Current Status of the Community Sensor Model Standard for the Generation of Planetary Digital Terrain Models
Abstract
:1. Introduction
1.1. Overview of Photogrammetric Efforts at the Astrogeology Science Center
1.2. Brief History with SOCET SET
1.3. SOCET GXP and the CSM Standard
1.4. Goals
2. Steps Required to Support the CSM and SOCET GXP
2.1. Community Sensor Model API Updates
2.2. CSM for Planetary Sensors
Mini-RF Radar
2.3. The ALE and Knoten Libraries
2.4. TIN Editing Enhancement
2.5. Ready for the Transition to SOCET GXP
3. Comparison of HiRISE-Derived Stereo Results for SOCET GXP and SOCET SET
3.1. Comparison HiRISE Pair 1
3.2. Comparison HiRISE Pair 2
3.3. Comparison Summary
4. Access to the ASC Community Sensor Model usgscsm Library
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AATE | Adaptive Automatic Terrain Extraction |
ALE | Abstraction Layer for Ephemerides |
API | Application Programming Interface |
APPL | Astrogeology Photogrammetry and Processing Lab |
ASC | Astrogeology Science Center |
ASP | Ames Stereo Pipeline |
ASU | Arizona State University |
ASM | Automatic Spatial Modeler |
AATE | Adaptive Automatic Terrain Extraction |
CCD | Charge-Coupled Device |
CSM | Community Sensor Model |
CTX | Context Camera |
DEM | Digital Elevation Model |
DTM | Digital Terrain Model |
EDR | Experiment Data Record (PDS product) |
ESA | European Space Agency |
FOM | Figure of Merit |
GIS | Geospatial Information System |
GPU | Graphics Processing Unit |
HiRISE | High Resolution Imaging Science Experiment |
HRSC | High Resolution Stereo Camera |
IMG | Image format used by PDS |
IMU | Inertial Measurement Unit |
InSight | Interior Exploration using Seismic Investigations, Geodesy and Heat Transport |
ISD | Image Support Data |
ISIS | Integrated Software for Imagers and Spectrometers |
ISRO | Indian Space Research Organization |
JPL | Jet Propulsion Lab |
LCD | Liquid Crystal Display |
LROC | Lunar Reconnaissance Orbiter Camera |
MGS | Mars Global Surveyor |
MOLA | Mars Orbiter Laser Altimeter |
MRO | Mars Reconnaissance Orbiter |
MSL | Mars Science Laboratory |
NGATE | Next-Generation Automatic Terrain Extraction |
NITF | National Imagery Transmission Format |
NASA | National Aeronautics and Space Administration |
NGA | National Geospatial-Intelligence Agency |
NGATE | Next Generation Automatic Terrain Extraction |
NITF | National Imagery Transmission Format |
PDS | Planetary Data System |
PICS | Planetary Image Cartographic System |
PSP | Primary Science Phase |
RDR | Reduced Data Record (PDS product) |
RGB | Red-Green-Blue color |
SAR | Synthetic-Aperture Radar |
SET | Sensor Exploitation Tool |
SAR | Synthetic-aperture radar |
SOCET GXP | SOftCopy Geospatial eXploitation Products |
SOCET SET | SOftCopy Exploitation Toolkit |
SOP | Standard Operating Procedure |
TIN | Triangulated Irregular Network |
UA | University of Arizona |
USGS | United States Geological Survey |
WGS | World Geodetic System |
References
- Community Sensor Model Working Group. Community Sensor Model (CSM) Technical Requirements Document (TRD); National Geospatial-Intelligence Agency: Springfield, VA, USA, 2007. [Google Scholar]
- Kirk, R.L.; Howington-Kraus, E.; Rosiek, M.R.; Anderson, J.A.; Archinal, B.A.; Becker, K.J.; Cook, D.A.; Galuszka, D.M.; Geissler, P.E.; Hare, T.M.; et al. Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: Meter-scale slopes of candidate Phoenix landing sites. J. Geophys. Res. Planets 2008, 113, E00A24. [Google Scholar] [CrossRef]
- Henriksen, M.; Manheim, M.; Burns, K.; Seymour, P.; Speyerer, E.; Deran, A.; Boyd, A.; Howington-Kraus, E.; Rosiek, M.; Archinal, B.; et al. Extracting accurate and precise topography from LROC narrow angle camera stereo observations. Icarus 2017, 283, 122–137. [Google Scholar] [CrossRef]
- Bland, M.T.; Kirk, R.L.; Galuszka, D.M.; Mayer, D.P.; Beyer, R.A.; Fergason, R.L. How Well Do We Know Europa’s Topography? An Evaluation of the Variability in Digital Terrain Models of Europa. Remote Sens. 2021, 13, 5097. [Google Scholar] [CrossRef]
- Sutton, S.S.; Chojnacki, M.; McEwen, A.S.; Kirk, R.L.; Dundas, C.M.; Schaefer, E.I.; Conway, S.J.; Diniega, S.; Portyankina, G.; Landis, M.E.; et al. Revealing Active Mars with HiRISE Digital Terrain Models. Remote Sens. 2022, 14, 2403. [Google Scholar] [CrossRef]
- Golombek, M.; Kipp, D.; Warner, N.; Daubar, I.J.; Fergason, R.; Kirk, R.L.; Beyer, R.; Huertas, A.; Piqueux, S.; Putzig, N.E.; et al. Selection of the InSight Landing Site. Space Sci. Rev. 2017, 211, 5–95. [Google Scholar] [CrossRef]
- Fergason, R.L.; Hare, T.M.; Mayer, D.P.; Galuszka, D.M.; Redding, B.L.; Smith, E.D.; Shinaman, J.R.; Cheng, Y.; Otero, R.E. Mars 2020 Terrain Relative Navigation Flight Product Generation: Digital Terrain Model and Orthorectified Image Mosaics. In Proceedings of the 51st Lunar and Planetary Science Conference, The Woodlands, TX, USA, 16–20 March 2020. [Google Scholar] [CrossRef]
- Cheng, Y.; Ansar, A.; Johnson, A. Making an Onboard Reference Map From MRO/CTX Imagery for Mars 2020 Lander Vision System. Earth Space Sci. 2021, 8, e2020EA001560. [Google Scholar] [CrossRef]
- Laura, J.R.; Beyer, R.A. Knowledge Inventory of Foundational Data Products in Planetary Science. Planet. Sci. J. 2021, 2, 18. [Google Scholar] [CrossRef]
- Walker, S.; Pietrzak, A. Remote measurement methods for 3-D modeling purposes using BAE Systems’ Software. Geod. Cartogr. 2015, 64, 113–124. [Google Scholar] [CrossRef]
- Zhang, B.; Miller, S.; Walker, S.; Devenecia, K. Next Generation Automatic Terrain Extraction using Microsoft UltraCam imagery. In Proceedings of the ASPRS 2007 Annual Conference, Tampa, FL, USA, 7–11 May 2007. [Google Scholar]
- Beyer, R.A.; Alexandrov, O.; McMichael, S. The Ames Stereo Pipeline: NASA’s Open Source Software for Deriving and Processing Terrain Data. Earth Space Sci. 2018, 5, 537–548. [Google Scholar] [CrossRef]
- Porco, C.C.; West, R.A.; Squyres, S.; McEwenm, A.; Thomas, P.; Murray, C.; Delgenia, A.; Ingersoll, A.; Johnson, T.; Neukum, G.; et al. Cassini imaging science: Instrument characteristics and anticipated scientific investigations at Saturn. Space Sci. Rev. 2004, 115, 363–497. [Google Scholar] [CrossRef]
- Nozette, S.; Spudis, P.; Bussey, B.; Jensen, R.; Raney, K.; Winters, H.; Lichtenberg, C.L.; Marinelli, W.; Crusan, J.; Gates, M.; et al. The Lunar Reconnaissance Orbiter Miniature Radio Frequency (Mini-RF) Technology Demonstration. Space Sci. Rev. 2010, 150, 285–302. [Google Scholar] [CrossRef]
- Kordas, J.F.; Lewis, I.T.; Priest, R.E.; White, W.T., III; Nielsen, D.P.; Park, H.-S.; Wilson, B.A.; Shannon, M.J.; Ledebuhr, A.G.; Pleasance, L.D. UV/visible camera for the Clementine mission. In Proceedings of the SPIE’s 1995 Symposium on OE/Aerospace Sensing and Dual Use Photonics, Orlando, FL, USA, 17–21 April 1995; pp. 175–186. [Google Scholar]
- Sierks, H.; Keller, H.U.; Jaumann, R.; Michalik, H.; Behnke, T.; Bubenhagen, F.; Büttner, I.; Carsenty, U.; Christensen, U.; Enge, R.; et al. The Dawn Framing Camera. Space Sci. Rev. 2011, 163, 263–327. [Google Scholar] [CrossRef]
- Thomas, N.; Cremonese, G.; Ziethe, R.; Gerber, M.; Brändli, M.; Bruno, G.; Erismann, M.; Gambicorti, L.; Gerber, T.; Ghose, K.; et al. The Colour and Stereo Surface Imaging System (CaSSIS) for the ExoMars Trace Gas Orbiter. Space Sci. Rev. 2017, 212, 1897–1944. [Google Scholar] [CrossRef]
- Belton, M.J.S.; Klaasen, K.P.; Clary, M.C.; Anderson, J.L.; Anger, C.D.; Carr, M.H.; Chapman, C.R.; Davies, M.E.; Greeley, R.; Anderson, D.; et al. The Galileo Solid-State Imaging experiment. Space Sci. Rev. 1992, 60, 413–455. [Google Scholar] [CrossRef]
- Ishiguro, M.; Nakamura, R.; Tholen, D.J.; Hirata, N.; Demura, H.; Nemoto, E.; Nakamura, A.M.; Higuchi, Y.; Sogame, A.; Yamamoto, A.; et al. The Hayabusa Spacecraft Asteroid Multi-Band Imaging Camera (AMICA). Icarus 2010, 207, 714–731. [Google Scholar] [CrossRef]
- Orton, G.S.; Hansen, C.; Caplinger, M.; Ravine, M.; Atreya, S.; Ingersoll, A.P.; Jensen, E.; Momary, T.; Lipkaman, L.; Krysak, D.; et al. The first close-up images of Jupiter’s polar regions: Results from the Juno mission JunoCam instrument. Geophys. Res. Lett. 2017, 44, 4599–4606. [Google Scholar] [CrossRef]
- Robinson, M.S.; Brylow, S.M.; Tschimmel, M.; Humm, D.; Lawrence, S.J.; Thomas, P.C.; Denevi, B.W.; Bowman-Cisneros, E.; Zerr, J.; Ravine, M.A.; et al. Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview. Space Sci. Rev. 2010, 150, 81–124. [Google Scholar] [CrossRef]
- Murray, B.C.; Belton, M.J.S.; Danielson, G.E.; Davies, M.E.; Gault, D.E.; Hapke, B.; O’Leary, B.; Strom, R.G.; Suomi, V.; Trask, N. Mercury’s Surface: Preliminary Description and Interpretation from Mariner 10 Pictures. Science 1974, 185, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Jaumann, R.; Neukum, G.; Behnke, T.; Duxbury, T.; Eichentopf, K.; Flohrer, J.; Gasselt, S.; Giese, B.; Gwinner, K.; Hauber, E.; et al. The high-resolution stereo camera (HRSC) experiment on Mars Express: Instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planet. Space Sci. 2007, 55, 928–952. [Google Scholar] [CrossRef]
- Malin, M.C.; Edgett, K.S.; Cantor, B.A.; Caplinger, M.A.; Danielson, G.E.; Jensen, E.H.; Ravine, M.; Sandoval, J.L.; Supulver, K.D. An overview of the 1985–2006 Mars Orbiter Camera science investigation. Int. J. Mars Sci. Explor. 2010, 5, 1–60. [Google Scholar] [CrossRef]
- Christensen, P.R.; Jakosky, B.M.; Kieffer, H.H.; Malin, M.C.; McSween, H.Y., Jr.; Nealson, K.; Mehall, G.L.; Silverman, S.H.; Ferry, S.; Caplinger, M.; et al. The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission. Space Sci. Rev. 2004, 110, 85–130. [Google Scholar] [CrossRef]
- Malin, M.C.; Bell, J.F., III; Cantor, B.A.; Caplinger, M.A.; Calvin, W.M.; Clancy, R.T.; Edgett, K.S.; Edwards, L.; Haberle, R.M.; James, P.B.; et al. Context Camera Investigation on board the Mars Reconnaissance Orbiter. J. Geophys. Res. 2007, 112, E05S04. [Google Scholar] [CrossRef]
- McEwen, A.; Byrne, S.; Hansen, C.; Daubar, I.; Sutton, S.; Dundas, C.; Bardabelias, N.; Baugh, N.; Bergstrom, J.; Beyer, R.; et al. The high-resolution imaging science experiment (HiRISE) in the MRO extended science phases (2009–2023). Icarus, 2023; 115795, in press. [Google Scholar] [CrossRef]
- Bell, J.F., III; Godber, A.; McNair, S.; Caplinger, M.A.; Maki, J.N.; Lemmon, M.T.; Van Beek, J.; Malin, M.C.; Wellington, D.; Kinch, K.M.; et al. The Mars Science Laboratory Curiosity rover Mastcam instruments: Preflight and in-flight calibration, validation, and data archiving. Earth Space Sci. 2017, 4, 396–452. [Google Scholar] [CrossRef]
- Hawkins, S.E.; Boldt, J.D.; Darlington, E.H.; Espiritu, R.; Gold, R.E.; Gotwols, B.; Grey, M.P.; Hash, C.D.; Hayes, J.R.; Jaskulek, S.E.; et al. The Mercury Dual Imaging System on the MESSENGER Spacecraft. Space Sci. Rev. 2007, 131, 247–338. [Google Scholar] [CrossRef]
- Murchie, S.; Robinson, M.; Domingue, D.; Li, H.; Prockter, L.; Hawkins, S.E., III; Owen, W.; Clark, B.; Izenberg, N. Inflight Calibration of the NEAR Multispectral Imager: II. Results from Eros Approach and Orbit. Icarus 2002, 155, 229–243. [Google Scholar] [CrossRef]
- Weaver, H.A.; Gibson, W.C.; Tapley, M.B.; Young, L.A.; Stern, S.A. Overview of the New Horizons Science Payload. Space Sci. Rev. 2008, 140, 75–91. [Google Scholar] [CrossRef]
- Rizk, B.; D’aubigny, C.D.; Golish, D.; Fellows, C.; Merrill, C.; Smith, P.; Walker, M.S.; Hendershot, J.E.; Hancock, J.; Bailey, S.H.; et al. OCAMS: The OSIRIS-REx Camera Suite. Space Sci. Rev. 2018, 214, 26. [Google Scholar] [CrossRef]
- Haruyama, J.; Matsunaga, T.; Ohtake, M.; Morota, T.; Honda, C.; Yokota, Y.; Torii, M.; Ogawa, Y.; LISM Working Group. Global lunar-surface mapping experiment using the Lunar Imager/Spectrometer on SELENE. Earth Planets Space 2008, 60, 243–255. [Google Scholar] [CrossRef]
- Flinn, E.A. Scientific results of the Viking Project. J. Geophys. Res. 1977, 82, 735. [Google Scholar]
- Smith, B.A.; Briggs, G.A.; Danielson, G.E.; Cook, A.F.; Davies, M.E.; Hunt, G.E.; Masursky, H.; Soderblom, L.A.; Owen, T.C.; Sagan, C.; et al. Voyager imaging experiment. Space Sci. Rev. 1977, 21, 103–127. [Google Scholar] [CrossRef]
- Kirk, R.L.; Howington-Kraus, E.; Hare, T.; Dorrer, E.; Cook, D.; Becker, K.; Thompson, K.; Redding, B.; Blue, J.; Galuszka, D.; et al. Digital photogrammetric analysis of the IMP camera images: Mapping the Mars Pathfinder landing site in three dimensions. J. Geophys. Res. 1999, 104, 8869–8887. [Google Scholar] [CrossRef]
- Howington-Kraus, E.; Kirk, R.L.; Galuszka, D.M.; Redding, B.L. USGS Magellan stereomapping of Venus. In Proceedings of the European Planetary Science Congress 2006, Berlin, Germany, 18–22 September 2006; p. 490. [Google Scholar]
- Soderblom, L.A.; Tomasko, M.G.; Archinal, B.A.; Becker, T.L.; Bushroe, M.W.; Cook, D.A.; Doose, L.R.; Galuszka, D.M.; Hare, T.M.; Howington-Kraus, E.; et al. Topography and geomorphology of the Huygens landing site on Titan. Planet. Space Sci. 2007, 55, 2015–2024. [Google Scholar] [CrossRef]
- Kirk, R.L.; Howington-Kraus, E. Radargrammetry on three planets. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 973–980. [Google Scholar]
- Laura, J.R.; Mapel, J.; Hare, T. Planetary Sensor Models Interoperability Using the Community Sensor Model Specification. Earth Space Sci. 2020, 7, e2019EA000713. [Google Scholar] [CrossRef]
- Archinal, B.A.; Acton, C.H.; A’hearn, M.F.; Conrad, A.; Consolmagno, G.J.; Duxbury, T.; Hestroffer, D.; Hilton, J.L.; Kirk, R.L.; Klioner, S.A.; et al. Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2015. Celest. Mech. Dyn. Astron. 2018, 130, 22. [Google Scholar] [CrossRef]
- Di, K.; Li, R. CAHVOR camera model and its photogrammetric conversion for planetary applications. J. Geophys. Res. 2004, 109, E04004. [Google Scholar] [CrossRef]
- Xu, X.; Liu, M.; Peng, S.; Ma, Y.; Zhao, H.; Xu, A. An In-Orbit Stereo Navigation Camera Self-Calibration Method for Planetary Rovers with Multiple Constraints. Remote Sens. 2022, 14, 402. [Google Scholar] [CrossRef]
- Kirk, R.L.; Barrett, J.M.; Wahl, D.E.; Erteza, I.; Jackowatz, C.V.; Yocky, D.A.; Turner, S.; Bussey, D.B.J.; Paterson, G.W. A semi-rigorous sensor model for precision geometric processing of Mini-RF bistatic radar images of the Moon. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 425–429. [Google Scholar] [CrossRef]
- Spudis, P.; Nozette, S.; Bussey, B.; Raney, K.; Winters, H.; Lichtenberg, C.L.; Marinelli, W.; Crusan, J.C.; Gates, M.M. Mini-SAR: An imaging radar experiment for the Chandrayaan-1 mission to the Moon. Curr. Sci. 2009, 96, 533–539. (In India) [Google Scholar]
- Kirk, R.L.; Mayer, D.; Redding, B.L.; Galuszka, D.M.; Fergason, R.L.; Hare, T.M.; Gwinner, K. Further adventures in mars DTM quality: Smoothing errors, sharpening details. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, XLIII-B3-2, 659–666. [Google Scholar] [CrossRef]
- Zhang, B.; Miller, S.B. Adaptive Automatic Terrain Extraction. In Proceedings of the SPIE 3072, Integrating Photogrammetric Techniques with Scene Analysis and Machine Vision III, Orlando, FL, USA, 21–25 April 1997; pp. 27–36. [Google Scholar]
- Zhang, B. Automatic Spatial Modeler (ASM): Elevation by Innovation, BAE Systems, Geospatial eXploitation Products. 2019. Available online: https://www.geospatialexploitationproducts.com/wp-content/uploads/2019/06/sgxp_automatic-spatial-modeler.pdf (accessed on 6 February 2024).
Mission | Instrument Name | Sensor Type | Reference |
---|---|---|---|
Cassini Orbiter | ISS-NAC (Narrow Angle Camera) | Framing Camera | [13] |
Cassini Orbiter | ISS-WAC (Wide Angle Camera) | Framing Camera | [13] |
Chandrayaan 1 | Miniature Radio-Frequency instrument (Mini-RF) | SAR | [14] |
Clementine | Ultraviolet/Visible Camera (UVVIS) | Framing Camera | [15] |
Dawn | Framing Camera (FC) Instrument | Framing Camera | [16] |
ExoMars Trace Gas Orbiter | Colour and Stereo Surface Imaging System (CaSSIS) | Push Frame Sensor | [17] |
Galileo | Solid State Imaging System (SSI) | Framing Camera | [18] |
Hayabusa | Telescopic Camera (AMICA) | Framing Camera | [19] |
Hayabusa | Near Infrared Spectrometer (NIRS) | Framing Camera | [19] |
Juno | JunoCam | Line Scan Sensor | [20] |
Lunar Reconnaissance Orbiter | LROC-NAC (Narrow Angle Camera) | Line Scan Sensors | [21] |
Mariner 10 | VIDICON_A/B | Framing Camera | [22] |
Mars Express | High Resolution Stereo Camera (HRSC) | Line Scan Sensors | [23] |
Mars Global Surveyor | MOC-NAC (Narrow Angle Camera) | Line Scan Sensors | [24] |
Mars Global Surveyor | MOC-WAC (Wide Angle Camera) | Line Scan Sensor | [24] |
Mars Odyssey | Thermal Emission Imaging System (THEMIS-IR) | Line Scan Sensors | [25] |
Mars Odyssey | Thermal Emission Imaging System (THEMIS-VIS) | Push Frame Sensor | [25] |
Mars Reconnaissance Orbiter | Context Camera (CTX) | Line Scan Sensor | [26] |
Mars Reconnaissance Orbiter | High Resolution Imaging Science Experiment (HiRISE) | Line Scan Sensor | [27] |
Mars Science Laboratory | Mast Camera (left, right) | CAHVOR/Framing | [28] |
Messenger | MDIS-NAC (Narrow Angle Camera) | Framing Camera | [29] |
Messenger | MDIS-WAC (Wide Angle Camera) | Framing Camera | [29] |
Near Earth Asteroid Rendezvous | Multispectral Imager (MI) | Framing Camera | [30] |
New Horizons | Long Range Reconnaissance Imager (LORRI) | Framing Camera | [31] |
New Horizons | Multispectral Visible Imaging Camera (MVIC) | Framing Camera | [31] |
New Horizons | Linear Etalon Imaging Spectral Array (LEISA) | Line Scan Sensor | [31] |
Osiris-Rex | PolyCam, MapCam, SamCam (OCAMS) | Framing Camera | [32] |
Kaguya (SELENE) | Kaguya Terrain Camera (TC) | Line Scan Sensors | [33] |
Kaguya (SELENE) | Multiband Imager (Mi) | Line Scan Sensor | [33] |
Viking Orbiter 1/2 | Visual Imaging Subsystem Camera A/B | Framing Camera | [34] |
Voyager 1/2 | ISS-NAC (Narrow Angle Camera) | Framing Camera | [35] |
Voyager 1/2 | ISS-WAC (Wide Angle Camera) | Framing Camera | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hare, T.M.; Kirk, R.L.; Bland, M.T.; Galuszka, D.M.; Laura, J.R.; Mayer, D.P.; Redding, B.L.; Wheeler, B.H. Current Status of the Community Sensor Model Standard for the Generation of Planetary Digital Terrain Models. Remote Sens. 2024, 16, 648. https://doi.org/10.3390/rs16040648
Hare TM, Kirk RL, Bland MT, Galuszka DM, Laura JR, Mayer DP, Redding BL, Wheeler BH. Current Status of the Community Sensor Model Standard for the Generation of Planetary Digital Terrain Models. Remote Sensing. 2024; 16(4):648. https://doi.org/10.3390/rs16040648
Chicago/Turabian StyleHare, Trent M., Randolph L. Kirk, Michael T. Bland, Donna M. Galuszka, Jason R. Laura, David P. Mayer, Bonnie L. Redding, and Benjamin H. Wheeler. 2024. "Current Status of the Community Sensor Model Standard for the Generation of Planetary Digital Terrain Models" Remote Sensing 16, no. 4: 648. https://doi.org/10.3390/rs16040648
APA StyleHare, T. M., Kirk, R. L., Bland, M. T., Galuszka, D. M., Laura, J. R., Mayer, D. P., Redding, B. L., & Wheeler, B. H. (2024). Current Status of the Community Sensor Model Standard for the Generation of Planetary Digital Terrain Models. Remote Sensing, 16(4), 648. https://doi.org/10.3390/rs16040648