Impacts of GCP Distributions on UAV-PPK Photogrammetry at Sermeq Avannarleq Glacier, Greenland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Methods
2.2.1. UAV Platform, Flight Planning, and Aerial Photo Acquisition
2.2.2. Photogrammetric Processing
2.2.3. Accuracy Assessment with Different GCP Configurations
2.2.4. External Cross-Validation of UAV Photogrammetric DSMs
3. Results
3.1. Camera Location Error
3.2. Accuracy Assessment with Different GCP Configurations
3.2.1. 3D Reconstruction Model Accuracy Assessed by VPs
3.2.2. Spatial Distribution of the 3D Reconstruction Model’s Accuracy
3.2.3. Inter-Comparison between UAV-DSMs with Different GCP Configurations
3.3. Cross-Validation with ICESat-2
3.4. Cross-Validation with ArcticDEM
4. Discussion
4.1. Influence of GCP Distributions
4.2. Limitations of the Study
4.3. Suggestions for a UAV Survey Working Plan at Marine-Terminating Glaciers
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berra, E.F.; Peppa, M.V. Advances and Challenges of UAV SFM MVS Photogrammetry and Remote Sensing: Short Review. In Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–26 March 2020; pp. 533–538. [Google Scholar]
- Kong, D.; Saroglou, C.; Wu, F.; Sha, P.; Li, B. Development and application of UAV-SfM photogrammetry for quantitative characterization of rock mass discontinuities. Int. J. Rock. Mech. Min. 2021, 141, 104729. [Google Scholar] [CrossRef]
- Wang, B.; Peng, X.; Jiang, M.; Liu, D. Real-Time Fault Detection for UAV Based on Model Acceleration Engine. IEEE Trans. Instrum. Meas. 2020, 69, 9505–9516. [Google Scholar] [CrossRef]
- Kornelia Anna, W.; Robert, B.; Maria, O.; Marek, F. Investigation of Sediment-Rich Glacial Meltwater Plumes Using a High-Resolution Multispectral Sensor Mounted on an Unmanned Aerial Vehicle. Water 2019, 11, 2405. [Google Scholar] [CrossRef]
- Hemmelder, S.; Marra, W.; Markies, H.; De Jong, S.M. Monitoring river morphology & bank erosion using UAV imagery—A case study of the river Buëch, Hautes-Alpes, France. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 428–437. [Google Scholar] [CrossRef]
- Li, T.; Zhang, B.; Cheng, X.; Westoby, M.J.; Li, Z.; Ma, C.; Hui, F.; Shokr, M.; Liu, Y.; Chen, Z.; et al. Resolving Fine-Scale Surface Features on Polar Sea Ice: A First Assessment of UAS Photogrammetry Without Ground Control. Remote Sens. 2019, 11, 784. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, J.; Song, S.; Li, Y.; Wang, F.; Wang, S.; Liu, D. Proposition of UAV multi-angle nap-of-the-object image acquisition framework based on a quality evaluation system for a 3D real scene model of a high-steep rock slope. Int. J. Appl. Earth Obs. Geoinf. 2023, 125, 103558. [Google Scholar] [CrossRef]
- Qiao, G.; Yuan, X.; Florinsky, I.; Popov, S.; He, Y.; Li, H. Topography reconstruction and evolution analysis of outlet glacier using data from unmanned aerial vehicles in Antarctica. Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103186. [Google Scholar] [CrossRef]
- Eltner, A.; Baumgart, P.; Maas, H.; Faust, D. Multi-temporal UAV data for automatic measurement of rill and interrill erosion on loess soil. Earth Surf. Proc. Land. 2015, 40, 741–755. [Google Scholar] [CrossRef]
- Chen, C.; Yuan, X.; Gan, S.; Luo, W.; Bi, R.; Li, R.; Gao, S. A new vegetation index based on UAV for extracting plateau vegetation information. Int. J. Appl. Earth Obs. Geoinf. 2024, 128, 103668. [Google Scholar] [CrossRef]
- Fan, B.; Li, Y.; Zhang, R.; Fu, Q. Review on the Technological Development and Application of UAV Systems. Chin. J. Electron. 2020, 29, 199–207. [Google Scholar] [CrossRef]
- Shepherd, A.; Ivins, E.; Rignot, E.; Smith, B.; van den Broeke, M.; Velicogna, I.; Whitehouse, P.; Briggs, K.; Joughin, I.; Krinner, G.; et al. Mass balance of the Greenland ice sheet from 1992 to 2018. Nature 2020, 579, 233–239. [Google Scholar] [CrossRef]
- Motyka, R.J.; Fahnestock, M.; Truffer, M. Volume change of Jakobshavn Isbræ, West Greenland: 1985–1997–2007. J. Glaciol. 2010, 56, 635–646. [Google Scholar] [CrossRef]
- Michiel, V.D.B.; Jason, B.; Fettweis, X.; Hanna, E.; Brice, N.; Marco, T.; Dirk, V.A.; Willem Jan, V.D.B.; Leo, V.K. Greenland Ice Sheet Surface Mass Loss: Recent Developments in Observation and Modeling. Curr. Clim. Change Rep. 2017, 3, 345–356. [Google Scholar] [CrossRef]
- Rossini, M.; Di Mauro, B.; Garzonio, R.; Baccolo, G.; Cavallini, G.; Mattavelli, M.; De Amicis, M.; Colombo, R. Rapid melting dynamics of an alpine glacier with repeated UAV photogrammetry. Geomorphology 2018, 304, 159–172. [Google Scholar] [CrossRef]
- Westoby, M.J.; Dunning, S.A.; Woodward, J.; Hein, A.S.; Marrero, S.M.; Winter, K.; Sugden, D.E. Interannual surface evolution of an Antarctic blue-ice moraine using multi-temporal DEMs. Earth Surf. Dyn. 2016, 4, 515–529. [Google Scholar] [CrossRef]
- Kraaijenbrink, P.D.A.; Shea, J.M.; Litt, M.; Steiner, J.F.; Treichler, D.; Koch, I.; Immerzeel, W.W. Mapping Surface Temperatures on a Debris-Covered Glacier with an Unmanned Aerial Vehicle. Front. Earth Sci. 2018, 6, 64. [Google Scholar] [CrossRef]
- Bisset, R.R.; Nienow, P.W.; Goldberg, D.N.; Wigmore, O.; Loayza-Muro, R.A.; Wadham, J.L.; Macdonald, M.L.; Bingham, R.G. Using thermal UAV imagery to model distributed debris thicknesses and sub-debris melt rates on debris-covered glaciers. J. Glaciol. 2023, 69, 981–996. [Google Scholar] [CrossRef]
- Jouvet, G.; Weidmann, Y.; Kneib, M.; Detert, M.; Seguinot, J.; Sakakibara, D.; Sugiyama, S. Short-lived ice speed-up and plume water flow captured by a VTOL UAV give insights into subglacial hydrological system of Bowdoin Glacier. Remote Sens. Environ. 2018, 217, 389–399. [Google Scholar] [CrossRef]
- Türk, T.; Tunalioglu, N.; Erdogan, B.; Ocalan, T.; Gurturk, M. Accuracy assessment of UAV-post-processing kinematic (PPK) and UAV-traditional (with ground control points) georeferencing methods. Environ. Monit. Assess. 2022, 194, 476. [Google Scholar] [CrossRef]
- Cho, J.M.; Lee, B.K. GCP and PPK Utilization Plan to Deal with RTK Signal Interruption in RTK-UAV Photogrammetry. Drones 2023, 7, 265. [Google Scholar] [CrossRef]
- Julián, T.; Martin, M.; Peter, S.; Alžbeta, G.; Merganič, J. UAV RTK/PPK Method—An Optimal Solution for Mapping Inaccessible Forested Areas? Remote Sens. 2019, 11, 721. [Google Scholar] [CrossRef]
- Žabota, B.; Kobal, M. Accuracy Assessment of UAV-Photogrammetric-Derived Products Using PPK and GCPs in Challenging Terrains: In Search of Optimized Rockfall Mapping. Remote Sens. 2021, 13, 3812. [Google Scholar] [CrossRef]
- Bolkas, D. Assessment of GCP Number and Separation Distance for Small UAS Surveys with and without GNSS-PPK Positioning. J. Surv. Eng. 2019, 145, 4019007. [Google Scholar] [CrossRef]
- Gabrlik, P.; Cour-Harbo, A.L.; Kalvodova, P.; Zalud, L.; Janata, P. Calibration and accuracy assessment in a direct georeferencing system for UAS photogrammetry. Int. J. Remote Sens. 2018, 39, 4931–4959. [Google Scholar] [CrossRef]
- Hugenholtz, C.; Brown, O.; Walker, J.; Barchyn, T.; Nesbit, P.; Kucharczyk, M.; Myshak, S. Spatial Accuracy of UAV-Derived Orthoimagery and Topography: Comparing Photogrammetric Models Processed with Direct Geo-Referencing and Ground Control Points. Geomatica 2016, 70, 21–30. [Google Scholar] [CrossRef]
- Khazendar, A.; Fenty, I.G.; Carroll, D.; Gardner, A.; Lee, C.M.; Fukumori, I.; Wang, O.; Zhang, H.; Seroussi, H.; Moller, D.; et al. Interruption of two decades of Jakobshavn Isbrae acceleration and thinning as regional ocean cools. Nat. Geosci. 2019, 12, 277–283. [Google Scholar] [CrossRef]
- Alkan, R.; Ozulu, I.M.; Ilçi, V. Comparison of Single Baseline RTK and Network RTK GNSS Methods. In Proceedings of the International Symposium on Modern Technologies, Education and Professional Practice in Geodesy and Related Fields, Sofia, Bulgaria, 9–10 November 2017. [Google Scholar]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Smith, B.; Fricker, H.A.; Holschuh, N.; Gardner, A.S.; Adusumilli, S.; Brunt, K.M.; Csatho, B.; Harbeck, K.; Huth, A.; Neumann, T.; et al. Land ice height-retrieval algorithm for NASA’s ICESat-2 photon-counting laser altimeter. Remote Sens. Environ. 2019, 233, 111352. [Google Scholar] [CrossRef]
- Noh, M.; Howat, I.M. Automated stereo-photogrammetric DEM generation at high latitudes: Surface Extraction with TIN-based Search-space Minimization (SETSM) validation and demonstration over glaciated regions. GISci. Remote Sens. 2015, 52, 198–217. [Google Scholar] [CrossRef]
- Nuth, C.; Kääb, A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 2011, 5, 271–290. [Google Scholar] [CrossRef]
- Kim, H.; Hyun, C.; Park, H.; Cha, J. Image Mapping Accuracy Evaluation Using UAV with Standalone, Differential (RTK), and PPP GNSS Positioning Techniques in an Abandoned Mine Site. Sensors 2023, 23, 5858. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Ablanedo, E.; Chandler, J.; Rodríguez-Pérez, J.; Ordóñez, C. Accuracy of Unmanned Aerial Vehicle (UAV) and SfM Photogrammetry Survey as a Function of the Number and Location of Ground Control Points Used. Remote Sens. 2018, 10, 1606. [Google Scholar] [CrossRef]
- Tonkin, T.; Midgley, N. Ground-Control Networks for Image Based Surface Reconstruction: An Investigation of Optimum Survey Designs Using UAV Derived Imagery and Structure-from-Motion Photogrammetry. Remote Sens. 2016, 8, 786. [Google Scholar] [CrossRef]
- Wan, X.; Liu, J.; Yan, H.; Morgan, G.L.K. Illumination-invariant image matching for autonomous UAV localisation based on optical sensing. ISPRS J. Photogramm. Remote Sens. 2016, 119, 198–213. [Google Scholar] [CrossRef]
UAV Body WintraOne | Payloads Sony RX1R II | ||
---|---|---|---|
Drone type | VTOL | Sensor type | Full-frame |
Weight | 3.7 kg | Sensor size | 35 mm × 23.3 mm |
Max. payload weight | 800 g | Mega pixel | 42.4 (7952 × 5304) |
Endurance | 59 min | Focal lens | 32.8 mm |
X RMSE (m) | Y RMSE (m) | Z RMSE (m) | XY RMSE (m) | Total RMSE (m) |
---|---|---|---|---|
0.024 | 0.060 | 0.275 | 0.064 | 0.282 |
GCPs | VPs | RTK Roving Sites | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Configuration/RMSE (cm) | X | Y | Z | XYZ | X | Y | Z | XYZ | X | Y | Z | XYZ |
PPK (no GCPs) | \ | \ | \ | \ | 3.83 | 3.11 | 14.66 | 15.44 | 3.83 | 3.11 | 14.66 | 15.44 |
2GCPs | 0.07 | 0.11 | 0.11 | 0.16 | 3.36 | 3.53 | 11.27 | 11.58 | 1.87 | 3.13 | 9.04 | 10.38 |
4GCPs-T | 0.07 | 0.12 | 0.16 | 0.27 | 3.74 | 3.15 | 8.11 | 9.48 | 1.81 | 2.19 | 4.45 | 5.44 |
7GCPs-T | 0.93 | 0.83 | 0.27 | 1.28 | 1.87 | 3.62 | 7.44 | 8.47 | 1.33 | 2.01 | 3.67 | 4.13 |
9GCPs | 0.48 | 0.67 | 0.73 | 1.21 | 1.91 | 3.52 | 7.48 | 8.33 | 1.14 | 1.58 | 3.03 | 3.73 |
11GCPs | 0.43 | 0.43 | 0.21 | 1.02 | \ | \ | \ | \ | 0.43 | 0.43 | 0.21 | 1.02 |
4GCPs-E | 0.28 | 0.34 | 0.30 | 0.90 | 2.23 | 3.29 | 7.14 | 8.80 | 1.29 | 2.04 | 3.72 | 4.39 |
7GCPs-E | 0.38 | 0.26 | 0.53 | 0.82 | 1.67 | 3.21 | 7.04 | 7.94 | 1.34 | 1.41 | 3.92 | 4.51 |
Comparison | MEAN (m) | MAE (m) | STD (m) | RMSE (m) |
---|---|---|---|---|
DSM11GCPs−DSMPPK | 0.048 | 0.129 | 0.141 | 0.146 |
DSM11GCPs−DSM2GCPs | 0.029 | 0.907 | 0.116 | 0.119 |
DSM11GCPs−DSM4GCPs-T | 0.004 | 0.049 | 0.093 | 0.095 |
DSM11GCPs−DSM7GCPs-T | 0.003 | 0.051 | 0.084 | 0.091 |
DSM11GCPs−DSM9GCPs | 0.011 | 0.043 | 0.089 | 0.096 |
DSM11GCPs−DSM4GCPs-E | 0.008 | 0.040 | 0.079 | 0.086 |
DSM11GCPs−DSM7GCPs-E | 0.004 | 0.041 | 0.086 | 0.092 |
DSM4GCPs-T−DSM4GCPs-E | 0.009 | 0.055 | 0.083 | 0.089 |
Comparison | MEAN (m) | MAE (m) | STD (m) | RMSE (m) |
---|---|---|---|---|
IS2−DSMPPK | 0.201 | 0.217 | 0.689 | 0.916 |
IS2−DSM2GCPs | 0.179 | 0.194 | 0.608 | 0.883 |
IS2−DSM4GCPs-T | −0.052 | 0.141 | 0.541 | 0.533 |
IS2−DSM7GCPs-T | −0.046 | 0.144 | 0.498 | 0.509 |
IS2−DSM9GCPs | 0.031 | 0.129 | 0.504 | 0.492 |
IS2−DSM11GCPs | 0.036 | 0.133 | 0.519 | 0.551 |
IS2−DSM4GCPs-E | 0.041 | 0.136 | 0.477 | 0.529 |
IS2−DSM7GCPs-E | −0.037 | 0.140 | 0.511 | 0.497 |
Comparison | MEAN (m) | MAE (m) | STD (m) | RMSE (m) |
---|---|---|---|---|
ArcticDEM−DSMPPK | −0.314 | 0.612 | 1.760 | 1.513 |
ArcticDEM−DSM2GCPs | −0.303 | 0.557 | 1.682 | 1.579 |
ArcticDEM−DSM4GCPs-T | −0.094 | 0.481 | 1.483 | 1.466 |
ArcticDEM−DSM7GCPs-T | −0.106 | 0.524 | 1.562 | 1.439 |
ArcticDEM−DSM9GCPs | −0.096 | 0.495 | 1.521 | 1.454 |
ArcticDEM−DSM11GCPs | −0.112 | 0.477 | 1.517 | 1.422 |
ArcticDEM−DSM4GCPs-E | −0.101 | 0.485 | 1.509 | 1.431 |
ArcticDEM−DSM7GCPs-E | −0.097 | 0.512 | 1.531 | 1.454 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Li, G.; Chen, Z.; Zhang, S.; Zhang, B.; Cheng, X. Impacts of GCP Distributions on UAV-PPK Photogrammetry at Sermeq Avannarleq Glacier, Greenland. Remote Sens. 2024, 16, 3934. https://doi.org/10.3390/rs16213934
Zhao H, Li G, Chen Z, Zhang S, Zhang B, Cheng X. Impacts of GCP Distributions on UAV-PPK Photogrammetry at Sermeq Avannarleq Glacier, Greenland. Remote Sensing. 2024; 16(21):3934. https://doi.org/10.3390/rs16213934
Chicago/Turabian StyleZhao, Haiyan, Gang Li, Zhuoqi Chen, Shuhang Zhang, Baogang Zhang, and Xiao Cheng. 2024. "Impacts of GCP Distributions on UAV-PPK Photogrammetry at Sermeq Avannarleq Glacier, Greenland" Remote Sensing 16, no. 21: 3934. https://doi.org/10.3390/rs16213934
APA StyleZhao, H., Li, G., Chen, Z., Zhang, S., Zhang, B., & Cheng, X. (2024). Impacts of GCP Distributions on UAV-PPK Photogrammetry at Sermeq Avannarleq Glacier, Greenland. Remote Sensing, 16(21), 3934. https://doi.org/10.3390/rs16213934