Y.; Wang, J.; Rizos, C.; El-Mowafy, A. Vulnerabilities and integrity of precise point positioning for intelligent transport systems: Overview and analysis. Satell. Navig. 2021, 2, 3. [Google Scholar] [CrossRef]
- Ochieng, W.Y.; Sauer, K.; Walsh, D.; Brodin, G.; Griffin, S.; Denney, M. GPS integrity and potential impact on aviation safety. J. Navig. 2003, 56, 51–65. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J. Integrity monitoring scheme for single-epoch GNSS PPP-RTK positioning. Satell. Navig. 2023, 4, 10. [Google Scholar] [CrossRef]
- Zhu, N.; Marais, J.; Betaille, D.; Berbineau, M. GNSS Position Integrity in Urban Environments: A Review of Literature, (in en). IEEE Trans. Intell. Transp. Syst. 2018, 19, 2762–2778. [Google Scholar] [CrossRef]
- Yang, Y.; Ding, Q.; Gao, W.; Li, J.; Xu, Y.; Sun, B. Principle and performance of BDSBAS and PPP-B2b of BDS-3. Satell. Navig. 2022, 3, 5. [Google Scholar] [CrossRef]
- Cheng, L.; Weiguang, G.; Bo, S.; Jun, L.; Wei, W.; Ying, C.; Chengeng, S.; Shuai, X.; Qun, D. Development of BeiDou satellite-based augmentation system. Navigation 2021, 68, 405–417. [Google Scholar] [CrossRef]
- Walter, T. Satellite Based Augmentation Systems. In Handbook of Global Navigation Satellite Systems; Teunissen, P.J.G., Ed.; Springer: Wessling, Germany, 2017; Volume 12, pp. 339–362. [Google Scholar]
- Li, R.; Zheng, S.; Wang, E.; Chen, J.; Feng, S.; Wang, D.; Dai, L. Advances in BeiDou Navigation Satellite System (BDS) and satellite navigation augmentation technologies. Satell. Navig. 2020, 1, 12. [Google Scholar] [CrossRef]
- Zheng, S.; Gao, M.; Huang, Z.; Jin, X.; Li, K. Satellite integrity monitoring for satellite-based augmentation system: An improved covariance-based method. Satell. Navig. 2022, 3, 9. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, X.; Wang, G.; Zhang, Q.; Zhou, R.; Chen, L.; Zhao, Q. Initial performance assessment of the single-frequency (SF) service with the BeiDou satellite-based augmentation system (BDSBAS). GPS Solut. 2022, 27, 35. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, W.; Chen, X.; Liu, T.; Liu, C.; Su, C.; Lu, J.; Wang, W.; Mu, S. Advances of SBAS authentication technologies. Satell. Navig. 2021, 2, 12. [Google Scholar] [CrossRef]
- Xu, H.; Wang, J.; Zhan, X. GNSS Satellite Autonomous Integrity Monitoring (SAIM) using inter-satellite measurements. Adv. Space Res. 2011, 47, 1116–1126. [Google Scholar] [CrossRef]
- Rodriguez, I.; Garcia, C.; Catalán, C.; Mozo, A.; Tavella, P.; Galleani, L.; Rochat, P.; Wang, Q.; Amarillo, F. Satellite autonomous integrity monitoring (SAIM) for GNSS systems. In Proceedings of the 22nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2009), Savannah, GA, USA, 22–25 September 2009; pp. 1330–1342. [Google Scholar]
- Chen, L.; Dai, Y.; Gao, W.; Cao, Y.; Hu, Z.; Ren, Q.; Nie, X.; Zheng, J.; Shao, R.; Pei, L.; et al. Performance Analysis of BDS-3 SAIM and Enhancement Research on Autonomous Satellite Ephemeris Monitoring. Remote Sens. 2022, 14, 3543. [Google Scholar] [CrossRef]
- Chen, L.; Nie, X.; Gao, W.; Zhang, S. Research on the Method of Autonomous Integrity Monitoring of Satellite Ephemeris. In China Satellite Navigation Conference; Springer: Berlin/Heidelberg, Germany, 2022; pp. 220–230. [Google Scholar]
- Peckjian, A.; Shaw, S.; Katronick, A.J. Maturation of GPS III Signal Integrity Improvements. In Proceedings of the 29th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2016), Portland, OR, USA, 12–16 September 2016; pp. 2910–2921. [Google Scholar]
- Bian, L.; Liu, X.; Liu, W.; Yan, T.; Lei, W.; Jia, Y.; Meng, Y.; Zhang, L. Satellite Autonomous Integrity Monitoring of BDS and Onboard Performance Evaluation. Aerosp. China 2021, 21, 42–49. [Google Scholar]
- Cao, Y.; Chen, J.; Hu, X.; He, F.; Bian, L.; Wang, W.; Wu, B.; Yu, Y.; Wang, J.; Tian, Q. Design of BDS-3 integrity monitoring and preliminary analysis of its performance. Adv. Space Res. 2020, 65, 1125–1138. [Google Scholar] [CrossRef]
- Yang, Y.; Mao, Y.; Ren, X.; Jia, X.; Sun, B. Demand and key technology for a LEO constellation as augmentation of satellite navigation systems. Satell. Navig. 2024, 5, 11. [Google Scholar] [CrossRef]
- Chen, L.; Lv, F.; Yang, Q.; Xiong, T.; Liu, Y.; Yang, Y.; Pan, H.; Wang, S.; Liu, M.; He, R.; et al. Performance evaluation of centispace navigation augmentation experiment satellites. Sensors 2023, 23, 5704. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Ge, H.; Ge, M.; Nie, L.; Shen, Y.; Schuh, H. LEO enhanced Global Navigation Satellite System (LeGNSS) for real-time precise positioning services. Adv. Space Res. 2019, 63, 73–93. [Google Scholar] [CrossRef]
- Hong, J.; Tu, R.; Zhang, P.; Zhang, R.; Han, J.; Fan, L.; Wang, S.; Lu, X. GNSS rapid precise point positioning enhanced by low Earth orbit satellites. Satell. Navig. 2023, 4, 11. [Google Scholar] [CrossRef]
- China Satellite Navigation Office. BeiDou Navigation Satellite System Signal in Space Interface Control Document. Available online: http://www.beidou.gov.cn/xt/gfxz/201902/P020190227593621142475.pdf (accessed on 1 July 2024).
- Cao, Y.; Chen, J.; Liu, L.; Hu, X.; Liu, Y.; Xin, J.; Zhao, L.; Tian, Q.; Zhou, S.; Wu, B. Development Status and Service Performance Preliminary Analysis for BDSBAS. Remote Sens. 2022, 14, 4314. [Google Scholar] [CrossRef]
- Liu, C.; Chen, Y.; Xiong, S.; Shao, B.; Zhang, J.; Wang, W. Research and Performance Assessment of BDSBAS Time System Interoperability. Astron. Res. Technol. 2022, 19, 12. [Google Scholar]
- Guan, M.; Xu, T.; Gao, F.; Nie, W.; Yang, H. Optimal walker constellation design of LEO-based global navigation and augmentation system. Remote Sens. 2020, 12, 1845. [Google Scholar] [CrossRef]
- Li, M.; Liu, C.; GAO, W.; LV, F.; Wang, W.; Lu, J.; Zhang, G.; Chen, Y. Research and simulation of LEO-based navigation augmentation. Sci. Sin. Phys. Mech. Astron. 2021, 51, 019506. [Google Scholar] [CrossRef]
- Murata, M.; Akiyama, K.; Kogure, S. Impact of Signal-in-Space Error on LEO PNT Augmented PPP Convergence. In Proceedings of the 2024 International Technical Meeting of The Institute of Navigation, Long Beach, CA, USA, 23–25 January 2024; pp. 692–701. [Google Scholar]
- Walter, T.; Blanch, J.; Gunning, K.; Joerger, M.; Pervan, B. Determination of fault probabilities for ARAIM. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 3505–3516. [Google Scholar] [CrossRef]
- Joerger, M.; Pervan, B. Fault detection and exclusion using solution separation and chi-squared ARAIM. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 726–742. [Google Scholar] [CrossRef]
- Joerger, M.; Pervan, B. Multi-constellation ARAIM exploiting satellite motion. Navigation 2020, 67, 235–253. [Google Scholar] [CrossRef]
Parameters | En-Route | Terminal | NPA | APV-I | LPV-200 | CAT-I |
---|---|---|---|---|---|---|
Time To Alert (TTA) | 5 min | 15 s | 10 s | 10 s | 6 s | 6 s |
Horizontal AL (HAL) | 7.4 km | 1.85 km | 556 m | 40 m | 40 m | 40 m |
Vertical AL (VAL) | N/A | N/A | N/A | 50 m | 35 m | 15 m |
Target Integrity Risk (PHMI) | 10−7/h | 10−7/h | 10−7/h | 2 × 10−7/approach | 2 × 10−7/approach | 2 × 10−7/approach |
Parameters | Description |
---|---|
SISMA | The signal-in-space (SIS) monitoring accuracy, which describes the errors in satellite orbits and satellite clock offsets. |
SISA | The SIS accuracy, which describes the predictive accuracy of the orbital parameters and clock correction parameters in the broadcast message. |
SIF | The signal integrity flag, which represents whether the signal is healthy. |
AIF | The accuracy integrity flag, which represents whether the SISMA value is valid. |
DIF | The data integrity flag, which represents whether the error of the broadcasted message parameters exceeds the predicted accuracy. |
Parameters | Content |
---|---|
Correction parameters | Fast Corrections, Long-Term Satellite Error Corrections, Mixed Fast Corrections, and Ionospheric Delay Corrections |
Accuracy parameters | User Differential Range Error (UDRE), Grid Ionospheric Vertical Error (GIVE), and Clock Ephemeris Covariance Matrix Message |
Degradation parameters | Fast Correction Degradation Factor and Degradation Parameters |
Constellation | Type | Accuracy Parameters | Health Indicators |
---|---|---|---|
GPS | LNAV | User Range Accuracy (URA) (4 bits) | Alert Flag (AF) (1 bit), SV Health (6 + 8 bits), Integrity Status Flag (ISF) (1 bit), and Anti-Spoof (A-S) Flag (1 bit) |
CNAV | URA (4 bits) and Integrity-Assured URA (IAURA) | AF (1 bit), ISF (1 bit), and Signal Health (L1/L2/L5) (3 bits) | |
Galileo | F/NAV | Signal-in-Space Accuracy (SISA) (8 bits) | E5a Signal Health Status (2 bits) and E5a Data Validity Status (1 bit) |
I/NAV | Not Broadcast Yet | Not Yet Broadcasted | |
GLONASS | CDMA | Ephemeris (5 bits) and Clock Bias (5 bits) Accuracy Factors | Signal Health and Data Validity Attributes |
Constellation | SISRE Accuracy | Satellite Fault Rate | Constellation Fault Rate | Continuity Risk | Availability |
---|---|---|---|---|---|
GPS | 30 m (any satellite, global average, 99.94%); 30 m (any satellite, worst position, 99.79%) | 1 × 10−5/h | 1 × 10−8/h | 2 × 10−4/h | 0.957 |
Galileo | 10 m (any satellite, global average, 99.9%); 20 m (any satellite, worst position, 99.9%) | 3 × 10−5/h | 2 × 10−4/h | / | 0.920 |
GLONASS | 18 m (any satellite, global average, 99.37%); 18 m (any satellite, worst position, 99.14%) | 1 × 10−4/h | 1 × 10−4/h | 2 × 10−3/h | 0.950 |
System | Correction Parameters | Accuracy Parameters | Degradation Parameters |
---|---|---|---|
WAAS | Fast Corrections, Long-Term Corrections, Mixed Corrections, and Ionospheric Delay Corrections | UDRE, GIVE, and Clock Ephemeris Covariance Matrix Message | Fast Correction Degradation Factor |
EGNOS | Fast Corrections, Long-Term Corrections, Mixed Corrections, and Ionospheric Delay Corrections | UDRE and GIVE | Fast Correction Degradation Factor and Degradation Parameters |
SDCM | Fast Corrections, Long-Term Corrections, Mixed Corrections, and Ionospheric Delay Corrections | UDRE, GIVE, and Clock Ephemeris Covariance Matrix Message | Fast Correction Degradation Factor and Degradation Parameters |
System | Satellite Type | PRN Code | Satellite Position | Certified Service Level |
---|---|---|---|---|
WAAS | Eutelsat 117 West B | 131 | 117°W | Single-Frequency LPV-200 |
SES-15 | 133 | 129°W | ||
Intelsat Galaxy 30 | 135 | 125°W | ||
EGNOS | ASTRA 5B | 123 | 31.5°E | Single-Frequency NPA |
INMARSAT 4F2 | 126 | 63.9°E | ||
HOTBIRD 13G | 136 | 5°E | ||
SDCM | Luch-5B | 125 | 16°W | Not Certified |
Luch-5V | 140 | 95°E | ||
Luch-5A | 141 | 167°E |
Inclined Orbit | Polar Near-Orbit | Total Number of Satellites | ||||||
---|---|---|---|---|---|---|---|---|
Inclination | Altitude | Number of Orbital Planes | Number of Satellites per Plane | Inclination | Altitude | Number of Orbital Planes | Number of Satellites per Plane | |
50° | 1150 km | 8 | 12 | 86.5° | 1175 km | 6 | 10 | 156 |
Number of Satellites That Track the Same GNSS Satellite from the Constellation Below | Minimum | Average | Maximum |
---|---|---|---|
BDS-3 | 15 | 18.2 | 21 |
GPS | 13 | 16.5 | 18 |
Constellations | BDS-3 | GPS |
---|---|---|
User Range Accuracy (URA) | 2 m | 1 m |
User Range Error (URE) | URE = 2/3 × URA | |
Satellite Fault Rate (Rsat) | 1 × 10−5/h | 1 × 10−5/h |
Average Duration of Satellite Fault (MTTNsat) | 1 h | 1 h |
Satellite Fault Probability (Psat) | 1 × 10−5 | 1 × 10−5 |
Constellation Fault Rate (Rconst) | 6 × 10−5/h | 1 × 10−9/h |
Average Duration of Constellation Fault (MTTNconst) | 1 h | 10 h |
Constellation Fault Probability | 6 × 10−5 | 1 × 10−8 |
User Range Accuracy, URA | 0.3 m | |
---|---|---|
User Range Error, URE | URE = 2/3 × URA | |
Satellite Fault Probability (Psat, LEO) and Constellation Fault Probability (Pconst, LEO) | Case 1 | Psat, LEO = 1 × 10−5, Pconst, LEO = 1 × 10−5 |
Case 2 | Psat, LEO = 1 × 10−4, Pconst, LEO = 1 × 10−4 | |
Case 3 | Psat, LEO = 1 × 10−4, Pconst, LEO = 1 × 10−3 | |
Case 4 | Psat, LEO = 1 × 10−3, Pconst, LEO = 1 × 10−3 | |
Case 5 | Psat, LEO = 1 × 10−3, Pconst, LEO = 1 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, W.; Chen, L.; Lv, F.; Zhan, X.; Chen, L.; Liu, Y.; Dai, Y.; Jin, Y. Initial Design for Next-Generation BeiDou Integrity Subsystem: Space–Ground Integrated Integrity Monitoring. Remote Sens. 2024, 16, 4333. https://doi.org/10.3390/rs16224333
Gao W, Chen L, Lv F, Zhan X, Chen L, Liu Y, Dai Y, Jin Y. Initial Design for Next-Generation BeiDou Integrity Subsystem: Space–Ground Integrated Integrity Monitoring. Remote Sensing. 2024; 16(22):4333. https://doi.org/10.3390/rs16224333
Chicago/Turabian StyleGao, Weiguang, Lei Chen, Feiren Lv, Xingqun Zhan, Lin Chen, Yuqi Liu, Yongshan Dai, and Yundi Jin. 2024. "Initial Design for Next-Generation BeiDou Integrity Subsystem: Space–Ground Integrated Integrity Monitoring" Remote Sensing 16, no. 22: 4333. https://doi.org/10.3390/rs16224333
APA StyleGao, W., Chen, L., Lv, F., Zhan, X., Chen, L., Liu, Y., Dai, Y., & Jin, Y. (2024). Initial Design for Next-Generation BeiDou Integrity Subsystem: Space–Ground Integrated Integrity Monitoring. Remote Sensing, 16(22), 4333. https://doi.org/10.3390/rs16224333