BDS-3/GNSS Undifferenced Pseudorange and Phase Time-Variant Mixed OSB Considering the Receiver Time-Variant Biases and Its Benefit on Multi-Frequency PPP
Abstract
:1. Introduction
2. Methods
2.1. General Observation Models and OSB Concept
2.2. Traditional GFIF Phase Time-Variant OSB Model
2.3. Undifferenced Mixed OSB Model Coupled with Satellite Clock Offsets
3. Experiment Setup
4. Results
4.1. Pseudorange and Phase Time-Variant Mixed OSB Service System
4.2. Characteristics of the Mixed OSB
4.3. The Advantages of the Mixed OSB in MFPPP
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montenbruck, O.; Hugentobler, U.; Dach, R.; Steigenberger, P.; Hauschild, A. Apparent clock variations of the Block IIF-1 (SVN62) GPS satellite. GPS Solut. 2011, 16, 303–313. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, L.; Li, J.; Yang, Y.; Zhang, T.; Mao, Y.; Sun, B.; Ren, X. Featured services and performance of BDS-3. Sci. Bull. 2021, 66, 2135–2143. [Google Scholar] [CrossRef] [PubMed]
- Dach, R.; Bockmann, E. International GNSS Service Technical Report 2022 (IGS Annual Report); IGS Central Bureau and University of Bern, Bern Open Publishing: Bern, Switzerland, 2023. [Google Scholar]
- Falcone, M.; Hahn, J.; Burger, T. Galileo. In Springer Handbook of Global Navigation Satellite Systems; Teunissen, P.J.G., Montenbruck, O., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 247–272. [Google Scholar]
- Jiao, G.; Song, S.; Jiao, W. Improving BDS-2 and BDS-3 joint precise point positioning with time delay bias estimation. Meas. Sci. Technol. 2020, 31, 025001. [Google Scholar] [CrossRef]
- Li, J.; Yang, Y.; Xu, J.; He, H.; Guo, H. GNSS multi-carrier fast partial ambiguity resolution strategy tested with real BDS/GPS dual- and triple-frequency observations. GPS Solut. 2013, 19, 5–13. [Google Scholar] [CrossRef]
- Li, X.; Liu, G.; Li, X.; Zhou, F.; Feng, G.; Yuan, Y.; Zhang, K. Galileo PPP rapid ambiguity resolution with five-frequency observations. GPS Solut. 2019, 24, 24. [Google Scholar] [CrossRef]
- Montenbruck, O.; Steigenberger, P.; Prange, L.; Deng, Z.; Zhao, Q.; Perosanz, F.; Romero, I.; Noll, C.; Stürze, A.; Weber, G.; et al. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)—Achievements, prospects and challenges. Adv. Space Res. 2017, 59, 1671–1697. [Google Scholar] [CrossRef]
- Steigenberger, P.; Deng, Z.; Guo, J.; Prange, L.; Song, S.; Montenbruck, O. BeiDou-3 orbit and clock quality of the IGS Multi-GNSS Pilot Project. Adv. Space Res. 2023, 71, 355–368. [Google Scholar] [CrossRef]
- Steigenberger, P.; Montenbruck, O. Galileo status: Orbits, clocks, and positioning. GPS Solut. 2016, 21, 319–331. [Google Scholar] [CrossRef]
- Ye, S.; Zhao, L.; Song, J.; Chen, D.; Jiang, W. Analysis of estimated satellite clock biases and their effects on precise point positioning. GPS Solut. 2017, 22, 16. [Google Scholar] [CrossRef]
- Li, H.; Li, B.; Lou, L.; Yang, L.; Wang, J. Impact of GPS differential code bias in dual- and triple-frequency positioning and satellite clock estimation. GPS Solut. 2016, 21, 897–903. [Google Scholar] [CrossRef]
- Su, K.; Jiao, G. Estimation of BDS pseudorange biases with high temporal resolution: Feasibility, affecting factors, and necessity. Satell. Navig. 2023, 4, 17. [Google Scholar] [CrossRef]
- Villiger, A.; Schaer, S.; Dach, R.; Prange, L.; Sušnik, A.; Jäggi, A. Determination of GNSS pseudo-absolute code biases and their long-term combination. J. Geod. 2019, 93, 1487–1500. [Google Scholar] [CrossRef]
- Wang, N.; Yuan, Y.; Li, Z.; Montenbruck, O.; Tan, B. Determination of differential code biases with multi-GNSS observations. J. Geod. 2015, 90, 209–228. [Google Scholar] [CrossRef]
- Håkansson, M.; Jensen, A.B.O.; Horemuz, M.; Hedling, G. Review of code and phase biases in multi-GNSS positioning. GPS Solut. 2016, 21, 849–860. [Google Scholar] [CrossRef]
- Jin, X.; Song, S.; Zhou, W.; Cheng, N. Multi-GNSS global ionosphere modeling enhanced by virtual observation stations based on IRI-2016 model. J. Geod. 2022, 96, 81. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, X.; Xie, W.; Zhang, K.; Yuan, Y.; Li, X. Global Ionospheric Modelling using Multi-GNSS: BeiDou, Galileo, GLONASS and GPS. Sci. Rep. 2016, 6, 33499. [Google Scholar] [CrossRef]
- Wang, N.; Li, Z.; Duan, B.; Hugentobler, U.; Wang, L. GPS and GLONASS observable-specific code bias estimation: Comparison of solutions from the IGS and MGEX networks. J. Geod. 2020, 94, 74. [Google Scholar] [CrossRef]
- Guo, J.; Geng, J.; Zeng, J.; Song, X.; Defraigne, P. GPS/Galileo/BDS phase bias stream from Wuhan IGS analysis center for real-time PPP ambiguity resolution. GPS Solut. 2024, 28, 67. [Google Scholar] [CrossRef]
- Pan, L.; Zhang, X.; Guo, F.; Liu, J. GPS inter-frequency clock bias estimation for both uncombined and ionospheric-free combined triple-frequency precise point positioning. J. Geod. 2018, 93, 473–487. [Google Scholar] [CrossRef]
- Pan, L.; Zhang, X.; Li, X.; Liu, J.; Guo, F.; Yuan, Y. GPS inter-frequency clock bias modeling and prediction for real-time precise point positioning. GPS Solut. 2018, 22, 76. [Google Scholar] [CrossRef]
- Gong, X.; Gu, S.; Lou, Y.; Zheng, F.; Yang, X.; Wang, Z.; Liu, J. Research on empirical correction models of GPS Block IIF and BDS satellite inter-frequency clock bias. J. Geod. 2020, 94, 36. [Google Scholar] [CrossRef]
- Su, K.; Jin, S.; Jiao, G. GNSS carrier phase time-variant observable-specific signal bias (OSB) handling: An absolute bias perspective in multi-frequency PPP. GPS Solut. 2022, 26, 71. [Google Scholar] [CrossRef]
- Zhang, B.; Teunissen, P.J.G.; Yuan, Y. On the short-term temporal variations of GNSS receiver differential phase biases. J. Geod. 2016, 91, 563–572. [Google Scholar] [CrossRef]
- Guo, J.; Geng, J. GPS satellite clock determination in case of inter-frequency clock biases for triple-frequency precise point positioning. J. Geod. 2017, 92, 1133–1142. [Google Scholar] [CrossRef]
- Jiao, G.; Song, S.; Su, K. Improving undifferenced precise satellite clock estimation with BDS-3 quad-frequency B1I/B3I/B1C/B2a observations for precise point positioning. GPS Solut. 2022, 27, 28. [Google Scholar] [CrossRef]
- Fan, L.; Shi, C.; Li, M.; Wang, C.; Zheng, F.; Jing, G.; Zhang, J. GPS satellite inter-frequency clock bias estimation using triple-frequency raw observations. J. Geod. 2019, 93, 2465–2479. [Google Scholar] [CrossRef]
- Geng, J.; Wen, Q.; Zhang, Q.; Li, G.; Zhang, K. GNSS observable-specific phase biases for all-frequency PPP ambiguity resolution. J. Geod. 2022, 96, 11. [Google Scholar] [CrossRef]
- Jiao, G.; Song, S.; Su, K. Analysis of Galileo five-frequency precise satellite clock estimation models and its effect on multi-frequency PPP. Measurement 2023, 206, 112297. [Google Scholar] [CrossRef]
- Leick, A.; Rapoport, L.; Tatarnikov, D. GNSS Positioning Approaches. In GPS Satellite Surveying; Wiley: Hoboken, NJ, USA, 2015; pp. 257–399. [Google Scholar]
- Li, X.; Wang, Q.; Wu, J.; Yuan, Y.; Xiong, Y.; Gong, X.; Wu, Z. Multi-GNSS products and services at iGMAS Wuhan Innovation Application Center: Strategy and evaluation. Satell. Navig. 2022, 3, 20. [Google Scholar] [CrossRef]
- Pan, L.; Zhang, X.; Li, X.; Liu, J.; Li, X. Characteristics of inter-frequency clock bias for Block IIF satellites and its effect on triple-frequency GPS precise point positioning. GPS Solut. 2016, 21, 811–822. [Google Scholar] [CrossRef]
- Schaer, S. SINEX BIAS-Solution (Software/Technique) INdependent EXchange Format for GNSS BIASes Version 1.00; IGS Workshop on GNSS Biases: Bern, Switzerland, 2016. [Google Scholar]
- Guo, J.; Xu, X.; Zhao, Q.; Liu, J. Precise orbit determination for quad-constellation satellites at Wuhan University: Strategy, result validation, and comparison. J. Geod. 2015, 90, 143–159. [Google Scholar] [CrossRef]
- Hopfield, H.S. Two-quartic tropospheric refractivity profile for correcting satellite data. J. Geophys. Res. 1969, 74, 4487–4499. [Google Scholar] [CrossRef]
- Landskron, D.; Bohm, J. VMF3/GPT3: Refined discrete and empirical troposphere mapping functions. J. Geod. 2018, 92, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Su, K.; Jin, S.; Jiao, G. Assessment of multi-frequency global navigation satellite system precise point positioning models using GPS, BeiDou, GLONASS, Galileo and QZSS. Meas. Sci. Technol. 2020, 31, 064008. [Google Scholar] [CrossRef]
- Beyerle, G. Carrier phase wind-up in GPS reflectometry. GPS Solut. 2008, 13, 191–198. [Google Scholar] [CrossRef]
- Petit, G.; Luzum, B. IERS Conventions (2010); No. IERS-TN-36; Bureau International des Poids et Mesures Sevres (France): Saint-Cloud, France, 2010. [Google Scholar]
- Xia, Y.; Pan, S.; Zhao, Q.; Wang, D.; Gao, W. Characteristics and modelling of BDS satellite inter-frequency clock bias for triple-frequency PPP. Surv. Rev. 2018, 52, 38–48. [Google Scholar] [CrossRef]
Items | Strategies |
---|---|
Basic frequency pair | GPS L1/L2, BDS-3 B1I/B3I, Galileo E1/E5a |
Estimated frequency | GPS L5, BDS-3 B1C/B2a, Galileo E5b/E5/E6 |
Elevation cutoff | 7 degrees |
Weighting | Elevation weight [sin(elevation)] |
Filter type | Bidirectional Kalman filter (forward + backward) |
Satellite orbit and clock offsets | Fixed to WHU MGEX final precise products |
Receiver coordinate | Fixed to IGS SINEX-file coordinates |
Satellite IFCB | Estimated as random walk (104 m2/s) [5] |
Reference IFCB | Zero-mean condition |
Receiver clock offsets | Estimated as white noise |
Tropospheric delay | Dry part: modified Hopfield model Wet part: estimated as random walk (10−9 m2/s) |
Ionospheric delay | Eliminated first order by IF observations |
Satellite and receiver antenna | IGS MGEX values (igs14.atx) |
Phase windup effect | Corrected [39] |
Relativistic effect | Corrected [40] |
Earth rotation | Corrected [40] |
Tide effect | Solid earth, pole, and ocean tide [40] |
Ambiguity | Estimated as float |
DCB | Parameter recombination |
Type (Unit: mm) | GPS | BDS-3 | Galileo | ||||
---|---|---|---|---|---|---|---|
L5 | B1C | B2a | E5b | E5 | E6 | ||
STD UD OSB | Scheme 1 | 18.6 | 5.7 | 8.8 | 1.5 | 2.3 | 2.7 |
Scheme 2 | 17.2 | 1.8 | 5.4 | 1.3 | 0.9 | 2.1 | |
Improvement | 7.5% | 68.4% | 38.6% | 13.3% | 60.9% | 22.2% | |
RMS UD OSB | Scheme 1 | 20.3 | 5.9 | 9.2 | 1.7 | 2.3 | 2.9 |
Scheme 2 | 18.4 | 2.0 | 6.0 | 1.5 | 1.0 | 2.3 | |
Improvement | 9.4% | 66.1% | 34.8% | 11.8% | 56.5% | 20.7% | |
STD ED OSB | Scheme 1 | 0.5 | 0.5 | 0.8 | 0.4 | 0.2 | 0.4 |
Scheme 2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | |
Improvement | 60.0% | 80.0% | 87.5% | 75.0% | 50.0% | 75.0% | |
RMS ED OSB | Scheme 1 | 0.5 | 0.6 | 0.9 | 0.4 | 0.3 | 0.5 |
Scheme 2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | |
Improvement | 60.0% | 83.3% | 88.9% | 75.0% | 66.7% | 80.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, G.; Su, K.; Fan, M.; Yang, Y.; Hu, H. BDS-3/GNSS Undifferenced Pseudorange and Phase Time-Variant Mixed OSB Considering the Receiver Time-Variant Biases and Its Benefit on Multi-Frequency PPP. Remote Sens. 2024, 16, 4433. https://doi.org/10.3390/rs16234433
Jiao G, Su K, Fan M, Yang Y, Hu H. BDS-3/GNSS Undifferenced Pseudorange and Phase Time-Variant Mixed OSB Considering the Receiver Time-Variant Biases and Its Benefit on Multi-Frequency PPP. Remote Sensing. 2024; 16(23):4433. https://doi.org/10.3390/rs16234433
Chicago/Turabian StyleJiao, Guoqiang, Ke Su, Min Fan, Yuze Yang, and Huaquan Hu. 2024. "BDS-3/GNSS Undifferenced Pseudorange and Phase Time-Variant Mixed OSB Considering the Receiver Time-Variant Biases and Its Benefit on Multi-Frequency PPP" Remote Sensing 16, no. 23: 4433. https://doi.org/10.3390/rs16234433
APA StyleJiao, G., Su, K., Fan, M., Yang, Y., & Hu, H. (2024). BDS-3/GNSS Undifferenced Pseudorange and Phase Time-Variant Mixed OSB Considering the Receiver Time-Variant Biases and Its Benefit on Multi-Frequency PPP. Remote Sensing, 16(23), 4433. https://doi.org/10.3390/rs16234433