An Approach to Predicting Urban Carbon Stock Using a Self-Attention Convolutional Long Short-Term Memory Network Model: A Case Study in Wuhan Urban Circle
Abstract
:1. Introduction
2. Theoretical Framework
3. Materials and Methodology
3.1. Study Area
3.2. Methodology
3.2.1. Predicting Land Use Based on SA-ConvLSTM Modeling
SA-ConvLSTM Model
SAM Module
3.2.2. Using the InVEST Model to Analyze the Carbon Stock
3.2.3. Indicators for the Assessment of Predictive Models
3.2.4. Metrics for Assessing the Correlation Between Land Utilization and Carbon Storage
3.2.5. Spatial Dependence Between Land Use Dynamics and Carbon Stocks
3.3. Data Sources
4. Results
4.1. Analysis of LULC Prediction Results
4.2. Carbon Stock Dynamics in Wuhan City Circle from 1999 to 2018
4.3. Prediction of Carbon Storage in the Wuhan City Circle in 2023
4.4. Effects of Land Use/Land Cover Change on Carbon Stock
4.5. Changes in the Land Use Dynamics from 1999 to 2023
4.6. Spatial Dependence Between Changes in Land Use Dynamics and Carbon Stocks
5. Discussion
6. Conclusions
- Compared to the traditional metacellular automata prediction method, the SA-ConvLSTM model demonstrates a 4.7% improvement in prediction accuracy. Furthermore, compared to traditional ConvLSTM, the self-attention memory module enhances the model’s prediction accuracy for small sample sizes.
- From 1999 to 2018, the carbon stock in the Wuhan City Circle exhibited a decreasing trend, with an overall decline of 6.49 × 106 MgC. The primary cause of this reduction is the encroachment of arable land due to rapid urbanization. From 2018 to 2023, the predicted carbon stock in the Wuhan urban circle was expected to increase by 9.17 × 104 MgC, primarily due to the conversion of water bodies into cropland, followed by the reforestation of cropland.
- The historical spatial error model suggests that a decrease of 1 unit in carbon stock change corresponds to an increase of 119 units in the SLUDD of water bodies and 33 units in impervious surfaces. The future spatial error model suggests that for each unit increase in carbon stock changes, the SLUDD would increase by 55 units for forests, 7 units for grasslands, and decrease by 305 units for water bodies.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Houghton, R.A. Land-use change and the carbon cycle. Glob. Chang. Biol. 1995, 1, 275–287. [Google Scholar] [CrossRef]
- Mitra, S.; Wassmann, R.; Vlek, P.L. An appraisal of global wetland area and its organic carbon stock. Curr. Sci. 2005, 88, 25–35. [Google Scholar]
- Shin, Y.J.; Midgley, G.F.; Archer, E.R.; Arneth, A.; Barnes, D.K.; Chan, L.; Hashimoto, S.; Hoegh-Guldberg, O.; Insarov, G.; Leadley, P. Actions to halt biodiversity loss generally benefit the climate. Glob. Chang. Biol. 2022, 28, 2846–2874. [Google Scholar] [CrossRef] [PubMed]
- Walker, W.S.; Gorelik, S.R.; Cook-Patton, S.C.; Baccini, A.; Farina, M.K.; Solvik, K.K.; Ellis, P.W.; Sanderman, J.; Houghton, R.A.; Leavitt, S.M. The global potential for increased storage of carbon on land. Proc. Natl. Acad. Sci. USA 2022, 119, e2111312119. [Google Scholar] [CrossRef] [PubMed]
- Fawzy, S.; Osman, A.I.; Doran, J.; Rooney, D.W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020, 18, 2069–2094. [Google Scholar] [CrossRef]
- Pendleton, L.; Donato, D.C.; Murray, B.C.; Crooks, S.; Jenkins, W.A.; Sifleet, S.; Craft, C.; Fourqurean, J.W.; Kauffman, J.B.; Marbà, N. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 2012, 7, e43542. [Google Scholar] [CrossRef]
- Georgiou, K.; Jackson, R.B.; Vindušková, O.; Abramoff, R.Z.; Ahlström, A.; Feng, W.; Harden, J.W.; Pellegrini, A.F.; Polley, H.W.; Soong, J.L. Global stocks and capacity of mineral-associated soil organic carbon. Nat. Commun. 2022, 13, 3797. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Ledo, A.; Smith, P.; Zerihun, A.; Whitaker, J.; Vicente-Vicente, J.L.; Qin, Z.; McNamara, N.P.; Zinn, Y.L.; Llorente, M.; Liebig, M. Changes in soil organic carbon under perennial crops. Glob. Chang. Biol. 2020, 26, 4158–4168. [Google Scholar] [CrossRef]
- Luo, Z.; Viscarra Rossel, R.A.; Shi, Z. Distinct controls over the temporal dynamics of soil carbon fractions after land use change. Glob. Chang. Biol. 2020, 26, 4614–4625. [Google Scholar] [CrossRef]
- Goetz, S.J.; Baccini, A.; Laporte, N.T.; Johns, T.; Walker, W.; Kellndorfer, J.; Houghton, R.A.; Sun, M. Mapping and monitoring carbon stocks with satellite observations: A comparison of methods. Carbon Balance Manag. 2009, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Smith, P. How to measure, report and verify soil carbon change. In Proceedings of the AGU Fall Meeting Abstracts, New Orleans, LA, USA, 13–17 December 2021; p. GC41D–01. [Google Scholar]
- Angelopoulou, T.; Balafoutis, A.; Zalidis, G.; Bochtis, D. From laboratory to proximal sensing spectroscopy for soil organic carbon estimation—A review. Sustainability 2020, 12, 443. [Google Scholar] [CrossRef]
- Ciais, P.; Dolman, A.J.; Bombelli, A.; Duren, R.; Peregon, A.; Rayner, P.J.; Miller, C.; Gobron, N.; Kinderman, G.; Marland, G. Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system. Biogeosciences 2014, 11, 3547–3602. [Google Scholar] [CrossRef]
- Goetz, S.; Dubayah, R. Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change. Carbon Manag. 2011, 2, 231–244. [Google Scholar] [CrossRef]
- Padarian, J.; Stockmann, U.; Minasny, B.; McBratney, A. Monitoring changes in global soil organic carbon stocks from space. Remote Sens. Environ. 2022, 281, 113260. [Google Scholar] [CrossRef]
- Li, T.; Xia, A.; McLaren, T.I.; Pandey, R.; Xu, Z.; Liu, H.; Manning, S.; Madgett, O.; Duncan, S.; Rasmussen, P. Preliminary Results in Innovative Solutions for Soil Carbon Estimation: Integrating Remote Sensing, Machine Learning, and Proximal Sensing Spectroscopy. Remote Sens. 2023, 15, 5571. [Google Scholar] [CrossRef]
- Zhang, M.; Du, H.; Mao, F.; Zhou, G.; Li, X.; Dong, L.; Zheng, J.; Zhu, D.e.; Liu, H.; Huang, Z. Spatiotemporal evolution of urban expansion using Landsat time series data and assessment of its influences on forests. ISPRS Int. J. Geo-Inf. 2020, 9, 64. [Google Scholar] [CrossRef]
- Adhikari, K.; Owens, P.R.; Libohova, Z.; Miller, D.M.; Wills, S.A.; Nemecek, J. Assessing soil organic carbon stock of Wisconsin, USA and its fate under future land use and climate change. Sci. Total Environ. 2019, 667, 833–845. [Google Scholar] [CrossRef]
- Li, Z.-L.; Tang, R.; Wan, Z.; Bi, Y.; Zhou, C.; Tang, B.; Yan, G.; Zhang, X. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors 2009, 9, 3801–3853. [Google Scholar] [CrossRef]
- Leh, M.D.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 2013, 165, 6–18. [Google Scholar] [CrossRef]
- He, C.; Zhang, D.; Huang, Q.; Zhao, Y. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models. Environ. Model. Softw. 2016, 75, 44–58. [Google Scholar] [CrossRef]
- Babbar, D.; Areendran, G.; Sahana, M.; Sarma, K.; Raj, K.; Sivadas, A. Assessment and prediction of carbon sequestration using Markov chain and InVEST model in Sariska Tiger Reserve, India. J. Clean. Prod. 2021, 278, 123333. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Mao, Y.; Li, L.; Wang, X.; Lin, Q. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, J.; Chen, G.; Lin, Y.; Yang, A.; Cheng, J. Coupling PLUS–InVEST model for ecosystem service research in Yunnan Province, China. Sustainability 2022, 15, 271. [Google Scholar] [CrossRef]
- Zhu, G.; Qiu, D.; Zhang, Z.; Sang, L.; Liu, Y.; Wang, L.; Zhao, K.; Ma, H.; Xu, Y.; Wan, Q. Land-use changes lead to a decrease in carbon storage in arid region, China. Ecol. Indic. 2021, 127, 107770. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, J.; Zhao, J.; Xue, F.; Li, Q.; Fang, K.; Shao, Z.; Li, S.; Zhou, J. Exploring potential of urban land-use management on carbon emissions——A case of Hangzhou, China. Ecol. Indic. 2023, 146, 109902. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, M.; Zhu, D.; Altan, O. Integrating remote sensing and a markov-FLUS model to simulate future land use changes in Hokkaido, Japan. Remote Sens. 2021, 13, 2621. [Google Scholar] [CrossRef]
- Peng, J.; Hu, X.; Wang, X.; Meersmans, J.; Liu, Y.; Qiu, S. Simulating the impact of Grain-for-Green Programme on ecosystem services trade-offs in Northwestern Yunnan, China. Ecosyst. Serv. 2019, 39, 100998. [Google Scholar]
- Pala, L.P.R.; Wang, Q.; Kolb, G.; Hessel, V. Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: An Aspen Plus model. Renew. Energy 2017, 101, 484–492. [Google Scholar] [CrossRef]
- Peng, Y.; Cheng, W.; Xu, X.; Song, H. Analysis and prediction of the spatiotemporal characteristics of land-use ecological risk and carbon storage in Wuhan metropolitan area. Ecol. Indic. 2024, 158, 111432. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Dong, H.; Zhang, L.; He, S. Spatial–Temporal Change Analysis and Multi-Scenario Simulation Prediction of Land-Use Carbon Emissions in the Wuhan Urban Agglomeration, China. Sustainability 2023, 15, 11021. [Google Scholar] [CrossRef]
- Emadi, M.; Taghizadeh-Mehrjardi, R.; Cherati, A.; Danesh, M.; Mosavi, A.; Scholten, T. Predicting and mapping of soil organic carbon using machine learning algorithms in Northern Iran. Remote Sens. 2020, 12, 2234. [Google Scholar] [CrossRef]
- Lin, Z.; Li, M.; Zheng, Z.; Cheng, Y.; Yuan, C. Self-attention convlstm for spatiotemporal prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 11531–11538. [Google Scholar]
- Guo, H.; Yang, C.; Liu, X.; Li, Y.; Meng, Q. Simulation evaluation of urban low-carbon competitiveness of cities within Wuhan city circle in China. Sustain. Cities Soc. 2018, 42, 688–701. [Google Scholar] [CrossRef]
- Castro, R.; Souto, Y.M.; Ogasawara, E.; Porto, F.; Bezerra, E. Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 2021, 426, 285–298. [Google Scholar] [CrossRef]
- Zhou, D.-X. Theory of deep convolutional neural networks: Downsampling. Neural Netw. 2020, 124, 319–327. [Google Scholar] [CrossRef]
- Hepburn, C.; Qi, Y.; Stern, N.; Ward, B.; Xie, C.; Zenghelis, D. Towards carbon neutrality and China’s 14th Five-Year Plan: Clean energy transition, sustainable urban development, and investment priorities. Environ. Sci. Ecotechnol. 2021, 8, 100130. [Google Scholar] [CrossRef]
- Yao, L.; Wang, X.; Zhang, J.; Yu, X.; Zhang, S.; Li, Q. Prediction of Sea Surface Chlorophyll-a Concentrations Based on Deep Learning and Time-Series Remote Sensing Data. Remote Sens. 2023, 15, 4486. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; Woo, W.-C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In Advances in Neural Information Processing Systems (NIPS); NIPS Proceedings; MIT Press: Cambridge, MA, USA, 2015; pp. 802–810. [Google Scholar]
- Elbasiouny, H.; El-Ramady, H.; Elbehiry, F.; Rajput, V.D.; Minkina, T.; Mandzhieva, S. Plant nutrition under climate change and soil carbon sequestration. Sustainability 2022, 14, 914. [Google Scholar] [CrossRef]
- Zhao, M.; He, Z.; Du, J.; Chen, L.; Lin, P.; Fang, S. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol. Indic. 2019, 98, 29–38. [Google Scholar] [CrossRef]
- Balasubramanian, D.; Zhou, W.-J.; Ji, H.-L.; Grace, J.; Bai, X.-L.; Song, Q.-H.; Liu, Y.-T.; Sha, L.-Q.; Fei, X.-H.; Zhang, X. Environmental and management controls of soil carbon storage in grasslands of southwestern China. J. Environ. Manag. 2020, 254, 109810. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, Z.; Lu, C. The contribution of land use and land cover on carbon storage in the north Tibet Plateau, China. J. Anim. Plant Sci. 2021, 31, 1598–1609. [Google Scholar]
- Spawn, S.A.; Sullivan, C.C.; Lark, T.J.; Gibbs, H.K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 2020, 7, 112. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Ke, X.; Zhou, T.; Zheng, W.; Wang, L. Impacts of cropland expansion on carbon storage: A case study in Hubei, China. J. Environ. Manag. 2020, 265, 110515. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.; Xu, J.; Yu, Z.; Qian, P.; Lu, M.; Ma, C. Spatiotemporal pattern differentiation and influencing factors of cultivated land use efficiency in Hubei Province under carbon emission constraints. Sustainability 2022, 14, 7042. [Google Scholar] [CrossRef]
- Xu, L.; He, N.; Yu, G. A dataset of carbon density in Chinese terrestrial ecosystems (2010s). China Sci. Data 2019, 4, 90–96. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, J.; Chen, W. Impact of urban expansion on carbon storage under multi-scenario simulations in Wuhan, China. Environ. Sci. Pollut. Res. 2022, 29, 45507–45526. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. 30 m annual land cover and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data Discuss. 2021, 2021, 3907–3925. [Google Scholar] [CrossRef]
- Xu, K.; Kong, C.; Liu, G.; Wu, C.; Deng, H.; Zhang, Y.; Zhuang, Q. Changes of urban wetlands in Wuhan, China, from 1987 to 2005. Prog. Phys. Geogr. 2010, 34, 207–220. [Google Scholar]
- Xu, X.; Liu, J.; Zhang, S.; Li, R.; Yan, C.; Wu, S. China’s Multi-Period Land Use Land Cover Remote Sensing Monitoring Data Set (CNLUCC); Resource and Environment Data Cloud Platform: Beijing, China, 2018. [Google Scholar]
- Degefu, M.A.; Argaw, M.; Feyisa, G.L.; Degefa, S. Impact of landscape dynamics and intensities on the ecological land of major cities in Ethiopia. Environ. Syst. Res. 2021, 10, 32. [Google Scholar] [CrossRef]
- Chen, L.; Pei, S.; Liu, X.; Qiao, Q.; Liu, C. Mapping and analysing tradeoffs, synergies and losses among multiple ecosystem services across a transitional area in Beijing, China. Ecol. Indic. 2021, 123, 107329. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, L.; Fu, C.; Kosmyna, T. A fishnet-constrained land use mix index derived from remotely sensed data. Ann. GIS 2017, 23, 303–313. [Google Scholar] [CrossRef]
- Guo, A.; Yang, J.; Xiao, X.; Xia, J.; Jin, C.; Li, X. Influences of urban spatial form on urban heat island effects at the community level in China. Sustain. Cities Soc. 2020, 53, 101972. [Google Scholar] [CrossRef]
- Xu, Q.; Zhu, A.-X.; Liu, J. Land-use change modeling with cellular automata using land natural evolution unit. Catena 2023, 224, 106998. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, H. An integrated approach of logistic-MCE-CA-Markov to predict the land use structure and their micro-spatial characteristics analysis in Wuhan metropolitan area, Central China. Environ. Sci. Pollut. Res. 2022, 29, 30030–30053. [Google Scholar] [CrossRef]
- Blanton, P.; Marcus, W.A. Railroads, roads and lateral disconnection in the river landscapes of the continental United States. Geomorphology 2009, 112, 212–227. [Google Scholar] [CrossRef]
- Muller, D.; Zeller, M. Land use dynamics in the central highlands of Vietnam: A spatial model combining village survey data with satellite imagery interpretation. Agric. Econ. 2002, 27, 333–354. [Google Scholar] [CrossRef]
- Liu, J.; Yan, J.; Wang, L.; Huang, L.; He, H.; Liu, H. Remote sensing time series classification based on self-attention mechanism and time sequence enhancement. Remote Sens. 2021, 13, 1804. [Google Scholar] [CrossRef]
- Zhu, L.; Song, R.; Sun, S.; Li, Y.; Hu, K. Land use/land cover change and its impact on ecosystem carbon storage in coastal areas of China from 1980 to 2050. Ecol. Indic. 2022, 142, 109178. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; Wu, P.; Feng, K.; Hubacek, K.; Li, X.; Sun, L. Impacts of urban expansion on terrestrial carbon storage in China. Environ. Sci. Technol. 2019, 53, 6834–6844. [Google Scholar] [CrossRef]
- Xu, L.; Saatchi, S.S.; Yang, Y.; Yu, Y.; Pongratz, J.; Bloom, A.A.; Bowman, K.; Worden, J.; Liu, J.; Yin, Y. Changes in global terrestrial live biomass over the 21st century. Sci. Adv. 2021, 7, eabe9829. [Google Scholar] [CrossRef]
Land Use Type | Above-Ground Carbon Density | Below-Ground Carbon Density | Soil Organic Carbon Density | Dead Organic Matter Carbon Density | Total Carbon Density |
---|---|---|---|---|---|
Cropland | 16.49 | 10.89 | 75.82 | 2.11 | 105.31 |
Forest | 30.14 | 6.03 | 100.15 | 2.78 | 139.1 |
Shrubs | 8.67 | 4.05 | 82.9 | 0.87 | 96.49 |
Grassland | 14.29 | 17.15 | 87.05 | 7.28 | 125.77 |
Water | 9.3 | 14.7 | 81.7 | 43.1 | 148.8 |
Barren | 10.36 | 2.07 | 34.42 | 0.96 | 47.81 |
Impervious | 7.61 | 1.52 | 34.33 | 0 | 43.46 |
Specific Data | Resolution | Type | Source |
---|---|---|---|
Population | 1000 m | Raster | Resource and Environment Science and Data Centre of the Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 25 April 2023) |
GDP | 1000 m | Raster | |
DEM | 30 m | Raster | NASA(National Aeronautics and Space Administration) and NGA (National Geospatial-Intelligence Agency) (https://www2.jpl.nasa.gov/srtm/, accessed on 9 September 2023) |
The distance to Rivers | 30 m | Raster | National Catalogue Service for Geographic Information (https://www.webmap.cn/commres.do?method=result100, accessed on 5 September 2023) The distance module in ArcGIS 10.8 was used to calculate the distances from the shapefile format of each source data |
The distance to Railways | 30 m | Raster | |
The distance to Road | 30 m | Raster |
Model | Accuracy | Precision | Recall | F1 | Kappa |
---|---|---|---|---|---|
OS-CA | 94.629% | 81.879% | 78.321% | 80.061% | 90.498% |
ConvLSTM | 99.313% | 95.173% | 95.460% | 95.277% | 98.820% |
SA-ConvLSTM | 99.325% | 95.337% | 96.549% | 95.919% | 98.884% |
Evaluation Indicators | Type | Cropland | Forest | Shrubs | Grassland | Water | Barren | Impervious | |
---|---|---|---|---|---|---|---|---|---|
Model | |||||||||
Accuracy | OS-CA | 91.42% | 91.00% | 70.37% | 35.85% | 79.34% | 36.98% | 81.36% | |
ConvLSTM | 98.78% | 99.06% | 85.63% | 78.27% | 96.16% | 78.91% | 98.15% | ||
SA-ConvLSTM | 98.79% | 99.05% | 87.52% | 78.96% | 96.20% | 88.35% | 98.14% | ||
Precision | OS-CA | 95.52% | 95.29% | 86.33% | 64.62% | 91.82% | 53.99% | 85.58% | |
ConvLSTM | 99.57% | 99.41% | 89.84% | 85.75% | 96.72% | 94.49% | 99.90% | ||
SA-ConvLSTM | 99.58% | 99.41% | 90.64% | 86.09% | 96.74% | 95.02% | 99.91% | ||
Recall | OS-CA | 95.52% | 95.29% | 79.19% | 44.60% | 85.38% | 53.99% | 94.28% | |
ConvLSTM | 99.20% | 99.64% | 94.81% | 89.97% | 99.39% | 82.71% | 98.21% | ||
SA-ConvLSTM | 99.21% | 99.64% | 96.22% | 90.51% | 99.42% | 92.63% | 98.23% | ||
F1 | OS-CA | 95.52% | 95.29% | 82.61% | 52.77% | 88.48% | 53.99% | 89.72% | |
ConvLSTM | 99.39% | 99.52% | 92.26% | 87.81% | 98.03% | 88.21% | 99.05% | ||
SA-ConvLSTM | 99.39% | 99.53% | 93.34% | 88.24% | 98.06% | 93.81% | 99.06% |
Output of Spatial Lag Regression (1999–2018) | Output of Spatial Error Model (1999–2018) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Coefficient | Std. Error | z-Value | Probability | Variable | Coefficient | Std. Error | z-Value | Probability |
CONSTANT | 137.05 | 111.79 | 1.23 | 0.22 | CONSTANT | 216.84 | 149.62 | 1.45 | 0.15 |
SLUDD_CL | −54.55 | 104.68 | −0.52 | 0.60 | SLUDD_CL | −47.19 | 101.30 | −0.47 | 0.64 |
SLUDD_FL | −1.18 | 5.96 | −0.20 | 0.84 | SLUDD_FL | −1.58 | 4.92 | −0.32 | 0.75 |
SLUDD_SL | 1.71 | 20.94 | 0.08 | 0.94 | SLUDD_SL | 24.56 | 22.08 | 1.11 | 0.27 |
SLUDD_GL | 0.42 | 1.76 | 0.24 | 0.81 | SLUDD_GL | −0.90 | 1.69 | −0.53 | 0.60 |
SLUDD_WL | −74.47 | 47.12 | −1.58 | 0.11 | SLUDD_WL | −119.53 | 45.14 | −2.65 | 0.008 ** |
SLUDD_BL | −0.52 | 0.31 | −1.68 | 0.09 | SLUDD_BL | −0.45 | 0.26 | −1.74 | 0.08 |
SLUDD_IL | −25.81 | 15.01 | −1.72 | 0.09 | SLUDD_IL | −33.17 | 15.59 | −2.13 | 0.033 * |
LC | −184.78 | 201.29 | −0.92 | 0.36 | LC | −208.37 | 165.71 | −1.26 | 0.21 |
Changes in LUM(%) | −486.53 | 1189.57 | −0.41 | 0.68 | Changes in LUM(%) | −410.90 | 1271.31 | −0.32 | 0.75 |
W_CC_SUM | 0.56 | 0.13 | 4.36 | 0.000 ** | LAMBDA | 0.74 | 0.09 | 7.92 | 0.000 ** |
Output of Spatial Lag Regression (2019–2023) | Output of Spatial Error Model (2019–2023) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Coefficient | Std. Error | z-Value | Probability | Variable | Coefficient | Std. Error | z-Value | Probability |
CONSTANT | 1.30 | 10.03 | 0.13 | 0.90 | CONSTANT | 1.93 | 9.34 | 0.21 | 0.84 |
SLUDD_CL | −173.57 | 94.03 | −1.85 | 0.07 | SLUDD_CL | −132.82 | 86.26 | −1.54 | 0.12 |
SLUDD_FL | 43.88 | 21.20 | 2.07 | 0.038 * | SLUDD_FL | 55.68 | 21.01 | 2.65 | 0.008 ** |
SLUDD_SL | 8.03 | 12.05 | 0.67 | 0.51 | SLUDD_SL | 0.03 | 11.52 | 0.00 | 1.00 |
SLUDD_GL | 5.94 | 2.30 | 2.59 | 0.010 ** | SLUDD_GL | 7.73 | 2.14 | 3.62 | 0.000 ** |
SLUDD_WL | −302.68 | 33.78 | −8.96 | 0.000 ** | SLUDD_WL | −305.17 | 31.07 | −9.82 | 0.000 ** |
SLUDD_BL | −1.78 | 1.76 | −1.01 | 0.31 | SLUDD_BL | −0.83 | 1.73 | −0.48 | 0.63 |
SLUDD_IL | −97.61 | 139.17 | −0.70 | 0.48 | SLUDD_IL | −30.11 | 138.35 | −0.22 | 0.83 |
LC | 475.95 | 305.84 | 1.56 | 0.12 | LC | 627.53 | 295.85 | 2.12 | 0.034 * |
Changes in LUM(%) | 1197.77 | 1682.75 | 0.71 | 0.48 | Changes in LUM(%) | 920.24 | 1588.93 | 0.58 | 0.56 |
W_CC_SUM | −0.17 | 0.12 | −1.50 | 0.13 | LAMBDA | −0.45 | 0.20 | −2.29 | 0.022* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Wu, X.; Peng, B. An Approach to Predicting Urban Carbon Stock Using a Self-Attention Convolutional Long Short-Term Memory Network Model: A Case Study in Wuhan Urban Circle. Remote Sens. 2024, 16, 4372. https://doi.org/10.3390/rs16234372
Zhou Z, Wu X, Peng B. An Approach to Predicting Urban Carbon Stock Using a Self-Attention Convolutional Long Short-Term Memory Network Model: A Case Study in Wuhan Urban Circle. Remote Sensing. 2024; 16(23):4372. https://doi.org/10.3390/rs16234372
Chicago/Turabian StyleZhou, Zhi, Xueling Wu, and Bo Peng. 2024. "An Approach to Predicting Urban Carbon Stock Using a Self-Attention Convolutional Long Short-Term Memory Network Model: A Case Study in Wuhan Urban Circle" Remote Sensing 16, no. 23: 4372. https://doi.org/10.3390/rs16234372
APA StyleZhou, Z., Wu, X., & Peng, B. (2024). An Approach to Predicting Urban Carbon Stock Using a Self-Attention Convolutional Long Short-Term Memory Network Model: A Case Study in Wuhan Urban Circle. Remote Sensing, 16(23), 4372. https://doi.org/10.3390/rs16234372