The Performance of GPM IMERG Product Validated on Hourly Observations over Land Areas of Northern Hemisphere
Abstract
:1. Introduction
2. Materials and Methods
2.1. Precipitation Data
2.1.1. Integrated Surface Database
2.1.2. Hourly Precipitation Observations from National Surface Stations in China
2.1.3. U.S. Climate Reference Network
2.1.4. IMERG Precipitation Data
2.2. Methods of Analysis
2.2.1. Data Processing
2.2.2. Statistical Indicators
3. Results
3.1. Spatial Patterns of IMERG Precipitation Data and Gauge Observations
3.2. Analysis of Errors in IMERG Precipitation Data
3.3. Validating the Quality of IMERG Data Based on Diurnal Variations
3.4. Validation of IMERG Data Quality Based on Interannual Variability
4. Discussion
4.1. Superiority of IMERG Product
4.2. Discrepancies in Precipitation Frequency and Intensity
4.3. Effects of Monitoring Station Density
4.4. Effects of Reference Value
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kidd, C.; Huffman, G.; Maggioni, V.; Chambon, P.; Oki, R. The Global Satellite Precipitation Constellation: Current status and future requirements. Bull. Am. Meteorol. Soc. 2021, 102, E1844–E1861. [Google Scholar] [CrossRef]
- Xie, P.; Xiong, A. A conceptual model for constructing high-resolution gauge-satellite merged precipitation analyses. J. Geophys. Res. -Atmos. 2011, 116, D21106. [Google Scholar] [CrossRef]
- Kidd, C.; Levizzani, V. Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 1109–1116. [Google Scholar] [CrossRef]
- Fu, Y.; Jiang, S.; Mao, Y.; Wu, G. Urbanization reshapes extreme precipitation metrics in typical urban agglomerations of Eastern China. Atmos. Res. 2024, 300, 107253. [Google Scholar] [CrossRef]
- Lin, M.; Huybers, P. If Rain Falls in India and No One Reports It, Are Historical Trends in Monsoon Extremes Biased? Geophys. Res. Lett. 2019, 46, 1681–1689. [Google Scholar] [CrossRef]
- Maggioni, V.; Meyers, P.C.; Robinson, M.D. A Review of Merged High-Resolution Satellite Precipitation Product Accuracy during the Tropical Rainfall Measuring Mission (TRMM) Era. J. Hydrometeorol. 2016, 17, 1101–1117. [Google Scholar] [CrossRef]
- Tang, G.; Clark, M.P.; Papalexiou, S.M.; Ma, Z.; Hong, Y. Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens. Environ. 2020, 240, 111697. [Google Scholar] [CrossRef]
- Adler, R.F.; Gu, G.; Sapiano, M.; Wang, J.J.; Huffman, G.J. Global Precipitation: Means, Variations and Trends During the Satellite Era (1979–2014). Surv. Geophys. 2017, 38, 679–699. [Google Scholar] [CrossRef]
- Sun, Q.H.; Miao, C.Y.; Duan, Q.Y.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef]
- Benitez, V.D.; Forgioni, F.P.; Lovino, M.A.; Sgroi, L.; Doyle, M.E.; Müller, G.V. Capability of satellite data to estimate observed precipitation in southeastern South America. Int. J. Climatol. 2024, 44, 792–811. [Google Scholar] [CrossRef]
- Harrison, L.; Funk, C.; Peterson, P. Identifying changing precipitation extremes in Sub-Saharan Africa with gauge and satellite products. Environ. Res. Lett. 2019, 14, 085007. [Google Scholar] [CrossRef]
- Li, Y.; Guo, B.; Wang, K.; Wu, G.; Shi, C. Performance of TRMM Product in Quantifying Frequency and Intensity of Precipitation during Daytime and Nighttime across China. Remote Sens. 2020, 12, 740. [Google Scholar] [CrossRef]
- Wu, G.; Zhao, R.; Ma, Z.; Shi, C. The hourly precipitation intensity and frequency in the Yarlung Zangbo river basin in China during last decade. Meteorol. Atmos. Phys. 2020, 132, 899–907. [Google Scholar] [CrossRef]
- Zhou, C.G.; Gao, W.; Hu, J.R.; Du, L.M.; Du, L. Capability of IMERG V6 Early, Late, and Final Precipitation Products for Monitoring Extreme Precipitation Events. Remote Sens. 2021, 13, 689. [Google Scholar] [CrossRef]
- Huang, A.M.; Zhao, Y.; Zhou, Y.; Yang, B.; Zhang, L.; Dong, X.; Fang, D.; Wu, Y. Evaluation of multisatellite precipitation products by use of ground-based data over China. J. Geophys. Res.-Atmos. 2016, 121, 10654–10675. [Google Scholar] [CrossRef]
- Li, R.; Wang, K.; Qi, D. Event-Based Evaluation of the GPM Multisatellite Merged Precipitation Product From 2014 to 2018 Over China: Methods and Results. J. Geophys. Res.-Atmos. 2021, 126, e2020JD033692. [Google Scholar] [CrossRef]
- Xu, F.; Guo, B.; Ye, B.; Ye, Q.; Chen, H.; Ju, X.; Guo, J.; Wang, Z. Systematical Evaluation of GPM IMERG and TRMM 3B42V7 Precipitation Products in the Huang-Huai-Hai Plain, China. Remote Sens. 2019, 11, 697. [Google Scholar] [CrossRef]
- Tsitelashvili, N.; Biggs, T.; Mu, Y.; Trapaidze, V. Regional Precipitation Regimes and Evaluation of National Precipitation Datasets Against Satellite-Based Precipitation Estimates, Republic of Georgia. J. Hydrometeorol. 2024, 25, 591–600. [Google Scholar] [CrossRef]
- Li, R.; Guilloteau, C.; Kirstetter, P.E.; Foufoula-Georgiou, E. How well does the IMERG satellite precipitation product capture the timing of precipitation events? J. Hydrol. 2023, 620, 129563. [Google Scholar] [CrossRef]
- Wang, N.; Liu, W.; Sun, F.; Yao, Z.; Wang, H.; Liu, W. Evaluating satellite-based and reanalysis precipitation datasets with gauge-observed data and hydrological modeling in the Xihe River Basin, China. Atmos. Res. 2020, 234, 104746. [Google Scholar] [CrossRef]
- Li, R.; Wang, K.; Qi, D. Validating the Integrated Multisatellite Retrievals for Global Precipitation Measurement in Terms of Diurnal Variability With Hourly Gauge Observations Collected at 50,000 Stations in China. J. Geophys. Res. -Atmos. 2018, 123, 10423–10442. [Google Scholar] [CrossRef]
- Sapiano, M.R.P.; Arkin, P.A. An Intercomparison and Validation of High-Resolution Satellite Precipitation Estimates with 3-Hourly Gauge Data. J. Hydrometeorol. 2009, 10, 149–166. [Google Scholar] [CrossRef]
- Dollan, I.J.; Maina, F.Z.; Kumar, S.V.; Nikolopoulos, E.I.; Maggioni, V. An assessment of gridded precipitation products over High Mountain Asia. J. Hydrol.-Reg. Stud. 2024, 52, 101675. [Google Scholar] [CrossRef]
- McCollum, J.R.; Krajewski, W.F.; Ferraro, R.R.; Ba, M.B. Evaluation of biases of satellite rainfall estimation algorithms over the continental United States. J. Appl. Meteorol. 2002, 41, 1065–1080. [Google Scholar] [CrossRef]
- Ashouri, H.; Sorooshian, S.; Hsu, K.L.; Bosilovich, M.G.; Lee, J.; Wehner, M.F.; Collow, A. Evaluation of NASA’s MERRA Precipitation Product in Reproducing the Observed Trend and Distribution of Extreme Precipitation Events in the United States. J. Hydrometeorol. 2016, 17, 693–711. [Google Scholar] [CrossRef]
- Liu, Z. Comparison of Integrated Multisatellite Retrievals for GPM (IMERG) and TRMM Multisatellite Precipitation Analysis (TMPA) Monthly Precipitation Products: Initial Results. J. Hydrometeorol. 2016, 17, 777–790. [Google Scholar] [CrossRef]
- Romilly, T.G.; Gebremichael, M. Evaluation of satellite rainfall estimates over Ethiopian river basins. Hydrol. Earth Syst. Sci. 2011, 15, 1505–1514. [Google Scholar] [CrossRef]
- Hosseini-Moghari, S.-M.; Tang, Q. Can IMERG Data Capture the Scaling of Precipitation Extremes with Temperature at Different Time Scales? Geophys. Res. Lett. 2022, 49, e2021GL096392. [Google Scholar] [CrossRef]
- Kubota, T.; Ushio, T.; Shige, S.; Kida, S.; Kachi, M.; Okamoto, K. Verification of High-Resolution Satellite-Based Rainfall Estimates Around Japan Using a Gauge-Calibrated Ground-Radar Dataset. J. Meteorol. Soc. Jpn. 2009, 87A, 203–222. [Google Scholar] [CrossRef]
- Duncan, J.M.A.; Biggs, E.M. Assessing the accuracy and applied use of satellite-derived precipitation estimates over Nepal. Appl. Geogr. 2012, 34, 626–638. [Google Scholar] [CrossRef]
- Rachdane, M.; El Khalki, E.; Saidi, M.E.; Nehmadou, M.; Ahbari, A.; Tramblay, Y. Comparison of High-Resolution Satellite Precipitation Products in Sub-Saharan Morocco. Water 2022, 14, 3336. [Google Scholar] [CrossRef]
- Li, X.Y.; Sungmin, O.; Wang, N.; Liu, L.C.; Huang, Y.Z. Evaluation of the GPM IMERG V06 products for light rain over Mainland China. Atmos. Res. 2021, 253, 105510. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Tan, J.; Xie, P.P. NASA Global Precipitation Measurement (GPM) Integrated Multi-SatellitE Retrievals for GPM (IMERG) Algorithm Theoretical Basis Document (ATBD) Version 06. 2020. Available online: https://gpm.nasa.gov/sites/default/files/2020-05/IMERG_ATBD_V06.3.pdf (accessed on 27 September 2024).
- Wang, Y.; Miao, C.; Zhao, X.; Zhang, Q.; Su, J. Evaluation of the GPM IMERG product at the hourly timescale over China. Atmos. Res. 2023, 285, 106656. [Google Scholar] [CrossRef]
- Pradhan, R.K.; Markonis, Y.; Godoy, M.R.V.; Villalba-Pradas, A.; Andreadis, K.M.; Nikolopoulos, E.I.; Papalexiou, S.M.; Rahim, A.; Tapiador, F.J.; Hanel, M. Review of GPM IMERG performance: A global perspective. Remote Sens. Environ. 2022, 268, 112754. [Google Scholar] [CrossRef]
- Lv, P.F.; Hao, H.F.; Wu, G.C. Differences in Global Precipitation Regimes Between Land and Ocean Areas Based on the GPM IMERG Product. Remote Sens. 2023, 15, 4179. [Google Scholar] [CrossRef]
- Jiang, S.H.; Wei, L.Y.; Ren, L.L.; Zhang, L.Q.; Wang, M.H.; Cui, H. Evaluation of IMERG, TMPA, ERA5, and CPC precipitation products over mainland China: Spatiotemporal patterns and extremes. Water Sci. Eng. 2023, 16, 45–56. [Google Scholar] [CrossRef]
- Li, R.Z.; Qi, D.; Zhang, Y.; Wang, K.C. A new pixel-to-object method for evaluating the capability of the GPM IMERG product to quantify precipitation systems. J. Hydrol. 2022, 613, 128476. [Google Scholar] [CrossRef]
- Xu, R.; Tian, F.Q.; Yang, L.; Hu, H.C.; Lu, H.; Hou, A.Z. Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network. J. Geophys. Res.-Atmos. 2017, 122, 910–924. [Google Scholar] [CrossRef]
- He, B.; Huang, L.; Wang, Q. Precipitation deficits increase high diurnal temperature range extremes. Sci. Rep. 2015, 5, srep12004. [Google Scholar] [CrossRef]
- Dai, A. Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Clim. 2001, 14, 1112–1128. [Google Scholar] [CrossRef]
- Li, D.; Qi, Y.; Chen, D. Changes in rain and snow over the Tibetan Plateau based on IMERG and Ground-based observation. J. Hydrol. 2022, 606, 127400. [Google Scholar] [CrossRef]
- Gentilucci, M.; Barbieri, M.; Pambianchi, G. Reliability of the IMERG product through reference rain gauges in Central Italy. Atmos. Res. 2022, 278, 106340. [Google Scholar] [CrossRef]
- Fang, J.; Yang, W.T.; Luan, Y.B.; Du, J.; Lin, A.W.; Zhao, L. Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China. Atmos. Res. 2019, 223, 24–38. [Google Scholar] [CrossRef]
- Smith, A.; Lott, N.; Vose, R. The Integrated Surface Database Recent Developments and Partnerships. Bull. Am. Meteorol. Soc. 2011, 92, 704–708. [Google Scholar] [CrossRef]
- Wu, G.; Lv, P.; Mao, Y.; Wang, K. ERA5 Precipitation over China: Better Relative Hourly and Daily Distribution than Absolute Values. J. Clim. 2024, 37, 1581–1596. [Google Scholar] [CrossRef]
- Qin, S.; Wang, K.; Wu, G.; Ma, Z. Variability of hourly precipitation during the warm season over eastern China using gauge observations and ERA5. Atmos. Res. 2021, 264, 105872. [Google Scholar] [CrossRef]
- Wu, G.; Qin, S.; Mao, Y.; Ma, Z.; Shi, C. Validation of Precipitation Events in ERA5 to Gauge Observations during Warm Seasons over Eastern China. J. Hydrometeorol. 2022, 23, 807–822. [Google Scholar] [CrossRef]
- Liu, X.; Ren, Z. Progress in quality control of surface meteorological data. Meteorol. Sci. Technol. 2005, 33, 199–203. (In Chinese) [Google Scholar]
- Ren, Z.; Xiong, A. Operational system development on three-step quality control of observations from AWS. Meteorol. Mon. 2007, 33, 19–24. (In Chinese) [Google Scholar]
- Diamond, H.J.; Karl, T.R.; Palecki, M.A.; Baker, C.B.; Bell, J.E.; Leeper, R.D.; Easterling, D.R.; Lawrimore, J.H.; Meyers, T.P.; Helfert, M.R.; et al. U.S. climate reference network after one decade of operations status and assessment. Bull. Am. Meteorol. Soc. 2013, 94, 485–498. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, R.; Wang, K. Climatology and changes in internal intensity distributions of global precipitation systems over 2001–2020 based on IMERG. J. Hydrol. 2023, 620, 129386. [Google Scholar] [CrossRef]
- Badger, A.M.; Peters-Lidard, C.; Kirschbaum, D.B. A Global Evaluation of IMERG Precipitation Occurrence Using SMAP Detected Soil Moisture Change. J. Hydrometeorol. 2022, 23, 117–128. [Google Scholar]
- Tan, J.; Petersen, W.A.; Tokay, A. A Novel Approach to Identify Sources of Errors in IMERG for GPM Ground Validation. J. Hydrometeorol. 2016, 17, 2477–2491. [Google Scholar] [CrossRef]
- Freitas, E.d.S.; Coelho, V.H.R.; Xuan, Y.Q.; Melo, D.; Gadelha, A.N.; Santos, E.A.; Galvao, C.D.; Ramos, G.M.; Barbosa, L.R.; Huffman, G.J.; et al. The performance of the IMERG satellite-based product in identifying sub-daily rainfall events and their properties. J. Hydrol. 2020, 589, 125128. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Zhang, Y. How Often Does It Really Rain? Bull. Am. Meteorol. Soc. 2018, 99, 289–298. [Google Scholar] [CrossRef]
- Yong, B.; Ren, L.L.; Hong, Y.; Wang, J.H.; Gourley, J.J.; Jiang, S.H. Chen, X.; Wang, W. Hydrologic evaluation of Multisatellite Precipitation Analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe basin, China. Water Resour. Res. 2010, 46, 759–768. [Google Scholar] [CrossRef]
- Tang, G.Q.; Ma, Y.Z.; Long, D.; Zhong, L.Z.; Hong, Y. Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. J. Hydrol. 2016, 533, 152–167. [Google Scholar] [CrossRef]
- Prakash, S.; Mitra, A.K.; AghaKouchak, A.; Liu, Z.; Norouzi, H.; Pai, D.S. A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region. J. Hydrol. 2018, 556, 865–876. [Google Scholar] [CrossRef]
- Ebert, E.E.; Janowiak, J.E.; Kidd, C. Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Am. Meteorol. Soc. 2007, 88, 47–64. [Google Scholar] [CrossRef]
- Gerapetritis, H.; Pelissier, J.M. The critical success index and warning strategy. In Proceedings of the 17th Conference on Probability and Statistics in Atmospheric Sciences, Seattle, WA, USA, 11–15 January 2004; American Meteorological Society: Seattle, WA, USA, 2004. [Google Scholar]
- Warner, M.D.; Mass, C.F.; Salathé, E.P. Wintertime Extreme Precipitation Events along the Pacific Northwest Coast: Climatology and Synoptic Evolution. Mon. Weather Rev. 2012, 140, 2021–2043. [Google Scholar] [CrossRef]
- Lee, S.H.; Polvani, L.M.; Guan, B. Modulation of Atmospheric Rivers by the Arctic Stratospheric Polar Vortex. Geophys. Res. Lett. 2022, 49, e2022GL100381. [Google Scholar] [CrossRef]
- Wang, J.X.; Petersen, W.A.; Wolff, D.B. Validation of Satellite-Based Precipitation Products from TRMM to GPM. Remote Sens. 2021, 13, 1745. [Google Scholar] [CrossRef]
- Han, X.; Xue, H.; Zhao, C.; Lu, D. The roles of convective and stratiform precipitation in the observed precipitation trends in Northwest China during 1961-2000. Atmos. Res. 2016, 169, 139–146. [Google Scholar] [CrossRef]
- He, Z.; Zhang, Q.; Sun, J. The Contribution of Mesoscale Convective Systems to Intense Hourly Precipitation Events During the Warm Seasons over Central East China. Adv. Atmos. Sci. 2016, 33, 1233–1239. [Google Scholar] [CrossRef]
- Derin, Y.; Kirstetter, P.E. Evaluation of IMERG Over CONUS Complex Terrain Using Environmental Variables. Geophys. Res. Lett. 2022, 49, e2022GL100186. [Google Scholar] [CrossRef]
- Zhou, T.; Yu, R.; Chen, H.; Dai, A.; Pan, Y. Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations. J. Clim. 2008, 21, 3997–4010. [Google Scholar] [CrossRef]
- Ramadhan, R.; Yusnaini, H.; Ningsih, A.P.; Hashiguchi, H.; Shimomai, T.; Vonnisa, M.; Ulfah, S.; Suryanto, W.; Sholihun, S. Ground validation of GPM IMERG-F precipitation products with the point rain gauge records on the extreme rainfall over a mountainous area of Sumatra Island. J. Penelit. Pendidik. IPA 2022, 8, 163–170. [Google Scholar] [CrossRef]
- Kidd, C.; Becker, A.; Huffman, G.J.; Muller, C.L.; Joe, P.; Skofronick-Jackson, G.; Kirschbaum, D.B. So, How Much of the Earth’s Surface Is Covered by Rain Gauges? Bull. Am. Meteorol. Soc. 2017, 98, 69–78. [Google Scholar] [CrossRef]
- Cattoen, C.; Robertson, D.E.; Bennett, J.C.; Wang, Q.J.; Carey-Smith, T.K. Calibrating Hourly Precipitation Forecasts with Daily Observations. J. Hydrometeorol. 2020, 21, 1655–1673. [Google Scholar] [CrossRef]
- Zheng, Y.G.; Gong, Y.D.; Chen, J.; Tian, F.Y. Warm-Season Diurnal Variations of Total, Stratiform, Convective, and Extreme Hourly Precipitation over Central and Eastern China. Adv. Atmos. Sci. 2019, 36, 143–159. [Google Scholar] [CrossRef]
- Guerreiro, S.B.; Fowler, H.J.; Barbero, R.; Westra, S.; Lenderink, G.; Blenkinsop, S.; Lewis, E.; Li, X.F. Detection of continental-scale intensification of hourly rainfall extremes. Nat. Clim. Change 2018, 8, 803–807. [Google Scholar] [CrossRef]
- Marelle, L.; Myhre, G.; Hodnebrog, O.; Sillmann, J.; Samset, B.H. The Changing Seasonality of Extreme Daily Precipitation. Geophys. Res. Lett. 2018, 45, 11352–11360. [Google Scholar] [CrossRef]
- Silva, F.D.D.; da Costa, C.P.W.; Franco, V.D.; Gomes, H.B.; da Silva, M.C.L.; Vanderlei, M.H.G.D.; Costa, R.L.; da Rocha, R.L.; Cabral, J.B.; dos Reis, J.S.; et al. Intercomparison of Different Sources of Precipitation Data in the Brazilian Legal Amazon. Climate 2023, 11, 241. [Google Scholar] [CrossRef]
- Merino, A.; Garcia-Ortega, E.; Navarro, A.; Fernandez-Gonzalez, S.; Tapiador, F.J.; Sanchez, J.L. Evaluation of gridded rain-gauge-based precipitation datasets: Impact of station density, spatial resolution, altitude gradient and climate. Int. J. Climatol. 2021, 41, 3027–3043. [Google Scholar] [CrossRef]
- Contractor, S.; Donat, M.G.; Alexander, L.V. Changes in observed daily precipitation over global land areas since 1950. J. Clim. 2021, 34, 3–19. [Google Scholar] [CrossRef]
- Polade, S.D.; Pierce, D.W.; Cayan, D.R.; Gershunov, A.; Dettinger, M.D. The key role of dry days in changing regional climate and precipitation regimes. Sci. Rep. 2014, 4, 4364. [Google Scholar] [CrossRef]
- Fu, Y.Y.; Mao, Y.A.; Wu, G.C. Event-based evaluation of urbanization impact on precipitation during the 1978–2021 warm season over eastern China. Urban Clim. 2024, 56, 102048. [Google Scholar] [CrossRef]
Metric | Formula | Optimal Value | Reference |
---|---|---|---|
Correlation Coefficient | 1 | Yong et al., 2010 [57] | |
Mean Absolute Error | 0 | Yong et al., 2010 [57] | |
Root Mean Square Error | 0 | Yong et al., 2010 [57] | |
Relative Bias | 0 | Yong et al., 2010 [57] | |
Probability of Detection | 1 | Ebert et al., 2007 [60] | |
False Alarm Ratio | 0 | Ebert et al., 2007 [60] | |
Critical Success Index | 1 | Gerapetritis and Pelissier, 2004 [61] |
North America | Europe | North Asia | South Asia | |
---|---|---|---|---|
CC | 0.367 * | 0.308 * | 0.373 * | 0.350 * |
MAE (mm/h) | 0.131 | 0.155 | 0.115 | 0.223 |
RMSE (mm/h) | 0.880 | 0.761 | 0.842 | 1.291 |
RB | 22.7% | 27.7% | 28.0% | 12.7% |
POD | 49.2% | 41.9% | 51.0% | 49.3% |
FAR | 69.6% | 54.8% | 62.6% | 55.1% |
CSI | 22.7% | 27.4% | 27.2% | 30.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, P.; Wu, G. The Performance of GPM IMERG Product Validated on Hourly Observations over Land Areas of Northern Hemisphere. Remote Sens. 2024, 16, 4334. https://doi.org/10.3390/rs16224334
Lv P, Wu G. The Performance of GPM IMERG Product Validated on Hourly Observations over Land Areas of Northern Hemisphere. Remote Sensing. 2024; 16(22):4334. https://doi.org/10.3390/rs16224334
Chicago/Turabian StyleLv, Pengfei, and Guocan Wu. 2024. "The Performance of GPM IMERG Product Validated on Hourly Observations over Land Areas of Northern Hemisphere" Remote Sensing 16, no. 22: 4334. https://doi.org/10.3390/rs16224334
APA StyleLv, P., & Wu, G. (2024). The Performance of GPM IMERG Product Validated on Hourly Observations over Land Areas of Northern Hemisphere. Remote Sensing, 16(22), 4334. https://doi.org/10.3390/rs16224334