Mapping Windthrow Severity as Change in Canopy Cover in a Temperate Eucalypt Forest
Abstract
:1. Introduction
- To test regression models based on high-resolution remote sensing data for estimating forest canopy cover before and after windthrow in broadleaf evergreen eucalypt-dominated forests.
- To use the best performing model to assess and quantify windthrow severity based on percentage change in forest canopy cover.
- To provide a continuous map of windthrow severity across the study landscape.
2. Materials and Methods
2.1. Study Area
2.2. Storm Event and Methodology Workflow
2.3. Plot Selection
2.4. Canopy Cover Percentage Assessment
2.5. S2 Image Preprocessing and Feature Engineering
- All single bands with three different recipes: (1) all single bands, (2) principal component analysis (PCA)-selected bands, and (3) feature-selected bands (potential removal of variables with strong absolute correlations with other variables, and normalized variables to have a mean of zero and a standard deviation of one).
- Percentiles (10th, 25th, 50th, 75th, and 95th) of single bands from their distribution across the selected 2-month periods with three different recipes: all available single bands, PCA-selected bands, and feature-selected bands.
- The above-mentioned selected indices.
2.6. Modelling Framework
2.6.1. Model Selection
2.6.2. Workflow
2.7. Map Creation of Canopy Cover Percentage and Windthrow Severity
3. Results
Model Performance
4. Discussion
4.1. Time Period for Change Detection
4.2. Limitations
4.3. Predictor Variables and Model Performance
4.4. Extent and Severity of Windthrow
4.5. Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, M.S.; Thapa, V.; Arévalo, J.R.; Palmer, M.W. Windstorm Damage and Forest Recovery: Accelerated Succession, Stand Structure, and Spatial Pattern over 25 Years in Two Minnesota Forests. Plant Ecol. 2012, 213, 1833–1842. [Google Scholar] [CrossRef]
- Everham, E.M.; Brokaw, N.V.L. Forest Damage and Recovery from Catastrophic Wind. Bot. Rev. 1996, 62, 113–185. [Google Scholar] [CrossRef]
- Mitchell, S.J. Wind as a Natural Disturbance Agent in Forests: A Synthesis. For. Int. J. For. Res. 2013, 86, 147–157. [Google Scholar] [CrossRef]
- Ulanova, N.G. The Effects of Windthrow on Forests at Different Spatial Scales: A Review. For. Ecol. Manag. 2000, 135, 155–167. [Google Scholar] [CrossRef]
- Gardiner, B.; Schuck, A.R.T.; Schelhaas, M.-J.; Orazio, C.; Blennow, K.; Nicoll, B. Living with Storm Damage to Forests; European Forest Institute Joensuu: Joensuu, Finland, 2013; Volume 3, ISBN 952-5980-08-1. [Google Scholar]
- FAO. Climate Change Guidelines for Forest Managers; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Forzieri, G.; Girardello, M.; Ceccherini, G.; Spinoni, J.; Feyen, L.; Hartmann, H.; Beck, P.S.A.; Camps-Valls, G.; Chirici, G.; Mauri, A.; et al. Emergent Vulnerability to Climate-Driven Disturbances in European Forests. Nat. Commun. 2021, 12, 1081. [Google Scholar] [CrossRef]
- Pugh, T.A.M.; Lindeskog, M.; Smith, B.; Poulter, B.; Arneth, A.; Haverd, V.; Calle, L. Role of Forest Regrowth in Global Carbon Sink Dynamics. Proc. Natl. Acad. Sci. USA 2019, 116, 4382–4387. [Google Scholar] [CrossRef]
- Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M.D.; Seneviratne, S.I.; Zscheischler, J.; Beer, C.; Buchmann, N.; Frank, D.C.; et al. Climate Extremes and the Carbon Cycle. Nature 2013, 500, 287–295. [Google Scholar] [CrossRef]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest Disturbances under Climate Change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef]
- Gardiner, B. Wind Damage to Forests and Trees: A Review with an Emphasis on Planted and Managed Forests. J. For. Res. 2021, 26, 248–266. [Google Scholar] [CrossRef]
- Keenan, R.J. Climate Change Impacts and Adaptation in Forest Management: A Review. Ann. For. Sci. 2015, 72, 145–167. [Google Scholar] [CrossRef]
- Seidl, R.; Turner, M.G. Post-Disturbance Reorganization of Forest Ecosystems in a Changing World. Proc. Natl. Acad. Sci. USA 2022, 119, e2202190119. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.T.; Allen, E.R. A Review of Severe Thunderstorms in Australia. Atmos. Res. 2016, 178–179, 347–366. [Google Scholar] [CrossRef]
- Callaghan, J. Analysis of the June 2021 Winter Storm in Victoria with a Catastrophic Loss of Large Trees and Major Flooding. J. Aquac. Mar. Biol. 2023, 12, 54–70. [Google Scholar] [CrossRef]
- Everham, E.M. A Comparison of Methods for Quantifying Catastrophic Wind Damage to Forests. In Wind and Trees; Cambridge University Press: Cambridge, UK, 1995; pp. 340–357. [Google Scholar]
- Webb, S.L. Disturbance by Wind in Temperate-Zone Forests. In Ecosystems of Disturbed Ground; Elsevier: Amsterdam, The Netherlands, 1999; pp. 187–263. ISBN 0-444-82420-0. [Google Scholar]
- Gardiner, B.; Berry, P.; Moulia, B. Review: Wind Impacts on Plant Growth, Mechanics and Damage. Plant Sci. 2016, 245, 94–118. [Google Scholar] [CrossRef] [PubMed]
- Rich, R.L.; Frelich, L.; Reich, P.B.; Bauer, M.E. Detecting Wind Disturbance Severity and Canopy Heterogeneity in Boreal Forest by Coupling High-Spatial Resolution Satellite Imagery and Field Data. Remote Sens. Environ. 2010, 114, 299–308. [Google Scholar] [CrossRef]
- Hu, T.; Smith, R.B. The Impact of Hurricane Maria on the Vegetation of Dominica and Puerto Rico Using Multispectral Remote Sensing. Remote Sens. 2018, 10, 827. [Google Scholar] [CrossRef]
- Kumar, R.; Rani, S.; Maharana, P. Assessing the Impacts of Amphan Cyclone over West Bengal, India: A Multi-Sensor Approach. Environ. Monit. Assess. 2021, 193, 283. [Google Scholar] [CrossRef]
- Deigele, W.; Brandmeier, M.; Straub, C. A Hierarchical Deep-Learning Approach for Rapid Windthrow Detection on PlanetScope and High-Resolution Aerial Image Data. Remote Sens. 2020, 12, 2121. [Google Scholar] [CrossRef]
- Einzmann, K.; Immitzer, M.; Böck, S.; Bauer, O.; Schmitt, A.; Atzberger, C. Windthrow Detection in European Forests with Very High-Resolution Optical Data. Forests 2017, 8, 21. [Google Scholar] [CrossRef]
- Chirici, G.; Bottalico, F.; Giannetti, F.; Del Perugia, B.; Travaglini, D.; Nocentini, S.; Kutchartt, E.; Marchi, E.; Foderi, C.; Fioravanti, M.; et al. Assessing Forest Windthrow Damage Using Single-Date, Post-Event Airborne Laser Scanning Data. For. Int. J. For. Res. 2018, 91, 27–37. [Google Scholar] [CrossRef]
- Nyström, M.; Holmgren, J.; Fransson, J.E.S.; Olsson, H. Detection of Windthrown Trees Using Airborne Laser Scanning. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 21–29. [Google Scholar] [CrossRef]
- Schwarz, M.; Steinmeier, C.; Holecz, F.; Stebler, O.; Wagner, H. Detection of Windthrow in Mountainous Regions with Different Remote Sensing Data and Classification Methods. Scand. J. For. Res. 2003, 18, 525–536. [Google Scholar] [CrossRef]
- Tanase, M.A.; Aponte, C.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Heurich, M. Detection of Windthrows and Insect Outbreaks by L-Band SAR: A Case Study in the Bavarian Forest National Park. Remote Sens. Environ. 2018, 209, 700–711. [Google Scholar] [CrossRef]
- Rüetschi, M.; Small, D.; Waser, L.T. Rapid Detection of Windthrows Using Sentinel-1 C-Band SAR Data. Remote Sens. 2019, 11, 115. [Google Scholar] [CrossRef]
- Vaglio Laurin, G.; Francini, S.; Luti, T.; Chirici, G.; Pirotti, F.; Papale, D. Satellite Open Data to Monitor Forest Damage Caused by Extreme Climate-Induced Events: A Case Study of the Vaia Storm in Northern Italy. For. Int. J. For. Res. 2021, 94, 407–416. [Google Scholar] [CrossRef]
- Wang, F.; Xu, Y.J. Comparison of Remote Sensing Change Detection Techniques for Assessing Hurricane Damage to Forests. Environ. Monit. Assess. 2010, 162, 311–326. [Google Scholar] [CrossRef]
- Hamdi, Z.M.; Brandmeier, M.; Straub, C. Forest Damage Assessment Using Deep Learning on High Resolution Remote Sensing Data. Remote Sens. 2019, 11, 1976. [Google Scholar] [CrossRef]
- Kislov, D.E.; Korznikov, K.A. Automatic Windthrow Detection Using Very-High-Resolution Satellite Imagery and Deep Learning. Remote Sens. 2020, 12, 1145. [Google Scholar] [CrossRef]
- Giannetti, F.; Pecchi, M.; Travaglini, D.; Francini, S.; D’Amico, G.; Vangi, E.; Cocozza, C.; Chirici, G. Estimating VAIA Windstorm Damaged Forest Area in Italy Using Time Series Sentinel-2 Imagery and Continuous Change Detection Algorithms. Forests 2021, 12, 680. [Google Scholar] [CrossRef]
- Dalponte, M.; Marzini, S.; Solano-Correa, Y.T.; Tonon, G.; Vescovo, L.; Gianelle, D. Mapping Forest Windthrows Using High Spatial Resolution Multispectral Satellite Images. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102206. [Google Scholar] [CrossRef]
- Dalponte, M.; Solano-Correa, Y.T.; Marinelli, D.; Liu, S.; Yokoya, N.; Gianelle, D. Detection of Forest Windthrows with Bitemporal COSMO-SkyMed and Sentinel-1 SAR Data. Remote Sens. Environ. 2023, 297, 113787. [Google Scholar] [CrossRef]
- Forzieri, G.; Pecchi, M.; Girardello, M.; Mauri, A.; Klaus, M.; Nikolov, C.; Rüetschi, M.; Gardiner, B.; Tomaštík, J.; Small, D.; et al. A Spatially Explicit Database of Wind Disturbances in European Forests over the Period 2000–2018. Earth Syst. Sci. Data 2020, 12, 257–276. [Google Scholar] [CrossRef]
- McCarthy, M.J.; Jessen, B.; Barry, M.J.; Figueroa, M.; McIntosh, J.; Murray, T.; Schmid, J.; Muller-Karger, F.E. Mapping Hurricane Damage: A Comparative Analysis of Satellite Monitoring Methods. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102134. [Google Scholar] [CrossRef]
- Ritter, T.; Gollob, C.; Kraßnitzer, R.; Stampfer, K.; Nothdurft, A. A Robust Method for Detecting Wind-Fallen Stems from Aerial RGB Images Using a Line Segment Detection Algorithm. Forests 2022, 13, 90. [Google Scholar] [CrossRef]
- Staben, G.W.; Evans, K.G. Estimates of Tree Canopy Loss as a Result of Cyclone Monica, in the Magela Creek Catchment Northern Australia. Austral Ecol. 2008, 33, 562–569. [Google Scholar] [CrossRef]
- Olmo, V.; Tordoni, E.; Petruzzellis, F.; Bacaro, G.; Altobelli, A. Use of Sentinel-2 Satellite Data for Windthrows Monitoring and Delimiting: The Case of “Vaia” Storm in Friuli Venezia Giulia Region (North-Eastern Italy). Remote Sens. 2021, 13, 1530. [Google Scholar] [CrossRef]
- Hateley, R.F. The Victorian Bush: Its “Original and Natural” Condition, 1st ed.; Polybractea Press: South Melbourne, VC, Autralia, 2010; ISBN 978-0-9775240-7-5. [Google Scholar]
- Florentine, S.; Milberg, P.; Gibson, M.; Westbrooke, M. Post-Wildfire Seedling Colonisation Patterns in a Eucalyptus Delegatensis (Myrtaceae) Windthrow Site at Snowy River National Park, Victoria. Aust. For. 2008, 71, 48–53. [Google Scholar] [CrossRef]
- Florentine, S.; Westbrooke, M. Effects of Windthrow on a Stand of Eucalyptus delegatensis (Myrtaceae) and Early Understorey Succession at Snowy River National Park, Victoria. Aust. For. 2004, 67, 6206. [Google Scholar] [CrossRef]
- Wood, M.J.; Scott, R.; Volker, P.W.; Mannes, D.J. Windthrow in Tasmania, Australia: Monitoring, Prediction And Management. For. Int. J. For. Res. 2008, 81, 415–427. [Google Scholar] [CrossRef]
- Cremer, K.W.; Myers, B.J.; Van Der Duys, F.; Craig, I.E. Silvicultural Lessons from the 1974 Windthrow in Radiata Pine Plantations near Canberra. Aust. For. 1977, 40, 274–292. [Google Scholar] [CrossRef]
- Turton, S.M. Landscape-Scale Impacts of Cyclone Larry on the Forests of Northeast Australia, Including Comparisons with Previous Cyclones Impacting the Region between 1858 and 2006. Austral Ecol. 2008, 33, 409–416. [Google Scholar] [CrossRef]
- Fairman, T.A.; Symon, C.; Cawson, J.; Penman, T.D. Throwing Fuel on the Fire? Contrasting Fine and Coarse Fuel Responses to Windthrow in Temperate Eucalypt Forests in South-Eastern Australia. For. Ecol. Manag. 2024, 572, 122266. [Google Scholar] [CrossRef]
- Collins, L.; McCarthy, G.; Mellor, A.; Newell, G.; Smith, L. Training Data Requirements for Fire Severity Mapping Using Landsat Imagery and Random Forest. Remote Sens. Environ. 2020, 245, 111839. [Google Scholar] [CrossRef]
- Collins, L.; Griffioen, P.; Newell, G.; Mellor, A. The Utility of Random Forests for Wildfire Severity Mapping. Remote Sens. Environ. 2018, 216, 374–384. [Google Scholar] [CrossRef]
- Tran, B.; Tanase, M.; Bennett, L.; Aponte, C. Evaluation of Spectral Indices for Assessing Fire Severity in Australian Temperate Forests. Remote Sens. 2018, 10, 1680. [Google Scholar] [CrossRef]
- ASRIS ASRIS—Australian Soil Resource Information System. Available online: http://www.asris.csiro.au/themes/Atlas.html#Atlas_Downloads (accessed on 17 June 2019).
- Hinko-Najera, N.; Isaac, P.; Beringer, J.; van Gorsel, E.; Ewenz, C.; McHugh, I.; Exbrayat, J.-F.; Livesley, S.J.; Arndt, S.K. Net Ecosystem Carbon Exchange of a Dry Temperate Eucalypt Forest. Biogeosciences 2017, 14, 3781–3800. [Google Scholar] [CrossRef]
- Tolhurst, K.; Flinn, D. Ecological Impacts of Fuel Reduction Burning in Dry Sclerophyll Forest: First Progress Report, Forest Research Report No.349; Forest Research Centre: Sippy Downs, QLD, Australia, 1992; p. 384. [Google Scholar]
- Bennett, L.T.; Aponte, C.; Baker, T.G.; Tolhurst, K.G. Evaluating Long-Term Effects of Prescribed Fire Regimes on Carbon Stocks in a Temperate Eucalypt Forest. For. Ecol. Manag. 2014, 328, 219–228. [Google Scholar] [CrossRef]
- Bennett, L.T.; Aponte, C.; Tolhurst, K.G.; Löw, M.; Baker, T.G. Decreases in Standing Tree-Based Carbon Stocks Associated with Repeated Prescribed Fires in a Temperate Mixed-Species Eucalypt Forest. For. Ecol. Manag. 2013, 306, 243–255. [Google Scholar] [CrossRef]
- Specht, R.L. Foliage Projective Cover and Standing Biomass. In Vegetation Classification in Australia; Gillson, A.N., Anderson, D.J., Eds.; CSIRO: Canberra, Australia, 1981; pp. 10–21. [Google Scholar]
- Kaye, W.J. Estimation of Tree Above-Ground Biomass across Native Forests of Victoria; MForSc, The University of Melbourne: Parkville, Australia, 2008. [Google Scholar]
- Tolhurst, K.G.; Victoria; Fire Management. Effects of Repeated Low-Intensity Fire on the Understorey of a Mixed Eucalypt Foothill Forest in South-Eastern Australia; Fire Management Research Reports; Fire Management, Department of Sustainability and Environment: East Melbourne, Victoria, Australia, 2003. [Google Scholar]
- VAHC Victoria’s Registered Aboriginal Parties. Available online: https://www.aboriginalheritagecouncil.vic.gov.au/victoria-registered-aboriginal-parties (accessed on 21 October 2024).
- Poynter, M. Collaborative Forest Management in Victoria’s Wombat State Forest—Will It Serve the Interests of the Wider Community? Aust. For. 2005, 68, 192–201. [Google Scholar] [CrossRef]
- Matthews, N.; Missingham, B. Social Accountability and Community Forest Management: The Failure of Collaborative Governance in the Wombat Forest. Dev. Pract. 2009, 19, 1052–1063. [Google Scholar] [CrossRef]
- Nearmap Australia High Resolution Aerial Maps from the Wombat Forest Region from December 2020 and December 2021; Nearmap: Victoria, Australia, 2022.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria. Available online: http://www.R-project.org/ (accessed on 21 October 2024).
- McBain, M.; Sumner, M. Slippymath: Slippy Map Tile Tools, R Package Version 0.3.1. Available online: https://cran.r-project.org/web/packages/slippymath/index.html (accessed on 21 October 2024).
- Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R J. 2018, 10, 439–446. [Google Scholar] [CrossRef]
- Olofsson, P.; Arévalo, P.; Espejo, A.B.; Green, C.; Lindquist, E.; McRoberts, R.E.; Sanz, M.J. Mitigating the Effects of Omission Errors on Area and Area Change Estimates. Remote Sensing of Environment 2020, 236, 111492. [Google Scholar] [CrossRef]
- Pebesma, E.; Bivand, R. Spatial Data Science: With Applications in R.; Chapman and Hall/CRC: New York, NY, USA, 2023; ISBN 978-0-429-45901-6. [Google Scholar]
- Hijmans, R.J.; Bivand, R.; Dyba, K.; Pebesma, E.; Sumner, M.D. Terra: Spatial Data Analysis, R Package Version 1.7–78. Available online: https://cran.r-project.org/web/packages/terra/index.html (accessed on 21 October 2024).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Proceedings of the Image and Signal Processing for Remote Sensing XXIII, Warsaw, Poland, 11–13 September 2017; Bruzzone, L., Bovolo, F., Benediktsson, J.A., Eds.; SPIE: Warsaw, Poland, 4 October, 2017; p. 3. [Google Scholar]
- ESA Sentinel-2 Products Specification Document (PSD); Version 15.0; European Space Agency: Paris, France, 2024.
- Candotti, A.; De Giglio, M.; Dubbini, M.; Tomelleri, E. A Sentinel-2 Based Multi-Temporal Monitoring Framework for Wind and Bark Beetle Detection and Damage Mapping. Remote Sens. 2022, 14, 6105. [Google Scholar] [CrossRef]
- Marusig, D.; Petruzzellis, F.; Tomasella, M.; Napolitano, R.; Altobelli, A.; Nardini, A. Correlation of Field-Measured and Remotely Sensed Plant Water Status as a Tool to Monitor the Risk of Drought-Induced Forest Decline. Forests 2020, 11, 77. [Google Scholar] [CrossRef]
- Kacic, P.; Thonfeld, F.; Gessner, U.; Kuenzer, C. Forest Structure Characterization in Germany: Novel Products and Analysis Based on GEDI, Sentinel-1 and Sentinel-2 Data. Remote Sens. 2023, 15, 1969. [Google Scholar] [CrossRef]
- Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Kuhn, M.; Wickham, H. Tidymodels: A Collection of Packages for Modeling and Machine Learning Using Tidyverse Principles. 2020. Available online: https://www.tidymodels.org (accessed on 9 January 2023).
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2(3), 18–22. R News 2002, 2, 18–22. [Google Scholar]
- Wright, M.N.; Ziegler, A. Ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. J. Stat. Softw. 2017, 077. [Google Scholar] [CrossRef]
- Therneau, T.; Atkinson, B. Rpart: Recursive Partitioning and Regression Trees, R Package Version 4.1.23. Available online: https://cran.r-project.org/web/packages/rpart (accessed on 21 October 2024).
- Breiman, L.; Friedman, J.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 1984; ISBN 978-1-315-13947-0. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Feature Engineering and Selection: A Practical Approach for Predictive Models; Taylor & Francis: Abingdon, UK, 2019. [Google Scholar]
- Kuhn, M.; Vaughan, D. Parsnip: A Common API to Modeling and Analysis Functions, R Package Version 1.2.1. Available online: https://cran.r-project.org/web/packages/parsnip/index.html (accessed on 21 October 2024).
- Burrows, G.E. Buds, Bushfires and Resprouting in the Eucalypts. Aust. J. Bot. 2013, 61, 331–349. [Google Scholar] [CrossRef]
- Gao, B.-C.; Goetz, A.F.H. Extraction of Dry Leaf Spectral Features from Reflectance Spectra of Green Vegetation. Remote Sens. Environ. 1994, 47, 369–374. [Google Scholar] [CrossRef]
- Zhang, T.-X.; Su, J.-Y.; Liu, C.-J.; Chen, W.-H. Potential Bands of Sentinel-2A Satellite for Classification Problems in Precision Agriculture. Int. J. Autom. Comput. 2019, 16, 16–26. [Google Scholar] [CrossRef]
- Lawrence, R.L.; Ripple, W.J. Comparisons among Vegetation Indices and Bandwise Regression in a Highly Disturbed, Heterogeneous Landscape: Mount St. Helens, Washington. Remote Sens. Environ. 1998, 64, 91–102. [Google Scholar] [CrossRef]
- Victoria, F.F.M. Dandenong Ranges and Catchments. Available online: https://www.ffm.vic.gov.au/recovery-after-an-emergency/managing-fire-risk-after-storms/dandenong-ranges-and-catchments (accessed on 20 October 2024).
- Fairman, T.; Hinko-Najera, N.; Bennett, L.T.; Penman, T.D. Restoration of Storm Damaged Mixed Species Forests in Wombat and Cobaw State Forests; FLARE Wildfire Research Group, School of Agriculture, Food and Ecosystem Science; The University of Melbourne: Melbourne, Victoria, Australia, 2023; p. 85. [Google Scholar]
- BOM. CSIRO State of the Climate 2022: Bureau of Meteorology. Available online: http://www.bom.gov.au/state-of-the-climate/ (accessed on 1 October 2023).
- Dowdy, A.J.; Catto, J.L. Extreme Weather Caused by Concurrent Cyclone, Front and Thunderstorm Occurrences. Sci. Rep. 2017, 7, 40359. [Google Scholar] [CrossRef]
- Brown, A.; Dowdy, A. Severe Convective Wind Environments and Future Projected Changes in Australia. J. Geophys. Res. Atmos. 2021, 126, e2021JD034633. [Google Scholar] [CrossRef]
Period | Predictor Variable | Selection | Recipe |
---|---|---|---|
Nov–Dec | single bands | all | all |
feature-selected | |||
PCA | |||
percentile ranges | all | ||
feature-selected | |||
PCA | |||
indices | all | - | |
individual | - | ||
Feb–Mar | single bands | all | all |
Feature-selected | |||
PCA | |||
percentile ranges | all | ||
feature-selected | |||
PCA | |||
indices | all | - | |
individual | - |
Forest | Total (ha) | Windthrow (ha) | Low Severity (ha) | Mod Severity (ha) | High Severity (ha) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Wombat Forest | 63,312 | 100% | 39,987 | 63% | 29,233 | 46% | 7155 | 11% | 3599 | 6% |
State Forest | 44,101 | 70% | 29,762 | 67% | 21,332 | 48% | 5285 | 12% | 3145 | 7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hinko-Najera, N.; Bentley, P.D.; Hislop, S.; Bennett, A.C.; Burton, J.E.; Fairman, T.A.; Jellinek, S.; Najera Umana, J.C.; Bennett, L.T. Mapping Windthrow Severity as Change in Canopy Cover in a Temperate Eucalypt Forest. Remote Sens. 2024, 16, 4710. https://doi.org/10.3390/rs16244710
Hinko-Najera N, Bentley PD, Hislop S, Bennett AC, Burton JE, Fairman TA, Jellinek S, Najera Umana JC, Bennett LT. Mapping Windthrow Severity as Change in Canopy Cover in a Temperate Eucalypt Forest. Remote Sensing. 2024; 16(24):4710. https://doi.org/10.3390/rs16244710
Chicago/Turabian StyleHinko-Najera, Nina, Paul D. Bentley, Samuel Hislop, Alison C. Bennett, Jamie E. Burton, Thomas A. Fairman, Sacha Jellinek, Julio C. Najera Umana, and Lauren T. Bennett. 2024. "Mapping Windthrow Severity as Change in Canopy Cover in a Temperate Eucalypt Forest" Remote Sensing 16, no. 24: 4710. https://doi.org/10.3390/rs16244710
APA StyleHinko-Najera, N., Bentley, P. D., Hislop, S., Bennett, A. C., Burton, J. E., Fairman, T. A., Jellinek, S., Najera Umana, J. C., & Bennett, L. T. (2024). Mapping Windthrow Severity as Change in Canopy Cover in a Temperate Eucalypt Forest. Remote Sensing, 16(24), 4710. https://doi.org/10.3390/rs16244710