Enhancing the Precision of Forest Growing Stock Volume in the Estonian National Forest Inventory with Different Predictive Techniques and Remote Sensing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. General Overview of Methods
2.3. Estonian National Forest Inventory
2.4. Field Inventory Measurement
2.5. Remote Sensing Data
2.6. LiDAR Data
2.7. Independent Variable Screening
2.8. Regression Analysis
2.8.1. Random Forest Regression
2.8.2. Support Vector Regression
2.8.3. Extreme Gradient Boosting
2.9. Model Evaluation
3. Results
3.1. Performance Assessment Based on Random Forest Predictive Model
3.2. Performance Assessment Based on Support Vector Regression
3.3. Performance Assessment Based on Extreme Gradient Boosting
3.4. Model Predictive Power at Each Quadrant/Comparative Analysis of Predictive Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Bonan, G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Mori, A.S.; Furukawa, T.; Sasaki, T. Response Diversity Determines the Resilience of Ecosystems to Environmental Change. Biol. Rev. 2013, 88, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Sing, L.; Metzger, M.J.; Paterson, J.S.; Ray, D. A Review of the Effects of Forest Management Intensity on Ecosystem Services for Northern European Temperate Forests with a Focus on the UK. For. Int. J. For. Res. 2018, 91, 151–164. [Google Scholar] [CrossRef]
- Belcher, B.; Ruíz-Pérez, M.; Achdiawan, R. Global Patterns and Trends in the Use and Management of Commercial NTFPs: Implications for Livelihoods and Conservation. World Dev. 2005, 33, 1435–1452. [Google Scholar] [CrossRef]
- Brown, S. Measuring Carbon in Forests: Current Status and Future Challenges. Environ. Pollut. 2002, 116, 363–372. [Google Scholar] [CrossRef]
- Chirici, G.; McRoberts, R.E.; Winter, S.; Bertini, R.; Brändli, U.-B.; Asensio, I.A.; Bastrup-Birk, A.; Rondeux, J.; Barsoum, N.; Marchetti, M. National Forest Inventory Contributions to Forest Biodiversity Monitoring. For. Sci. 2012, 58, 257–268. [Google Scholar] [CrossRef]
- Zhou, Y.; Feng, Z. Estimation of Forest Stock Volume Using Sentinel-2 MSI, Landsat 8 OLI Imagery and Forest Inventory Data. Forests 2023, 14, 1345. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment Report, Estonia Global Forest Resources Assessment. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/83fe0535-10eb-4a48-b67d-6db7b6977e89/content (accessed on 15 November 2022).
- Næsset, E. Practical Large-Scale Forest Stand Inventory Using a Small-Footprint Airborne Scanning Laser. Scand. J. For. Res. 2004, 19, 164–179. [Google Scholar] [CrossRef]
- Breidenbach, J.; Anton-Fernandez, C.; Petersson, H.; Mcroberts, R.E.; Astrup, R. Quantifying the Model-Related Variability of Biomass Stock and Change Estimates in the Norwegian National Forest Inventory. For. Sci. 2014, 60, 25–33. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Fournier, R.A.; Luther, J.E.; Magnussen, S. Spatially Explicit Large Area Biomass Estimation: Three Approaches Using Forest Inventory and Remotely Sensed Imagery in a GIS. Sensors 2008, 8, 529–560. [Google Scholar] [CrossRef] [PubMed]
- Kangas, A.; Astrup, R.; Breidenbach, J.; Fridman, J.; Gobakken, T.; Korhonen, K.T.; Maltamo, M.; Nilsson, M.; Nord-Larsen, T.; Næsset, E.; et al. Remote Sensing and Forest Inventories in Nordic Countries—Roadmap for the Future. Scand. J. For. Res. 2018, 33, 397–412. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Qiang, Z.; Xu, W.; Fan, J. A New Forest Growing Stock Volume Estimation Model Based on AdaBoost and Random Forest Model. Forests 2024, 15, 260. [Google Scholar] [CrossRef]
- Du, C.; Fan, W.; Ma, Y.; Jin, H.I.; Zhen, Z. The Effect of Synergistic Approaches of Features and Ensemble Learning Algorith on Aboveground Biomass Estimation of Natural Secondary Forests Based on Als and Landsat 8. Sensors 2021, 21, 5974. [Google Scholar] [CrossRef]
- Asner, G.P.; Knapp, D.E.; Martin, R.E.; Tupayachi, R.; Anderson, C.B.; Mascaro, J.; Sinca, F.; Chadwick, K.D.; Higgins, M.; Farfan, W.; et al. Targeted Carbon Conservation at National Scales with High-Resolution Monitoring. Proc. Natl. Acad. Sci. USA 2014, 111, E5016–E5022. [Google Scholar] [CrossRef]
- Loveland, T.R.; Irons, J.R. Landsat 8: The Plans, the Reality, and the Legacy. Remote Sens. Environ. 2016, 185, 1–6. [Google Scholar] [CrossRef]
- Gobakken, T.; Næsset, E. Assessing Effects of Laser Point Density, Ground Sampling Intensity, and Field Sample Plot Size on Biophysical Stand Properties Derived from Airborne Laser Scanner Data. Can. J. For. Res. 2008, 38, 1095–1109. [Google Scholar] [CrossRef]
- Rosema, A.; Verhoef, W.; Noorbergen, H.; Borgesius, J.J. A New Forest Light Interaction Model in Support of Forest Monitoring. Remote Sens. Environ. 1992, 42, 23–41. [Google Scholar] [CrossRef]
- Mulatu, K.A.; Decuyper, M.; Brede, B.; Kooistra, L.; Reiche, J.; Mora, B.; Herold, M. Linking Terrestrial LiDAR Scanner and Conventional Forest Structure Measurements with Multi-Modal Satellite Data. Forests 2019, 10, 291. [Google Scholar] [CrossRef]
- Temitope Olaoluwa, O.; Akinyede Joseph, O.; Oyinloye, R.O. Spatio-Temporal Analysis of Biomass Acculmulation in Tectona Grandis and Gmelina Arboreal Plantation in Oluwa Afforestation; Federal University of Technology: Akure, Nigeria, 2016. [Google Scholar]
- Panagiotidis, D.; Abdollahnejad, A.; Slavík, M. 3D Point Cloud Fusion from UAV and TLS to Assess Temperate Managed Forest Structures. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102917. [Google Scholar] [CrossRef]
- Panagiotidis, D.; Surový, P.; Kuželka, K. Accuracy of Structure from Motion Models in Comparison with Terrestrial Laser Scanner for the Analysis of DBH and Height Influence on Error Behaviour. J. For. Sci. 2016, 62, 357–365. [Google Scholar] [CrossRef]
- Juujarvi, J.; Heikkonen, J.; Brandt, S.S.; Lampinen, J. Digital-Image-Based Tree Measurement for Forest Inventory; Casasent, D.P., Ed.; International Society for Optics and Photonics: Boston, MA, USA, 1998; pp. 114–123. [Google Scholar]
- Lim, K.; Treitz, P.; Wulder, M.; St-Onge, B.; Flood, M. LiDAR Remote Sensing of Forest Structure. Prog. Phys. Geogr. Earth Environ. 2003, 27, 88–106. [Google Scholar] [CrossRef]
- White, J.C.; Coops, N.C.; Wulder, M.A.; Vastaranta, M.; Hilker, T.; Tompalski, P. Remote Sensing Technologies for Enhancing Forest Inventories: A Review. Can. J. Remote Sens. 2016, 42, 619–641. [Google Scholar] [CrossRef]
- Mura, M.; Bottalico, F.; Giannetti, F.; Bertani, R.; Giannini, R.; Mancini, M.; Orlandini, S.; Travaglini, D.; Chirici, G. Exploiting the Capabilities of the Sentinel-2 Multi Spectral Instrument for Predicting Growing Stock Volume in Forest Ecosystems. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 126–134. [Google Scholar] [CrossRef]
- Lang, M.; Sims, A.; Pärna, K.; Kangro, R.; Möls, M.; Mõistus, M.; Kiviste, A.; Tee, M.; Vajakas, T.; Rennel, M. Remote-Sensing Support for the Estonian National Forest Inventory, Facilitating the Construction of Maps for Forest Height, Standing-Wood Volume, and Tree Species Composition Kaugseirel Põhinev Lahendus Eesti Statistilise Metsainventuuri Jaoks Puistute Kõrguse, Tüvemahu Ja Liigilise Koosseisu Kaartide Koostamiseks. For. Stud. 2020, 73, 77–97. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Tomppo, E.O.; Næsset, E. Advances and Emerging Issues in National Forest Inventories. Scand. J. For. Res. 2010, 25, 368–381. [Google Scholar] [CrossRef]
- Næsset, E. Predicting Forest Stand Characteristics with Airborne Scanning Laser Using a Practical Two-Stage Procedure and Field Data. Remote Sens. Environ. 2002, 80, 88–99. [Google Scholar] [CrossRef]
- Nilsson, M.; Nordkvist, K.; Jonzén, J.; Lindgren, N.; Axensten, P.; Wallerman, J.; Egberth, M.; Larsson, S.; Nilsson, L.; Eriksson, J.; et al. A Nationwide Forest Attribute Map of Sweden Predicted Using Airborne Laser Scanning Data and Field Data from the National Forest Inventory. Remote Sens. Environ. 2017, 194, 447–454. [Google Scholar] [CrossRef]
- Lindgren, N.; Olsson, H.; Nyström, K.; Nyström, M.; Ståhl, G. Data Assimilation of Growing Stock Volume Using a Sequence of Remote Sensing Data from Different Sensors. Can. J. Remote Sens. 2022, 48, 127–143. [Google Scholar] [CrossRef]
- Sims, A. Principles of National Forest Inventory Methods. In Definition and Uncertainty of Forests. Managing Forest Ecosystems; Springer: Berlin/Heidelberg, Germany, 2022; Volume 43. [Google Scholar]
- Chowdhury, T.A.; Thiel, C.; Schmullius, C. Growing Stock Volume Estimation from L-Band ALOS PALSAR Polarimetric Coherence in Siberian Forest. Remote Sens. Environ. 2014, 155, 129–144. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A Survey of Remote Sensing-Based Aboveground Biomass Estimation Methods in Forest Ecosystems. Int. J. Digit. Earth 2016, 9, 63–105. [Google Scholar] [CrossRef]
- Zharko, V.O.; Bartalev, S.A.; Sidorenkov, V.M. Forest Growing Stock Volume Estimation Using Optical Remote Sensing over Snow-Covered Ground: A Case Study for Sentinel-2 Data and the Russian Southern Taiga Region. Remote Sens. Lett. 2020, 11, 677–686. [Google Scholar] [CrossRef]
- Hudak, A.T.; Lefsky, M.A.; Cohen, W.B.; Berterretche, M. Integration of Lidar and Landsat ETM+ Data for Estimating and Mapping Forest Canopy Height. Remote Sens. Environ. 2002, 82, 397–416. [Google Scholar] [CrossRef]
- Asner, G.P.; Mascaro, J.; Muller-Landau, H.C.; Vieilledent, G.; Vaudry, R.; Rasamoelina, M.; Hall, J.S.; van Breugel, M. A Universal Airborne LiDAR Approach for Tropical Forest Carbon Mapping. Oecologia 2012, 168, 1147–1160. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Landa, A.; Fernández-Moya, J.; Tomé, J.L.; Algeet-Abarquero, N.; Guillén-Climent, M.L.; Vallejo, R.; Sandoval, V.; Marchamalo, M. High Resolution Forest Inventory of Pure and Mixed Stands at Regional Level Combining National Forest Inventory Field Plots, Landsat, and Low Density Lidar. Int. J. Remote Sens. 2018, 39, 4830–4844. [Google Scholar] [CrossRef]
- Chirici, G.; Mura, M.; McInerney, D.; Py, N.; Tomppo, E.O.; Waser, L.T.; Travaglini, D.; McRoberts, R.E. A Meta-Analysis and Review of the Literature on the k-Nearest Neighbors Technique for Forestry Applications That Use Remotely Sensed Data. Remote Sens. Environ. 2016, 176, 282–294. [Google Scholar] [CrossRef]
- Hawryło, P.; Francini, S.; Chirici, G.; Giannetti, F.; Parkitna, K.; Krok, G.; Mitelsztedt, K.; Lisańczuk, M.; Stereńczak, K.; Ciesielski, M.; et al. The Use of Remotely Sensed Data and Polish NFI Plots for Prediction of Growing Stock Volume Using Different Predictive Methods. Remote Sens. 2020, 12, 3331. [Google Scholar] [CrossRef]
- Hu, T.; Sun, Y.; Jia, W.; Li, D.; Zou, M.; Zhang, M. Study on the Estimation of Forest Volume Based on Multi-Source Data. Sensors 2021, 21, 7796. [Google Scholar] [CrossRef]
- Myroniuk, V.; Bell, D.M.; Gregory, M.J.; Vasylyshyn, R.; Bilous, A. Uncovering Forest Dynamics Using Historical Forest Inventory Data and Landsat Time Series. For. Ecol. Manag. 2022, 513, 120184. [Google Scholar] [CrossRef]
- Singh, C.; Karan, S.K.; Sardar, P.; Samadder, S.R. Remote Sensing-Based Biomass Estimation of Dry Deciduous Tropical Forest Using Machine Learning and Ensemble Analysis. J. Environ. Manag. 2022, 308, 114639. [Google Scholar] [CrossRef]
- Chirici, G.; Giannetti, F.; McRoberts, R.E.; Travaglini, D.; Pecchi, M.; Maselli, F.; Chiesi, M.; Corona, P. Wall-to-Wall Spatial Prediction of Growing Stock Volume Based on Italian National Forest Inventory Plots and Remotely Sensed Data. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101959. [Google Scholar] [CrossRef]
- Hudak, A.T.; Crookston, N.L.; Evans, J.S.; Hall, D.E.; Falkowski, M.J. Nearest Neighbor Imputation of Species-Level, Plot-Scale Forest Structure Attributes from LiDAR Data. Remote Sens. Environ. 2008, 112, 2232–2245. [Google Scholar] [CrossRef]
- Forest. Yearbook Forest 2018. (Aastaraamat Mets 2018); Raudsaar, M., Siimon, K.L., Valgepea, M., Eds.; Keskkonnaagentuur: Tallinn, Estonia, 2020. [Google Scholar]
- Raukas, A. Briefly about Estonia. Dyn. Environnementales 2018, 42, 284–291. [Google Scholar] [CrossRef]
- Riigikantselei. RT Forest Act. Riigiteataja I 2006, 30, 232. [Google Scholar]
- Raudsaar, M.; Merenäkk, M.; Valgepea, M. Yearbook Forest 2013; Estonian Environment Agency: Tartu, Estonian, 2014. [Google Scholar]
- Adermann, V. Eesti Metsad. Estonian Forests 2010. 2012. Available online: http://www.digar.ee/id/nlib-digar:258209 (accessed on 4 February 2024).
- Reintam, L. Soil Objectives. Estonian Environment: Past, Present and Future. In Ministry of the Environment of Estonia, Environment Information Centre; Raukas, A., Ed.; Ministry of the Envieonment of Estonia: Tallinn, Estonia, 1996; pp. 106–108. [Google Scholar]
- Kohava, P. Forests in Estonia 1999 (Eesti Metsad 1999); Eesti Metsakorralduskeskus: Tallinn, Estonia, 2000; p. 44. [Google Scholar]
- FRA. Estonia Global Forest Resources Assessment 2015. Country Report. 2015. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/5100a18e-1432-42b1-945e-398daac0176e/content (accessed on 20 February 2024).
- Zhang, C.; Gao, Z.; Null, S.Y.; Li, P. Edge Detectors Based on Pauta Criterion with Application to Hybrid Compact-WENO Finite Difference Scheme. Adv. Appl. Math. Mech. 2023, 15, 1379–1406. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Breiman, L. Bagging Predictors; Kluwer Academic Publishers: New York, NY, USA, 1996; Volume 24, pp. 123–140. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Vapnik, V.; Golowich, S.; Smola, A. Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing. Adv. Neural Inf. Process. Syst. 1997, 9, 281–287. [Google Scholar]
- Liu, K.; Wang, J.; Zeng, W.; Song, J. Comparison and Evaluation of Three Methods for Estimating Forest above Ground Biomass Using TM and GLAS Data. Remote Sens. 2017, 9, 341. [Google Scholar] [CrossRef]
- Dibike, Y.B.; Velickov, S.; Solomatine, D.; Abbott, M.B. Model Induction with Support Vector Machines: Introduction and Applications. J. Comput. Civ. Eng. 2001, 15, 208–216. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Li, Y.; Li, C.; Li, M.; Liu, Z. Influence of Variable Selection and Forest Type on Forest Aboveground Biomass Estimation Using Machine Learning Algorithms. Forests 2019, 10, 73. [Google Scholar] [CrossRef]
- Lahssini, K.; Teste, F.; Dayal, K.R.; Durrieu, S.; Ienco, D.; Monnet, J.-M. Combining LiDAR Metrics and Sentinel-2 Imagery to Estimate Basal Area and Wood Volume in Complex Forest Environment via Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4337–4348. [Google Scholar] [CrossRef]
- Ma, T.; Hu, Y.; Wang, J.; Beckline, M.; Pang, D.; Chen, L.; Ni, X.; Li, X. A Novel Vegetation Index Approach Using Sentinel-2 Data and Random Forest Algorithm for Estimating Forest Stock Volume in the Helan Mountains, Ningxia, China. Remote Sens. 2023, 15, 1853. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the Capabilities of Sentinel-2 for Quantitative Estimation of Biophysical Variables in Vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef]
- Yu, T.; Pang, Y.; Liang, X.; Jia, W.; Bai, Y.; Fan, Y.; Chen, D.; Liu, X.; Deng, G.; Li, C.; et al. China’s Larch Stock Volume Estimation Using Sentinel-2 and LiDAR Data. Geo-Spat. Inf. Sci. 2023, 26, 392–405. [Google Scholar] [CrossRef]
- Leite, R.V.; Amaral, C.H.d.; Pires, R.d.P.; Silva, C.A.; Soares, C.P.B.; Macedo, R.P.; Silva, A.A.L.d.; Broadbent, E.N.; Mohan, M.; Leite, H.G. Estimating Stem Volume in Eucalyptus Plantations Using Airborne LiDAR: A Comparison of Area- and Individual Tree-Based Approaches. Remote Sens. 2020, 12, 1513. [Google Scholar] [CrossRef]
- Lin, W.; Lu, Y.; Li, G.; Jiang, X.; Lu, D. A Comparative Analysis of Modeling Approaches and Canopy Height-Based Data Sources for Mapping Forest Growing Stock Volume in a Northern Subtropical Ecosystem of China. GISci. Remote Sens. 2022, 59, 568–589. [Google Scholar] [CrossRef]
- Saarela, S.; Grafström, A.; Ståhl, G.; Kangas, A.; Holopainen, M.; Tuominen, S.; Nordkvist, K.; Hyyppä, J. Model-Assisted Estimation of Growing Stock Volume Using Different Combinations of LiDAR and Landsat Data as Auxiliary Information. Remote Sens. Environ. 2015, 158, 431–440. [Google Scholar] [CrossRef]
- Fang, G.; He, X.; Weng, Y.; Fang, L. Texture Features Derived from Sentinel-2 Vegetation Indices for Estimating and Mapping Forest Growing Stock Volume. Remote Sens. 2023, 15, 2821. [Google Scholar] [CrossRef]
- Korhonen, L.; Hadi; Packalen, P.; Rautiainen, M. Comparison of Sentinel-2 and Landsat 8 in the Estimation of Boreal Forest Canopy Cover and Leaf Area Index. Remote Sens. Environ. 2017, 195, 259–274. [Google Scholar] [CrossRef]
- Saarela, S.; Wästlund, A.; Holmström, E.; Mensah, A.A.; Holm, S.; Nilsson, M.; Fridman, J.; Ståhl, G. Mapping Aboveground Biomass and Its Prediction Uncertainty Using LiDAR and Field Data, Accounting for Tree-Level Allometric and LiDAR Model Errors. For. Ecosyst. 2020, 7, 43. [Google Scholar] [CrossRef]
- Chen, L.; Ren, C.; Zhang, B.; Wang, Z. Multi-Sensor Prediction of Stand Volume by a Hybrid Model of Support Vector Machine for Regression Kriging. Forests 2020, 11, 296. [Google Scholar] [CrossRef]
Zone | No. of Plot | Min | Max | Mean | SD |
---|---|---|---|---|---|
N/W | 3712 | 36.89 | 1007.01 | 531.42 | 162.36 |
S/W | 3651 | 80.8 | 1038.24 | 573.22 | 153.58 |
N/E | 3852 | 31.76 | 1101.03 | 569.59 | 175.65 |
S/E | 3665 | 122.08 | 1101.03 | 625.40 | 147.57 |
All | 14,880 | 31.76 | 1101.03 | 575.13 | 163.78 |
Variable | Description | |
---|---|---|
Sentinel-2 | Blue | B2 |
single band | Green | B3 |
Red | B4 | |
Red edge 1 | B5 | |
Red edge 2 | B6 | |
Red edge 3 | B7 | |
NIR | B8 | |
NIR narrow | B8A | |
SWIR | B11 | |
SWIR | B12 | |
Veg. indices | NDVI | (B08 − B04)/(B08 + B04) |
ARI1 | (1/B03)–(1/B05) | |
MARI | (1/B03)–(1/B05) × B07 | |
ARVI | (B8A − B04 − y × (B04 − B02))/(B8A + B04 − y × (B04 − B02)) | |
NDVIre705 | (B08 − B05)/(B08 + B05) | |
NDVIre740 | (B08 − B06)/(B08 + B06) | |
NDVIre783 | (B08 − B07)/(B08 + B07) | |
EVI | 2.5 × (B08 − B04)/(BO8 + 2.4 × B04 + 1) | |
SAVI | (B08 − B04) × (1 + L)/(BO8 + B04 + L) | |
MCARI | ((B05 − B04) − 0.2 × (B05 − B03)) × (B05/B04) | |
Clgreen | (B07)/(B03 − 1) | |
ND11 | (B07 − B05)/(B07 + B05) | |
chlre | (B07)/(B05 − 1) | |
GNDVI | (B08 − BO3)/(B08 + B03) | |
MSAVI | 0.5 × (2 × B08 + 1–sqrt ((2 × B08 + 1)−8 × (B08 − B04))) | |
Airborne LiDAR | p25 | Height percentile of 25% |
p50 | Height percentile of 50% | |
p60 | Height percentile of 60% | |
p70 | Height percentile of 70% | |
p75 | Height percentile of 75% | |
p80 | Height percentile of 80% | |
p90 | Height percentile of 90% | |
p95 | Height percentile of 95% | |
first_returns_above | number of first return laser pulses | |
percentage_all | percentage of all laser pulses | |
total_first_return | total number of first return laser pulses |
Model | No. Variables | R2 | RMSE | RMSE% | |
---|---|---|---|---|---|
CO1 | 17 | NW | 0.78 | 141.84 | 14.65 |
CO2 | 14 | 0.69 | 133.1 | 13.74 | |
CO3 | 15 | 0.63 | 125.39 | 12.95 | |
CO4 | 22 | 0.64 | 126.74 | 13.09 | |
CO1 | 14 | SW | 0.79 | 139.21 | 15.12 |
CO2 | 13 | 0.77 | 138.57 | 15.05 | |
CO3 | 20 | 0.7 | 126.85 | 13.78 | |
CO4 | 30 | 0.74 | 129.22 | 14.04 | |
CO1 | 18 | NE | 0.73 | 141.51 | 13.23 |
CO2 | 17 | 0.74 | 147.2 | 13.77 | |
CO3 | 18 | 0.61 | 132.17 | 12.36 | |
CO4 | 25 | 0.64 | 133.77 | 12.51 | |
CO1 | 18 | SE | 0.81 | 135.49 | 13.84 |
CO2 | 23 | 0.74 | 128.41 | 13.12 | |
CO3 | 17 | 0.68 | 119.35 | 12.19 | |
CO4 | 29 | 0.7 | 120.56 | 12.32 |
Model | No. Variables | R2 | RMSE | RMSE% | |
---|---|---|---|---|---|
CO1 | 17 | NW | 0.81 | 150.01 | 15.49 |
CO2 | 14 | 0.53 | 130.53 | 13.48 | |
CO3 | 15 | 0.52 | 123.41 | 12.74 | |
CO4 | 22 | 0.51 | 125.05 | 12.91 | |
CO1 | 14 | SW | 0.79 | 141.35 | 15.36 |
CO2 | 13 | 0.74 | 136.17 | 14.79 | |
CO3 | 20 | 0.64 | 124.53 | 13.53 | |
CO4 | 30 | 0.64 | 129.57 | 14.08 | |
CO1 | 18 | NE | 0.65 | 153.53 | 14.06 |
CO2 | 17 | 0.65 | 149.16 | 13.95 | |
CO3 | 18 | 0.43 | 129.83 | 12.14 | |
CO4 | 25 | 0.6 | 138.98 | 13 | |
CO1 | 18 | SE | 0.86 | 144.46 | 14.76 |
CO2 | 23 | 0.79 | 132.45 | 13.52 | |
CO3 | 17 | 0.63 | 116.43 | 11.89 | |
CO4 | 29 | 0.68 | 122.34 | 12.5 |
Model | No. Variables | R2 | RMSE | RMSE% | |
---|---|---|---|---|---|
CO1 | 17 | NW | 0.78 | 143.67 | 14.84 |
CO2 | 14 | 0.68 | 133.77 | 13.81 | |
CO3 | 15 | 0.61 | 124.46 | 12.85 | |
CO4 | 22 | 0.64 | 126.15 | 13.03 | |
CO1 | 14 | SW | 0.77 | 139.37 | 15.19 |
CO2 | 13 | 0.74 | 136.17 | 14.79 | |
CO3 | 20 | 0.68 | 129.32 | 14.05 | |
CO4 | 30 | 0.69 | 128.29 | 13.94 | |
CO1 | 18 | NE | 0.69 | 139.63 | 13.09 |
CO2 | 17 | 0.72 | 148.16 | 13.86 | |
CO3 | 18 | 0.6 | 132.63 | 12.4 | |
CO4 | 25 | 0.59 | 134.25 | 12.56 | |
CO1 | 18 | SE | 0.8 | 138.01 | 14.1 |
CO2 | 23 | 0.75 | 131.4 | 13.4 | |
CO3 | 17 | 0.65 | 119.48 | 12.17 | |
CO4 | 29 | 0.65 | 123.36 | 12.6 |
Quadrant | RF | SVR | XGBoost | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | |
NW | 0.64 * | 125.39 | 0.52 * | 123.41 | 0.64 ** | 126.15 |
SW | 0.74 ** | 129.22 | 0.64 * | 124.53 | 0.69 ** | 128.29 |
NE | 0.64 ** | 133.77 | 0.60 ** | 138.98 | 0.60 * | 132.63 |
SE | 0.70 ** | 120.56 | 0.68 ** | 122.34 | 0.65 * | 123.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omoniyi, T.O.; Sims, A. Enhancing the Precision of Forest Growing Stock Volume in the Estonian National Forest Inventory with Different Predictive Techniques and Remote Sensing Data. Remote Sens. 2024, 16, 3794. https://doi.org/10.3390/rs16203794
Omoniyi TO, Sims A. Enhancing the Precision of Forest Growing Stock Volume in the Estonian National Forest Inventory with Different Predictive Techniques and Remote Sensing Data. Remote Sensing. 2024; 16(20):3794. https://doi.org/10.3390/rs16203794
Chicago/Turabian StyleOmoniyi, Temitope Olaoluwa, and Allan Sims. 2024. "Enhancing the Precision of Forest Growing Stock Volume in the Estonian National Forest Inventory with Different Predictive Techniques and Remote Sensing Data" Remote Sensing 16, no. 20: 3794. https://doi.org/10.3390/rs16203794
APA StyleOmoniyi, T. O., & Sims, A. (2024). Enhancing the Precision of Forest Growing Stock Volume in the Estonian National Forest Inventory with Different Predictive Techniques and Remote Sensing Data. Remote Sensing, 16(20), 3794. https://doi.org/10.3390/rs16203794