Maturity Prediction in Soybean Breeding Using Aerial Images and the Random Forest Machine Learning Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Data Collection
2.3. Image Processing
2.4. Data Analysis Methods
2.4.1. Data Preparation and Prediction Model
2.4.2. Resampling Methods and Hyperparameter Tuning
2.4.3. Predictions Using Categorical or Numerical Data for the Response Variable
2.4.4. Predictions Using Multispectral Images
2.4.5. Impact on Predictions by Including Classification Variables in the Model, Plant Rows That Mature After the Last Drone Flight, or Redundant Information from Flights or Images
2.4.6. Are Models Reliable When Tested in an Independent Environment?
3. Results
3.1. Predictions Using Three Resampling Methods with Categorical or Numerical Data
3.2. Predictions Including Classification Variables Using RGB or Multispectral Images
3.3. Predictions Using Plant Rows That Mature Before or After the Last Drone Flight
3.4. Predictions After Discarding Redundant Information Using MAS and PCA
3.5. Reliability of Models When Tested in an Independent Environment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koester, R.P.; Skoneczka, J.A.; Cary, T.R.; Diers, B.W.; Ainsworth, E.A. Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies. J. Exp. Bot. 2014, 65, 3311–3321. [Google Scholar] [CrossRef] [PubMed]
- Fehr, W.R.; Caviness, C.E. Stages of Soybean Development; Iowa Agricultural and Home Economics Experiment Station Publications; Special Report; Iowa State University Digital Repository: Ames, IA, USA, 1977; Volume 87, pp. 1–12. Available online: https://dr.lib.iastate.edu/handle/20.500.12876/90239 (accessed on 3 November 2024).
- Singh, A.K.; Singh, A.; Sarkar, S.; Ganapathysubramanian, B.; Schapaugh, W.; Miguez, F.E.; Carley, C.N.; Carroll, M.E.; Chiozza, M.V.; Chiteri, K.O.; et al. High-throughput phenotyping in soybean. In High-Throughput Crop Phenotyping; Zhou, J., Nguyen, H.T., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 129–163. [Google Scholar] [CrossRef]
- Edwards, D.; Batley, J. Plant bioinformatics: From genome to phenome. Trends Biotechnol. 2004, 22, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, R.; Sonah, H.; Patil, G.; Chen, W.; Prince, S.; Mutava, R.; Vuong, T.; Valliyodan, B.; Nguyen, H.T. Integrating omic approaches for abiotic stress tolerance in soybean. Front. Plant Sci. 2014, 5, 00244. [Google Scholar] [CrossRef] [PubMed]
- Krause, M.R.; Mondal, S.; Crossa, J.; Singh, R.P.; Pinto, F.; Haghighattalab, A.; Shrestha, S.; Rutkoski, J.; Gore, M.A.; Sorrells, M.E.; et al. Aerial high-throughput phenotyping enables indirect selection for grain yield at the early generation, seed-limited stages in breeding programs. Crop Sci. 2020, 60, 3096–3114. [Google Scholar] [CrossRef]
- Araus, J.L.; Kefauver, S.C.; Zaman-Allah, M.; Olsen, M.S.; Cairns, J.E. Translating high-throughput phenotyping into genetic gain. Trends Plant Sci. 2018, 23, 451–466. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Eftekhari, M.; Ma, C.; Orlov, Y.L. Editorial: Applications of artificial intelligence, machine learning, and deep learning in plant breeding. Front. Plant Sci. 2024, 15, 1420938. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Lee, T.-H.; Ullah, A.; Wang, R. Bootstrap aggregating and Random forest. In Macroeconomic Forecasting in the Era of Big Data; Fuleky, P., Ed.; Serie: Advanced Studies in Theoretical and Applied Econometrics; Springer Nature: Cham, Switzerland, 2020; Volume 52, pp. 389–429. [Google Scholar] [CrossRef]
- Yu, N.; Li, L.; Schmitz, N.; Tian, L.F.; Greenberg, J.A.; Diers, B.W. Development of methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle based platform. Remote Sens. Environ. 2016, 187, 91–101. [Google Scholar] [CrossRef]
- Hu, J.; Yue, J.; Xu, X.; Han, S.; Sun, T.; Liu, Y.; Feng, H.; Qiao, H. UAV-based remote sensing for soybean FVC, LCC, and maturity monitoring. Agriculture 2023, 13, 692. [Google Scholar] [CrossRef]
- Zhang, S.; Feng, H.; Han, S.; Shi, Z.; Xu, H.; Liu, Y.; Feng, H.; Zhou, C.; Yue, J. Monitoring of soybean maturity using UAV remote sensing and deep learning. Agriculture 2023, 13, 110. [Google Scholar] [CrossRef]
- Trevisan, R.; Pérez, O.; Schmitz, N.; Diers, B.; Martin, N. High-throughput phenotyping of soybean maturity using time series UAV imagery and convolutional neural networks. Remote Sens. 2020, 12, 3617. [Google Scholar] [CrossRef]
- Moeinizade, S.; Pham, H.; Han, Y.; Dobbels, A.; Hu, G. An applied deep learning approach for estimating soybean relative maturity from UAV imagery to aid plant breeding decisions. Mach. Learn. Appl. 2022, 7, 100233. [Google Scholar] [CrossRef]
- Christenson, B.S.; Schapaugh, W.T.; An, N.; Price, K.P.; Prasad, V.; Fritz, A.K. Predicting soybean relative maturity and seed yield using canopy reflectance. Crop Sci. 2016, 56, 625–643. [Google Scholar] [CrossRef]
- Zhou, J.; Yungbluth, D.; Vong, C.N.; Scaboo, A.; Zhou, J. Estimation of the maturity date of soybean breeding lines using UAV-based multispectral imagery. Remote Sens. 2019, 11, 2075. [Google Scholar] [CrossRef]
- Lindsey, A.J.; Craft, J.C.; Barker, D.J. Modeling canopy senescence to calculate soybean maturity date using NDVI. Crop Sci. 2020, 60, 172–180. [Google Scholar] [CrossRef]
- Yuan, W.; Wijewardane, N.K.; Jenkins, S.; Bai, G.; Ge, Y.; Graef, G.L. Early prediction of soybean traits through color and texture features of canopy RGB imagery. Sci. Rep. 2019, 9, 14089. [Google Scholar] [CrossRef]
- Narayanan, B.; Floyd, B.; Tu, K.; Ries, L.; Hausmann, N. Improving soybean breeding using UAS measurements of physiological maturity. In Proceedings of the Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping IV, Baltimore, MD, USA, 15–16 April 2019; Thomasson, J.A., McKee, M., Moorhead, R.J., Eds.; SPIE: Bellingham, WA, USA, 2019; Volume 11008. [Google Scholar] [CrossRef]
- Volpato, L.; Dobbels, A.; Borem, A.; Lorenz, A.J. Optimization of temporal UAS-based imagery analysis to estimate plant maturity date for soybean breeding. Plant Phenome J. 2021, 4, e20018. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Larrinaga, A.R.; Brotons, L. Greenness indices from a low-cost UAV imagery as tools for monitoring post-fire forest recovery. Drones 2019, 3, 6. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, C. Convolutional neural networks for image-based high-throughput plant phenotyping: A Review. Plant Phenomics 2020, 2020, 4152816. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Flores, P.; Igathinathane, C.; Naik, D.L.; Kiran, R.; Ransom, J.K. Wheat lodging detection from UAS imagery using machine learning algorithms. Remote Sens. 2020, 12, 1838. [Google Scholar] [CrossRef]
- Teodoro, P.E.; Teodoro, L.P.R.; Baio, F.H.R.; da Silva Junior, C.A.; dos Santos, R.G.; Ramos, A.P.M.; Pinheiro, M.M.F.; Osco, L.P.; Gonçalves, W.N.; Carneiro, A.M.; et al. Predicting days to maturity, plant height, and grain yield in soybean: A machine and deep learning approach using multispectral data. Remote Sens. 2021, 13, 4632. [Google Scholar] [CrossRef]
- Burggraaff, O.; Schmidt, N.; Zamorano, J.; Pauly, K.; Pascual, S.; Tapia, C.; Spyrakos, E.; Snik, F. Standardized spectral and radiometric calibration of consumer cameras. Opt. Express 2019, 27, 19075. [Google Scholar] [CrossRef]
- Google. Google Satellite [Map Tiles]; Google Maps. 2024. Available online: https://www.google.cn/maps/vt?lyrs=s@189&gl=cn&x={x}&y={y}&z={z} (accessed on 3 November 2024).
- Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 2018, 10, 439–446. [Google Scholar] [CrossRef]
- Bivand, R.; Keitt, T.; Rowlingson, B.; Pebesma, E.; Sumner, M.; Hijmans, R.; Baston, D.; Rouault, E.; Warmerdam, F.; Ooms, J.; et al. Package ‘Rgdal’. Bindings for the Geospatial Data Abstraction Library. 2023. Available online: https://cran.r-project.org/web/packages/rgdal/index.html (accessed on 6 February 2023).
- Hijmans, R.J.; Etten, J.V.; Sumner, M.; Cheng, J.; Baston, D.; Bevan, A.; Bivand, R.; Busetto, L.; Canty, M.; Fasoli, B.; et al. Package ‘Raster’. Geographic Data Analysis and Modeling. 2023. Available online: https://cran.r-project.org/web/packages/raster/index.html (accessed on 7 February 2023).
- Ross, N.; Sumner, M.; Ooms, J.; Stevens, A.; EcoHealth Alliance; USAID Predict. Package ‘Fasterize’. Fast Polygon to Raster Conversion. 2022. Available online: https://cran.r-project.org/web/packages/fasterize/index.html (accessed on 7 February 2023).
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; R Core Team; et al. Package ‘Caret’. Classification and Regression Training. 2022. Available online: https://cran.r-project.org/web/packages/caret/index.html (accessed on 13 February 2023).
- Breiman, L.; Cutler, A. Package ‘randomForest’. Breiman and Cutler’s Random Forests for Classification and Regression. 2022. Available online: https://cran.r-project.org/web/packages/randomForest/index.html (accessed on 10 February 2023).
- Friedman, J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- McCree, K.J. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric. Meteorol. 1971, 9, 191–216. [Google Scholar] [CrossRef]
- Suryanarayana, T.M.V.; Mistry, P.B. Principal Component Regression for Crop Yield Estimation; Serie: SpringerBriefs in Applied Sciences and Technology; Springer Nature: Singapore, 2016. [Google Scholar] [CrossRef]
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
2018 | 2019 | 2020 | |
---|---|---|---|
Drone | Phantom 4 Pro (DJI, Shenzhen, China) | Inspire 2 (DJI, Shenzhen, China) | |
Camera model | Built-in FC6310 (DJI, Shenzhen, China) | Altum DJI SkyPort kit (Micasense, Seattle, WA, USA) | |
Spectral bands | RGB (red, green, blue) | R, G, B, red edge, and near-infrared | |
Image resolution | 5472 × 3648 pixels | 2064 × 1544 pixels | |
Flight dates 1 | 22 and 28 August, 4, 10, 14, 18, 23, and 26 September | 1, 10, 25, and 30 July, 6, 15, and 28 August, 10, 17, and 24 September | 30 June, 15 July, 4, 18, and 31 August, 10, 14, 22, and 30 September |
Flight heights | ~80 m | ~60 m, and ~40 m (10 and 25 July) | ~40 m |
Plant rows | 9360 | 11,800 | 11,400 |
Plant rows associated with images | 9252 | 11,742 | 11,197 |
Breeding blocks | 5 | 6 | 7 |
Team taking notes in the field | 3 | 5 | 5 |
Ground control points (GCPs) | 18 | 18–17 | 14 |
Aligned images (range per date) | 1141 (114–221) | 3589 (243–570) | 3496 (302–558) |
Orthomosaic resolution range | 2.2–2.5 cm pixel−1 | 1.8–2.7 cm pixel−1 | 1.6–1.9 cm pixel−1 |
Resampling Method | Variable Class | |||||
---|---|---|---|---|---|---|
Categorical 1 | Numerical | |||||
Overall Accuracy (%) | Kappa | R2 | RMSE (±Days) | R2 | RMSE (±Days) | |
10-fold cross-validation (‘cv’) | 41.46 | 0.3633 | 0.8837 | 2.069 | 0.9137 | 1.773 |
Repeated 10-fold cross-validation with three repeats (‘repeatedcv’) | 41.03 | 0.3585 | 0.8830 | 2.077 | 0.9138 | 1.773 |
Out-of-bag bootstrap samples (‘oob’) | 40.21 | 0.3494 | 0.8832 | 2.072 | 0.9132 | 1.778 |
Year 1 | Camera | Explanatory and Classification Variables | ||||
---|---|---|---|---|---|---|
Image Features 2 | Image Features and Breeding Block | Image Features, Breeding Block, and the Individual Who Took the Field Notes | ||||
R2 | RMSE (±Days) | R2 | RMSE (±Days) | |||
2018 | Digital RGB | Red, green, blue | 0.9132 | 1.778 | 0.9141 | 1.767 |
2019 | Multispectral | (Only the bands) red, green, blue | 0.9353 | 1.448 | 0.9380 | 1.417 |
Five bands | 0.9354 | 1.448 | 0.9366 | 1.435 | ||
2020 | Multispectral | (Only the bands) red, green, blue | 0.9049 | 1.370 | 0.9080 | 1.347 |
Five bands | 0.9078 | 1.350 | 0.9111 | 1.325 |
Year 1 | Camera | Image Features 2 | Germplasm Information Including Variables in Common | |||||
---|---|---|---|---|---|---|---|---|
Check Cultivar | Check Cultivar and F4:5 Population | Check Cultivar, F4:5 Population, and Parental Lines | ||||||
R2 | RMSE (±Days) | R2 | RMSE (±Days) | R2 | RMSE (±Days) | |||
2018 | Digital RGB | Red, green, blue | 0.9175 | 1.732 | 0.9191 | 1.714 | 0.9199 | 1.706 |
2019 | Multispectral | (Only the bands) red, green, blue | 0.9380 | 1.417 | 0.9390 | 1.406 | 0.9396 | 1.399 |
Normalized data | 0.9365 | 1.435 | 0.9375 | 1.425 | 0.9398 | 1.397 | ||
2020 | Multispectral | (Only the bands) red, green, blue | 0.9087 | 1.342 | 0.9097 | 1.335 | 0.9107 | 1.327 |
Normalized data | 0.9114 | 1.323 | 0.9121 | 1.317 | 0.9126 | 1.314 |
Principal Component | Eigen- Values | Proportion of Variance | Cumulative Proportion | Principal Component | Eigen- Values | Proportion of Variance | Cumulative Proportion |
---|---|---|---|---|---|---|---|
1 | 18.169 | 0.568 | 0.568 | 17 | 0.072 | 0.002 | 0.994 |
2 | 4.085 | 0.128 | 0.696 | 18 | 0.041 | 0.001 | 0.995 |
3 | 2.873 | 0.090 | 0.785 | 19 | 0.033 | 0.001 | 0.996 |
4 | 1.513 | 0.047 | 0.833 | 20 | 0.027 | 0.001 | 0.997 |
5 | 1.303 | 0.041 | 0.873 | 21 | 0.017 | 0.001 | 0.998 |
6 | 0.875 | 0.027 | 0.901 | 22 | 0.012 | 0.000 | 0.998 |
7 | 0.809 | 0.025 | 0.926 | 23 | 0.011 | 0.000 | 0.999 |
8 | 0.537 | 0.017 | 0.943 | 24 | 0.010 | 0.000 | 0.999 |
9 | 0.433 | 0.014 | 0.956 | 25 | 0.007 | 0.000 | 0.999 |
10 | 0.279 | 0.009 | 0.965 | 26 | 0.007 | 0.000 | 0.999 |
11 | 0.218 | 0.007 | 0.972 | 27 | 0.006 | 0.000 | 0.999 |
12 | 0.191 | 0.006 | 0.978 | 28 | 0.006 | 0.000 | 1.000 |
13 | 0.150 | 0.005 | 0.982 | 29 | 0.004 | 0.000 | 1.000 |
14 | 0.116 | 0.004 | 0.986 | 30 | 0.003 | 0.000 | 1.000 |
15 | 0.103 | 0.003 | 0.989 | 31 | 0.002 | 0.000 | 1.000 |
16 | 0.087 | 0.003 | 0.992 | 32 | 0.002 | 0.000 | 1.000 |
Variable | Loading Scores | Variable | Loading Scores | ||||||
---|---|---|---|---|---|---|---|---|---|
PC1 (0.568) | PC2 (0.128) | PC3 (0.090) | PC4 (0.047) | PC1 (0.568) | PC2 (0.128) | PC3 (0.090) | PC4 (0.047) | ||
22 August R | −0.16 | −0.28 | −0.08 | 0.23 | 14 September R | −0.20 | 0.21 | −0.03 | 0.07 |
22 August G | −0.17 | −0.27 | −0.07 | 0.09 | 14 September G | −0.16 | 0.15 | −0.31 | 0.02 |
22 August B | −0.12 | −0.24 | −0.16 | 0.28 | 14 September B | −0.23 | 0.01 | 0.00 | −0.07 |
22 August ExG | 0.02 | 0.16 | 0.14 | −0.60 | 14 September ExG | 0.19 | −0.08 | −0.31 | −0.04 |
28 August R | −0.19 | −0.23 | 0.01 | −0.07 | 18 September R | −0.20 | 0.13 | −0.13 | 0.06 |
28 August G | −0.19 | −0.17 | 0.03 | −0.19 | 18 September G | −0.19 | 0.01 | −0.25 | −0.07 |
28 August B | −0.16 | −0.19 | −0.11 | 0.02 | 18 September B | −0.23 | 0.02 | 0.01 | −0.02 |
28 August ExG | 0.14 | 0.28 | 0.08 | −0.19 | 18 September ExG | 0.16 | −0.18 | −0.31 | −0.21 |
4 September R | −0.21 | −0.08 | 0.19 | −0.18 | 23 September R | −0.19 | 0.14 | −0.14 | 0.05 |
4 September G | −0.19 | 0.02 | 0.17 | −0.17 | 23 September G | −0.21 | 0.03 | −0.18 | −0.07 |
4 September B | −0.21 | −0.17 | 0.02 | −0.09 | 23 September B | −0.23 | 0.03 | −0.01 | 0.00 |
4 September ExG | 0.20 | 0.17 | −0.15 | 0.10 | 23 September ExG | 0.12 | −0.21 | −0.31 | −0.32 |
10 September R | −0.20 | 0.12 | 0.08 | −0.12 | 26 September R | −0.05 | 0.32 | −0.24 | 0.07 |
10 September G | −0.10 | 0.27 | −0.22 | −0.02 | 26 September G | −0.11 | 0.23 | −0.26 | −0.04 |
10 September B | −0.21 | 0.00 | −0.08 | −0.15 | 26 September B | −0.19 | 0.18 | −0.03 | 0.04 |
10 September ExG | 0.20 | 0.07 | −0.23 | 0.12 | 26 September ExG | 0.11 | −0.20 | −0.29 | −0.33 |
Variable | Correlation Coefficients (r) | Variable | Correlation Coefficients (r) | ||||||
---|---|---|---|---|---|---|---|---|---|
PC1 (0.568) | PC2 (0.128) | PC3 (0.090) | PC4 (0.047) | PC1 (0.568) | PC2 (0.128) | PC3 (0.090) | PC4 (0.047) | ||
22 August R | −0.69 | −0.56 | −0.13 | 0.28 | 14 September R | −0.83 | 0.43 | −0.05 | 0.08 |
22 August G | −0.73 | −0.54 | −0.12 | 0.11 | 14 September G | −0.68 | 0.30 | −0.53 | 0.02 |
22 August B | −0.52 | −0.48 | −0.27 | 0.34 | 14 September B | −0.97 | 0.03 | 0.00 | −0.08 |
22 August ExG | 0.07 | 0.32 | 0.23 | −0.74 | 14 September ExG | 0.79 | −0.16 | −0.53 | −0.05 |
28 August R | −0.81 | −0.46 | 0.01 | −0.09 | 18 September R | −0.85 | 0.27 | −0.22 | 0.07 |
28 August G | −0.82 | −0.34 | 0.06 | −0.23 | 18 September G | −0.82 | 0.01 | −0.42 | −0.09 |
28 August B | −0.66 | −0.38 | −0.19 | 0.02 | 18 September B | −0.97 | 0.04 | 0.01 | −0.02 |
28 August ExG | 0.61 | 0.56 | 0.13 | −0.24 | 18 September ExG | 0.68 | −0.36 | −0.53 | −0.26 |
4 September R | −0.88 | −0.16 | 0.32 | −0.22 | 23 September R | −0.83 | 0.28 | −0.24 | 0.06 |
4 September G | −0.83 | 0.04 | 0.28 | −0.21 | 23 September G | −0.88 | 0.05 | −0.30 | −0.08 |
4 September B | −0.88 | −0.34 | 0.03 | −0.11 | 23 September B | −0.96 | 0.07 | −0.01 | 0.00 |
4 September ExG | 0.84 | 0.35 | −0.25 | 0.13 | 23 September ExG | 0.53 | −0.43 | −0.52 | −0.39 |
10 September R | −0.86 | 0.25 | 0.13 | −0.15 | 26 September R | −0.20 | 0.65 | −0.40 | 0.08 |
10 September G | −0.42 | 0.55 | −0.38 | −0.03 | 26 September G | −0.48 | 0.47 | −0.44 | −0.05 |
10 September B | −0.91 | 0.00 | −0.13 | −0.18 | 26 September B | −0.82 | 0.36 | −0.05 | 0.05 |
10 September ExG | 0.86 | 0.14 | −0.39 | 0.15 | 26 September ExG | 0.49 | −0.41 | −0.49 | −0.41 |
R8 stage | 0.82 | 0.23 | −0.33 | −0.06 |
Spectral Bands 1 | Flight Dates | Analysis | Indicator | Proportion of Variance (%) Explained by PC1 and PC2, and Random Forest Prediction Accuracy | |||
---|---|---|---|---|---|---|---|
All Drone Flight Dates | Selected Drone Flight Dates | ||||||
Red, green, and blue | 2018 | PCA | PC1 | 56.8% | 22 and 28 August, 4, 10, 14, 18, 23, and 26 September | 60.4% | 22 and 28 August, 4, 14, and 23 September |
PC2 | 12.8% | 13.0% | |||||
Random forest | R2 | 0.9141 | 0.9097 | ||||
RMSE (days) | 1.767 | 1.812 | |||||
2019 | PCA | PC1 | 36.9% | 1, 10, 25, and 30 July, 6, 15, and 28 August, 10, 17, and 24 September | 64.1% | 10, 17, and 24 September | |
PC2 | 21.3% | 13.1% | |||||
Random forest | R2 | 0.9380 | 0.9310 | ||||
RMSE (days) | 1.417 | 1.492 | |||||
2020 | PCA | PC1 | 43.8% | 30 June, 15 July, 4, 18, and 31 August, 10, 14, 22, and 30 September | 58.3% | 10, 14, 22, and 30 September | |
PC2 | 15.8% | 12.8% | |||||
Random forest | R2 | 0.9080 | 0.9067 | ||||
RMSE (days) | 1.347 | 1.356 | |||||
Red, green, blue, red edge, and near-infrared | 2019 | PCA | PC1 | 32.4% | 1, 10, 25, and 30 July, 6, 15, and 28 August, 10, 17, and 24 September | 55.5% | 10, 17, and 24 September |
PC2 | 19.3% | 16.9% | |||||
Random forest | R2 | 0.9366 | 0.9313 | ||||
RMSE (days) | 1.435 | 1.491 | |||||
2020 | PCA | PC1 | 39.0% | 30 June, 15 July, 4, 18, and 31 August, 10, 14, 22, and 30 September | 48.4% | 10, 14, 22, and 30 September | |
PC2 | 17.8% | 16.2% | |||||
Random forest | R2 | 0.9111 | 0.9091 | ||||
RMSE (days) | 1.325 | 1.339 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez, O.; Diers, B.; Martin, N. Maturity Prediction in Soybean Breeding Using Aerial Images and the Random Forest Machine Learning Algorithm. Remote Sens. 2024, 16, 4343. https://doi.org/10.3390/rs16234343
Pérez O, Diers B, Martin N. Maturity Prediction in Soybean Breeding Using Aerial Images and the Random Forest Machine Learning Algorithm. Remote Sensing. 2024; 16(23):4343. https://doi.org/10.3390/rs16234343
Chicago/Turabian StylePérez, Osvaldo, Brian Diers, and Nicolas Martin. 2024. "Maturity Prediction in Soybean Breeding Using Aerial Images and the Random Forest Machine Learning Algorithm" Remote Sensing 16, no. 23: 4343. https://doi.org/10.3390/rs16234343
APA StylePérez, O., Diers, B., & Martin, N. (2024). Maturity Prediction in Soybean Breeding Using Aerial Images and the Random Forest Machine Learning Algorithm. Remote Sensing, 16(23), 4343. https://doi.org/10.3390/rs16234343