A Comparative Study of Methods for Estimating the Thickness of Glacial Debris: A Case Study of the Koxkar Glacier in the Tian Shan Mountains
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Sources
3. Methods
3.1. Inversion of the LST
3.2. Approaches for Estimating Debris Thickness
3.2.1. Empirical LST and Debris Thickness Approach
3.2.2. Energy-Balance of Debris Layer Approach
3.3. Evaluation Indicators
4. Results and Analysis
4.1. Results of Debris Thickness Estimation
4.2. Spatial Distribution of Errors in Estimation Approaches
4.3. Effect of Debris Thickness on Estimation Accuracy
4.4. Influence of Topographic Factors on Estimation Accuracy
5. Discussion
5.1. Analysis of Empirical Relationship Approach 1 Adaptation
5.2. Analysis of Empirical Relationship Approach 2 Adaptation
5.3. Analysis of Energy Balance of Debris Approach Adaptation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delaney, I.; Anderson, L.S. Debris Cover Limits Subglacial Erosion and Promotes Till Accumulation. Geophys. Res. Lett. 2022, 49, e2022GL099049. [Google Scholar] [CrossRef]
- Nicholson, L.; Benn, D.I. Calculating Ice Melt beneath a Debris Layer Using Meteorological Data. J. Glaciol. 2006, 52, 463–470. [Google Scholar] [CrossRef]
- Scherler, D.; Wulf, H.; Gorelick, N. Global Assessment of Supraglacial Debris-Cover Extents. Geophys. Res. Lett. 2018, 45, 11798–11805. [Google Scholar] [CrossRef]
- Herreid, S.; Pellicciotti, F. The State of Rock Debris Covering Earth’s Glaciers. Nat. Geosci. 2020, 13, 621–627. [Google Scholar] [CrossRef]
- Östrem, G. Ice Melting under a Thin Layer of Moraine, and the Existence of Ice Cores in Moraine Ridges. Geogr. Ann. 1959, 41, 228–230. [Google Scholar] [CrossRef]
- Mattson, L.E.; Gardner, J.S.; Young, G.J. Ablation on Debris Covered Glaciers: An Example from the Rakhiot Glacier, Punjab, Himalaya. Snow Glacier Hydrol. 1993, 218, 289–296. [Google Scholar]
- Collier, E.; Maussion, F.; Nicholson, L.I.; Mölg, T.; Immerzeel, W.W.; Bush, A.B.G. Impact of Debris Cover on Glacier Ablation and Atmosphere–Glacier Feedbacks in the Karakoram. Cryosphere 2015, 9, 1617–1632. [Google Scholar] [CrossRef]
- Anderson, L.S.; Armstrong, W.H.; Anderson, R.S.; Buri, P. Debris Cover and the Thinning of Kennicott Glacier, Alaska: In Situ Measurements, Automated Ice Cliff Delineation and Distributed Melt Estimates. Cryosphere 2021, 15, 265–282. [Google Scholar] [CrossRef]
- Benn, D.I.; Lehmkuhl, F. Mass Balance and Equilibrium-Line Altitudes of Glaciers in High-Mountain Environments. Quat. Int. 2000, 65/66, 15–29. [Google Scholar] [CrossRef]
- Mölg, N.; Ferguson, J.; Bolch, T.; Vieli, A. On the Influence of Debris Cover on Glacier Morphology: How High-Relief Structures Evolve from Smooth Surfaces. Geomorphology 2020, 357, 107092. [Google Scholar] [CrossRef]
- Kraaijenbrink, P.D.A.; Bierkens, M.F.P.; Lutz, A.F.; Immerzeel, W.W. Impact of a Global Temperature Rise of 1.5 Degrees Celsius on Asia’s Glaciers. Nature 2017, 549, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Hock, R.; Bliss, A.; Marzeion, B.; Giesen, R.H.; Hirabayashi, Y.; Huss, M.; Radić, V.; Slangen, A.B.A. GlacierMIP—A Model Intercomparison of Global-Scale Glacier Mass-Balance Models and Projections. J. Glaciol. 2019, 65, 453–467. [Google Scholar] [CrossRef]
- Rounce, D.R.; Hock, R.; Shean, D.E. Glacier Mass Change in High Mountain Asia Through 2100 Using the Open-Source Python Glacier Evolution Model (PyGEM). Front. Earth Sci. 2020, 7, 331. [Google Scholar] [CrossRef]
- Nicholson, L.; Benn, D.I. Properties of Natural Supraglacial Debris in Relation to Modelling Sub-Debris Ice Ablation. Earth Surf. Process. Landf. 2013, 38, 490–501. [Google Scholar] [CrossRef]
- Harrison, S.; Kargel, J.S.; Huggel, C.; Reynolds, J.; Shugar, D.H.; Betts, R.A.; Emmer, A.; Glasser, N.; Haritashya, U.K.; Klimeš, J.; et al. Climate Change and the Global Pattern of Moraine-Dammed Glacial Lake Outburst Floods. Cryosphere 2018, 12, 1195–1209. [Google Scholar] [CrossRef]
- McCarthy, M.; Miles, E.; Kneib, M.; Buri, P.; Fugger, S.; Pellicciotti, F. Supraglacial Debris Thickness and Supply Rate in High-Mountain Asia. Commun. Earth Environ. 2022, 3, 269. [Google Scholar] [CrossRef]
- Reid, T.D.; Carenzo, M.; Pellicciotti, F.; Brock, B.W. Including Debris Cover Effects in a Distributed Model of Glacier Ablation. J. Geophys. Res. Atmospheres 2012, 117, D18105. [Google Scholar] [CrossRef]
- Huang, L.; Li, Z.; Han, H.; Tian, B.; Zhou, J. Analysis of Thickness Changes and the Associated Driving Factors on a Debris-Covered Glacier in the Tienshan Mountain. Remote Sens. Environ. 2018, 206, 63–71. [Google Scholar] [CrossRef]
- Pratap, B.; Sharma, P.; Patel, L.K.; Singh, A.T.; Oulkar, S.N.; Thamban, M. Differential Surface Melting of a Debris-Covered Glacier and Its Geomorphological Control—A Case Study from Batal Glacier, Western Himalaya. Geomorphology 2023, 431, 108686. [Google Scholar] [CrossRef]
- Huang, L.; Li, Z.; Tian, B.S.; Han, H.D.; Liu, Y.Q.; Zhou, J.M.; Chen, Q. Estimation of Supraglacial Debris Thickness Using a Novel Target Decomposition on L-Band Polarimetric SAR Images in the Tianshan Mountains. J. Geophys. Res. Earth Surf. 2017, 122, 925–940. [Google Scholar] [CrossRef]
- Mihalcea, C.; Brock, B.W.; Diolaiuti, G.; D’Agata, C.; Citterio, M.; Kirkbride, M.P.; Cutler, M.E.J.; Smiraglia, C. Using ASTER Satellite and Ground-Based Surface Temperature Measurements to Derive Supraglacial Debris Cover and Thickness Patterns on Miage Glacier (Mont Blanc Massif, Italy). Cold Reg. Sci. Technol. 2008, 52, 341–354. [Google Scholar] [CrossRef]
- Brenning, A.; Peña, M.A.; Long, S.; Soliman, A. Thermal Remote Sensing of Ice-Debris Landforms Using ASTER: An Example from the Chilean Andes. Cryosphere 2012, 6, 367–382. [Google Scholar] [CrossRef]
- Aubry-Wake, C.; Lamontagne-Hallé, P.; Baraër, M.; McKenzie, J.M.; Pomeroy, J.W. Using Ground-Based Thermal Imagery to Estimate Debris Thickness over Glacial Ice: Fieldwork Considerations to Improve the Effectiveness. J. Glaciol. 2023, 69, 353–369. [Google Scholar] [CrossRef]
- Mihalcea, C.; Mayer, C.; Diolaiuti, G.; D’Agata, C.; Smiraglia, C.; Lambrecht, A.; Vuillermoz, E.; Tartari, G. Spatial Distribution of Debris Thickness and Melting from Remote-Sensing and Meteorological Data, at Debris-Covered Baltoro Glacier, Karakoram, Pakistan. Ann. Glaciol. 2008, 48, 49–57. [Google Scholar] [CrossRef]
- Benn, D.I.; Bolch, T.; Hands, K.; Gulley, J.; Luckman, A.; Nicholson, L.I.; Quincey, D.; Thompson, S.; Toumi, R.; Wiseman, S. Response of Debris-Covered Glaciers in the Mount Everest Region to Recent Warming, and Implications for Outburst Flood Hazards. Earth-Sci. Rev. 2012, 114, 156–174. [Google Scholar] [CrossRef]
- Rounce, D.R.; King, O.; McCarthy, M.; Shean, D.E.; Salerno, F. Quantifying Debris Thickness of Debris-Covered Glaciers in the Everest Region of Nepal Through Inversion of a Subdebris Melt Model. J. Geophys. Res. Earth Surf. 2018, 123, 1094–1115. [Google Scholar] [CrossRef]
- Bisset, R.R.; Nienow, P.W.; Goldberg, D.N.; Wigmore, O.; Loayza-Muro, R.A.; Wadham, J.L.; Macdonald, M.L.; Bingham, R.G. Using Thermal UAV Imagery to Model Distributed Debris Thicknesses and Sub-Debris Melt Rates on Debris-Covered Glaciers. J. Glaciol. 2023, 69, 981–996. [Google Scholar] [CrossRef]
- Stewart, R.L.; Westoby, M.; Pellicciotti, F.; Rowan, A.; Swift, D.; Brock, B.; Woodward, J. Using Climate Reanalysis Data in Conjunction with Multi-Temporal Satellite Thermal Imagery to Derive Supraglacial Debris Thickness Changes from Energy-Balance Modelling. J. Glaciol. 2021, 67, 366–384. [Google Scholar] [CrossRef]
- Zhang, Y.; Fujita, K.; Liu, S.; Liu, Q.; Nuimura, T. Distribution of Debris Thickness and Its Effect on Ice Melt at Hailuogou Glacier, Southeastern Tibetan Plateau, Using in Situ Surveys and ASTER Imagery. J. Glaciol. 2011, 57, 1147–1157. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.; Shangguan, D.; Han, H.; Xie, C.; Wang, J. Study of the Positive Degree-day Factors on the Koxkar Baqi Glaci er on the South Slope of Tianshan Mountains. J. Glaciol. Geocryol. 2005, 3, 337–343. [Google Scholar]
- Liu, S.; Yao, X.; Guo, W.; Xu, J.; Shangguan, D.; Wei, J.; Bao, W.; Wu, L. The contemporary glaciers in China based on the Second Chinese Glacier Inventory. Acta Geogr. Sin. 2015, 70, 3–16. [Google Scholar] [CrossRef]
- RGI Consortium. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines; (NSIDC-0770, Version 6); National Snow and Ice Data Center: Boulder, CO, USA, 2007. [Google Scholar] [CrossRef]
- Han, H.; Ding, Y.; Liu, S. Estimati on and Analysis of Heat Balance Parameters in the Ablati on Season of Debris-Covered Kerqikaer Glacier, Tianshan Mountains. J. Glaciol. Geocryol. 2005, 1, 88–94. [Google Scholar]
- Ding, G.; Chen, C.; Xie, C.; Wang, J. Study of the ice tongue ablation features of a large glacier in the south slopes of the Mt. Tuomuer in the Tianshan Mountains. J. Glaciol. Geocryol. 2014, 36, 20–29. [Google Scholar]
- Li, H.; Wang, P.; Li, Z.; Wang, P.; Xu, H.; Liu, S. Research on the changes of the Urumqi Glacier No. 1, Tianshan Mountains based on multisource remote sensing data. J. Glaciol. Geocryol. 2021, 43, 1018–1026. [Google Scholar] [CrossRef]
- Artis, D.A.; Carnahan, W.H. Survey of Emissivity Variability in Thermography of Urban Areas. Remote Sens. Environ. 1982, 12, 313–329. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land Surface Temperature Retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Chang, Y.; Zhang, S.; Zhao, Q. Comparison Study on Land Surface Temperature Retrieval on Alpine Mountainous Cold Regions: A Case Study of the Reach of Shule River Basin. Remote Sens. Inf. 2016, 31, 122–128. [Google Scholar]
- Soncini, A.; Bocchiola, D.; Confortola, G.; Minora, U.; Vuillermoz, E.; Salerno, F.; Viviano, G.; Shrestha, D.; Senese, A.; Smiraglia, C.; et al. Future Hydrological Regimes and Glacier Cover in the Everest Region: The Case Study of the Upper Dudh Koshi Basin. Sci. Total Environ. 2016, 565, 1084–1101. [Google Scholar] [CrossRef]
- Rounce, D.R.; Hock, R.; McNabb, R.W.; Millan, R.; Sommer, C.; Braun, M.H.; Malz, P.; Maussion, F.; Mouginot, J.; Seehaus, T.C.; et al. Distributed Global Debris Thickness Estimates Reveal Debris Significantly Impacts Glacier Mass Balance. Geophys. Res. Lett. 2021, 48, e2020GL091311. [Google Scholar] [CrossRef]
- Foster, L.A.; Brock, B.W.; Cutler, M.E.J.; Diotri, F. A Physically Based Method for Estimating Supraglacial Debris Thickness from Thermal Band Remote-Sensing Data. J. Glaciol. 2012, 58, 677–691. [Google Scholar] [CrossRef]
- Rounce, D.R.; McKinney, D.C. Debris Thickness of Glaciers in the Everest Area (Nepal Himalaya) Derived from Satellite Imagery Using a Nonlinear Energy Balance Model. Cryosphere 2014, 8, 1317–1329. [Google Scholar] [CrossRef]
- Strasser, U.; Corripio, J.; Pellicciotti, F.; Burlando, P.; Brock, B.; Funk, M. Spatial and Temporal Variability of Meteorological Variables at Haut Glacier d’Arolla (Switzerland) during the Ablation Season 2001: Measurements and Simulations. J. Geophys. Res. Atmospheres 2004, 109, D03103. [Google Scholar] [CrossRef]
- Brock, B.W.; Mihalcea, C.; Kirkbride, M.P.; Diolaiuti, G.; Cutler, M.E.J.; Smiraglia, C. Meteorology and Surface Energy Fluxes in the 2005–2007 Ablation Seasons at the Miage Debris-covered Glacier, Mont Blanc Massif, Italian Alps. J. Geophys. Res. Atmospheres 2010, 115, D09106. [Google Scholar] [CrossRef]
- Favier, V.; Wagnon, P.; Chazarin, J.-P.; Maisincho, L.; Coudrain, A. One-Year Measurements of Surface Heat Budget on the Ablation Zone of Antizana Glacier 15, Ecuadorian Andes. J. Geophys. Res. Atmospheres 2004, 109, D18105. [Google Scholar] [CrossRef]
- Yang, K.; Qin, J.; Guo, X.; Zhou, D.; Ma, Y. Method Development for Estimating Sensible Heat Flux over the Tibetan Plateau from CMA Data. J. Appl. Meteorol. Climatol. 2009, 48, 2474–2486. [Google Scholar] [CrossRef]
- Sun, K.; Sun, X.; Tang, Y.; Zhang, Y.; Liu, F.; Fan, K.; Yang, Z.; Qu, Z. Temporal and spatial variations in multi-year surface sensible heat flux in Qinghai Province. Arid. Zone Res. 2024, 41, 36–49. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, J.; Han, H.; Liu, S. Analysis of aerodynamic roughness of the debris-covered Keqicar glacier. Plateau Meteorol. 2014, 33, 762–768.e8. [Google Scholar]
- Moore, R.D. On the Use of Bulk Aerodynamic Formulae Over Melting Snow. Hydrol. Res. 1983, 14, 193–206. [Google Scholar] [CrossRef]
- Schuenemann, K.C.; Cassano, J.J. Changes in Synoptic Weather Patterns and Greenland Precipitation in the 20th and 21st Centuries: 1. Evaluation of Late 20th Century Simulations from IPCC Models. J. Geophys. Res. Atmospheres 2009, 114, D20113. [Google Scholar] [CrossRef]
- Gibson, M.J.; Glasser, N.F.; Quincey, D.J.; Mayer, C.; Rowan, A.V.; Irvine-Fynn, T.D.L. Temporal Variations in Supraglacial Debris Distribution on Baltoro Glacier, Karakoram between 2001 and 2012. Geomorphology 2017, 295, 572–585. [Google Scholar] [CrossRef]
- Boxall, K.; Willis, I.; Giese, A.; Liu, Q. Quantifying Patterns of Supraglacial Debris Thickness and Their Glaciological Controls in High Mountain Asia. Front. Earth Sci. 2021, 9, 657440. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, N.; Li, Z.; Chen, A.; Guo, Z.; Qie, Y. The Effect of Thermal Radiation from Surrounding Terrain on Glacier Surface Temperatures Retrieved from Remote Sensing Data: A Case Study from Qiyi Glacier, China. Remote Sens. Environ. 2019, 231, 111267. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S. Research progress on debris thickness estimation and its effect on debris-covered glaciers in western China. Acta Geogr. Sin. 2017, 729, 1606–1620. [Google Scholar] [CrossRef]
- Fujita, K.; Sakai, A. Modelling Runoff from a Himalayan Debris-Covered Glacier. Hydrol. Earth Syst. Sci. 2014, 18, 2679–2694. [Google Scholar] [CrossRef]
- Suzuki, R.; Fujita, K.; Ageta, Y. Spatial Distribution of Thermal Properties on Debris-Covered Glaciers in the Himalayas Derived from ASTER Data. Bull. Glaciol. Res. 2007, 24, 13–22. [Google Scholar]
- Guo, P.; Bu, M.; Li, Q.; He, M. Research progress of accurate measurement and characterization model of effective thermal conductivity of rock. Chin. J. Rock Mech. Eng. 2020, 39, 1983–2013. [Google Scholar] [CrossRef]
Parameter | Value (Unit) | Parameter | Value (Unit) |
---|---|---|---|
Land surface temperature () | °C | Debris thickness () | cm |
Brightness temperature () | K | Effective thermal conductivity () | 0.96 W·m−1·K−1 |
Wavelength () | nm | Downward shortwave radiation () | W·m−2 |
Surface emissivity () | - | Downward longwave radiation () | W·m−2 |
Planck’s constant () | 6.626 × 10−34 J·s | Upward longwave radiation () | W·m−2 |
Speed of light () | 3 × 108 m·s−1 | Albedo () | 0.2 |
Boltzmann’s constant () | 1.38 × 10−23 J·K−1 | Stefan-Boltzmann’s constant () | 5.67 × 10−8 W·m−2·K−4 |
Pre-launch calibration constants () | 608 W·m−2·sr−1·μm−1 | Air temperature () | °C |
Pre-launch calibration constants () | 1260.56 K | Air specific emissivity () | - |
Calibration coefficient gain () | 0.055158 | Surface-specific emissivity () | - |
Offset () | 1.2378 | Air density () | 0.86 kg·m−3 |
Minimum LST () | °C | Specific heat capacity of air () | 1004 J−1·KG−1·K−1 |
LST of the 95th quartile () | °C | Aerodynamic roughness length () | 0.098 m |
Maximum of the debris thickness () | cm | Karman’s constant () | 0.4 |
Conduction heat flux within debris () | W·m−2 | Wind speed () | m·s−1 |
Net radiation flux () | W·m−2 | Observation altitude of wind speed () | 2 m |
Sensible heat flux () | W·m−2 | Thermodynamic roughness length () | 0.098 m |
Latent heat flux () | W·m−2 | Gravitational acceleration () | 9.8 m·s−2 |
Approach | Composite Rating Indicator ()/Rank | ||||
---|---|---|---|---|---|
Total | ≤10 cm | 10–50 cm | 50–100 cm | >100 cm | |
Empirical relationship 1 | 0.42/2 | 0.17/3 | 0.00/3 | 0.50/1 | 0.67/1 |
Empirical relationship 2 | 0.50/1 | 0.50/2 | 0.42/2 | 0.42/2 | 0.25/2 |
Energy balance of debris | 0.08/3 | 0.58/1 | 0.58/1 | 0.08/3 | 0.08/3 |
Satellite Transit Time | Average Temperature Change (°C) | |||||
---|---|---|---|---|---|---|
20100715 13:11 | 20130925 13:23 | +3 | −3 | +5 | −5 | |
RMSE (cm) | 43.82 | 51.94 | 38.68 | 48.04 | 73.65 | 51.40 |
Normalization RMSE (cm) | 35.98 | 39.22 | 34.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Qin, Y.; Han, H.; Zhao, Q.; Liu, Y. A Comparative Study of Methods for Estimating the Thickness of Glacial Debris: A Case Study of the Koxkar Glacier in the Tian Shan Mountains. Remote Sens. 2024, 16, 4356. https://doi.org/10.3390/rs16234356
Liu J, Qin Y, Han H, Zhao Q, Liu Y. A Comparative Study of Methods for Estimating the Thickness of Glacial Debris: A Case Study of the Koxkar Glacier in the Tian Shan Mountains. Remote Sensing. 2024; 16(23):4356. https://doi.org/10.3390/rs16234356
Chicago/Turabian StyleLiu, Jun, Yan Qin, Haidong Han, Qiudong Zhao, and Yongqiang Liu. 2024. "A Comparative Study of Methods for Estimating the Thickness of Glacial Debris: A Case Study of the Koxkar Glacier in the Tian Shan Mountains" Remote Sensing 16, no. 23: 4356. https://doi.org/10.3390/rs16234356
APA StyleLiu, J., Qin, Y., Han, H., Zhao, Q., & Liu, Y. (2024). A Comparative Study of Methods for Estimating the Thickness of Glacial Debris: A Case Study of the Koxkar Glacier in the Tian Shan Mountains. Remote Sensing, 16(23), 4356. https://doi.org/10.3390/rs16234356