Comprehensive Evaluation of Near-Real-Time Satellite-Based Precipitation: PDIR-Now over Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Rain Gauges
2.2.2. PERSIANN Dynamic Infrared (PDIR-Now)
2.3. Methods
2.3.1. Evaluation Metrics
2.3.2. Extreme Precipitation Analysis
3. Results
3.1. Analysis of Rainfall Estimation Errors
3.2. Performance Indicator Based on Events
3.3. Analysis of Rainfall Extremes and Climatic Patterns
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CC | Correlation coefficient |
CDD | Consecutive dry days |
CHIRPS | Climate Hazards Group InfraRed Precipitation with Station |
CHRS | Center for Hydrometeorology and Remote Sensing |
CMORPH | Climate Prediction Center Morphing Technique |
CSI | Critical success index |
CWD | Consecutive wet days |
FAR | False alarm ratio |
GSMap-MVK | Global Satellite Mapping of Precipitation Microwave-IR Combined Product |
IMERG | Integrated Multi-satellitE Retrievals for Global Precipitation Measurement |
MB | Mean bias |
MEWA | Ministry of Environment, Water, and Agriculture |
PERSIANN | Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks |
PDIR-Now | PERSIANN–Dynamic Infrared near-real-time |
PERSIANN-CCS | PERSIANN–Cloud Classification System |
PERSIANN-CDR | PERSIANN–Climate Data Record |
POD | Probability of detection |
RMSE | Root-mean-squared error |
SPP | Satellite precipitation product |
Tb-R | Cloud-top brightness temperatures–rain rate |
TRMM | Tropical Rainfall Measuring Mission |
WRCP | World Climate Research Programme |
References
- Azeez, O.; Elfeki, A.; Kamis, A.S.; Chaabani, A. Dam Break Analysis and Flood Disaster Simulation in Arid Urban Environment: The Um Al-Khair Dam Case Study, Jeddah, Saudi Arabia. Nat. Hazards 2020, 100, 995–1011. [Google Scholar] [CrossRef]
- Gao, Z.; Long, D.; Tang, G.; Zeng, C.; Huang, J.; Hong, Y. Assessing the Potential of Satellite-Based Precipitation Estimates for Flood Frequency Analysis in Ungauged or Poorly Gauged Tributaries of China’s Yangtze River Basin. J. Hydrol. 2017, 550, 478–496. [Google Scholar] [CrossRef]
- Katipoğlu, O.M.; Sarıgöl, M. Prediction of Flood Routing Results in the Central Anatolian Region of Türkiye with Various Machine Learning Models. Stoch. Environ. Res. Risk Assess 2023, 37, 2205–2224. [Google Scholar] [CrossRef]
- Yeditha, P.K.; Kasi, V.; Rathinasamy, M.; Agarwal, A. Forecasting of Extreme Flood Events Using Different Satellite Precipitation Products and Wavelet-Based Machine Learning Methods. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 063115. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, K.; Sun, T.; Yao, Y.; Li, Z. A novel regional drought monitoring method using GNSS-derived ZTD and precipitation. Remote Sens. Environ. 2023, 297, 113778. [Google Scholar] [CrossRef]
- Katiraie-Boroujerdy, P.-S.; Nasrollahi, N.; Hsu, K.; Sorooshian, S. Evaluation of Satellite-Based Precipitation Estimation over Iran. J. Arid. Environ. 2013, 97, 205–219. [Google Scholar] [CrossRef]
- Nashwan, M.S.; Shahid, S.; Wang, X. Assessment of Satellite-Based Precipitation Measurement Products over the Hot Desert Climate of Egypt. Remote Sens. 2019, 11, 555. [Google Scholar] [CrossRef]
- Qin, Y.; Chen, Z.; Shen, Y.; Zhang, S.; Shi, R. Evaluation of Satellite Rainfall Estimates over the Chinese Mainland. Remote Sens. 2014, 6, 11649–11672. [Google Scholar] [CrossRef]
- Hong, Y.; Gochis, D.; Cheng, J.; Hsu, K.; Sorooshian, S. Evaluation of PERSIANN-CCS Rainfall Measurement Using the NAME Event Rain Gauge Network. J. Hydrometeorol. 2007, 8, 469–482. [Google Scholar] [CrossRef]
- Miao, C.; Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Duan, Q. Evaluation of the PERSIANN-CDR Daily Rainfall Estimates in Capturing the Behavior of Extreme Precipitation Events over China. J. Hydrometeorol. 2015, 16, 1387–1396. [Google Scholar] [CrossRef]
- Eini, M.R.; Rahmati, A.; Piniewski, M. Hydrological Application and Accuracy Evaluation of PERSIANN Satellite-Based Precipitation Estimates over a Humid Continental Climate Catchment. J. Hydrol. Reg. Stud. 2022, 41, 101109. [Google Scholar] [CrossRef]
- Najmi, A.; Igmoullan, B.; Namous, M.; El Bouazzaoui, I.; Brahim, Y.A.; El Khalki, E.M.; Saidi, M.E.M. Evaluation of PERSIANN-CCS-CDR, ERA5, and SM2RAIN-ASCAT Rainfall Products for Rainfall and Drought Assessment in a Semi-Arid Watershed, Morocco. J. Water Clim. Chang. 2023, 14, 1569–1584. [Google Scholar] [CrossRef]
- Rahmati Ziveh, A.; Bakhtar, A.; Shayeghi, A.; Kalantari, Z.; Bavani, A.M.; Ghajarnia, N. Spatio-Temporal Performance Evaluation of 14 Global Precipitation Estimation Products across River Basins in Southwest Iran. J. Hydrol. Reg. Stud. 2022, 44, 101269. [Google Scholar] [CrossRef]
- Arsenault, R.; Brissette, F. Determining the Optimal Spatial Distribution of Weather Station Networks for Hydrological Modeling Purposes Using RCM Datasets: An Experimental Approach. J. Hydrometeorol. 2014, 15, 517–526. [Google Scholar] [CrossRef]
- Guo, R.; Liu, Y. Evaluation of Satellite Precipitation Products with Rain Gauge Data at Different Scales: Implications for Hydrological Applications. Water 2016, 8, 281. [Google Scholar] [CrossRef]
- Kummerow, C.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The Tropical Rainfall Measuring Mission (TRMM) Sensor Package. J. Atmos. Oceanic Technol. 1998, 15, 809–817. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method That Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeor 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Rowland, J.; Romero, B.E.; Husak, G.; Michaelsen, J.; Verdin, A. A Quasi-Global Precipitation Time Series for Drought Monitoring. USGS Sci. Chang. World 2014, 832, 4. [Google Scholar] [CrossRef]
- Hsu, K.; Gao, X.; Sorooshian, S.; Gupta, H.V. Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks. J. Appl. Meteor. 1997, 36, 1176–1190. [Google Scholar] [CrossRef]
- Hong, Y.; Hsu, K.-L.; Sorooshian, S.; Gao, X. Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System. J. Appl. Meteorol. 2004, 43, 1834–1853. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef]
- Eini, M.R.; Olyaei, M.A.; Kamyab, T.; Teymoori, J.; Brocca, L.; Piniewski, M. Evaluating Three Non-Gauge-Corrected Satellite Precipitation Estimates by a Regional Gauge Interpolated Dataset over Iran. J. Hydrol. Reg. Stud. 2021, 38, 100942. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Mehran, A.; Norouzi, H.; Behrangi, A. Systematic and Random Error Components in Satellite Precipitation Data Sets. Geophys. Res. Lett. 2012, 39, 2012GL051592. [Google Scholar] [CrossRef]
- Sorooshian, S.; Hsu, K.-L.; Gao, X.; Gupta, V.; Imam, B.; Braithwaite, D. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc. 2000, 81, 2035–2046. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef]
- Zhou, L.; Koike, T.; Takeuchi, K.; Rasmy, M.; Onuma, K.; Ito, H.; Selvarajah, H.; Liu, L.; Li, X.; Ao, T. A Study on Availability of Ground Observations and Its Impacts on Bias Correction of Satellite Precipitation Products and Hydrologic Simulation Efficiency. J. Hydrol. 2022, 610, 127595. [Google Scholar] [CrossRef]
- Al-Ahmadi, K.; Al-Ahmadi, S. Spatiotemporal variations in rainfall–topographic relationships in southwestern Saudi Arabia. Arab J. Geosci. 2014, 7, 3309–3324. [Google Scholar] [CrossRef]
- Nguyen, P.; Ombadi, M.; Gorooh, V.A.; Shearer, E.J.; Sadeghi, M.; Sorooshian, S.; Hsu, K.; Bolvin, D.; Ralph, M.F. PERSIANN Dynamic Infrared–Rain Rate (PDIR-Now): A Near-Real-Time, Quasi-Global Satellite Precipitation Dataset. J. Hydrometeorol. 2020, 21, 2893–2906. [Google Scholar] [CrossRef]
- Salehi, H.; Sadeghi, M.; Golian, S.; Nguyen, P.; Murphy, C.; Sorooshian, S. The Application of PERSIANN Family Datasets for Hydrological Modeling. Remote Sens. 2022, 14, 3675. [Google Scholar] [CrossRef]
- Yaswanth, P.; Kannan, B.A.M.; Bindhu, V.M.; Balaji, C.; Narasimhan, B. Evaluation of Remote Sensing Rainfall Products, Bias Correction and Temporal Disaggregation Approaches, for Improved Accuracy in Hydrologic Simulations. Water Resour. Manag. 2023, 37, 3069–3092. [Google Scholar] [CrossRef]
- Kheimi, M.M.; Gutub, S. Assessment of Remotely-Sensed Precipitation Products Across the Saudi Arabia Region. Int. J. Water Resour. Arid. Environ. 2015, 4, 76–88. [Google Scholar]
- Mahmoud, M.T.; Al-Zahrani, M.A.; Sharif, H.O. Assessment of Global Precipitation Measurement Satellite Products over Saudi Arabia. J. Hydrol. 2018, 559, 1–12. [Google Scholar] [CrossRef]
- Sultana, R.; Nasrollahi, N. Evaluation of Remote Sensing Precipitation Estimates over Saudi Arabia. J. Arid. Environ. 2018, 151, 90–103. [Google Scholar] [CrossRef]
- Helmi, A.M.; Abdelhamed, M.S. Evaluation of CMORPH, Persiann-CDR, CHIRPS v2.0, TMPA 3b42 V7, and GPM IMERG V6 satellite precipitation datasets in Arabian arid regions. Water 2022, 15, 92. [Google Scholar] [CrossRef]
- Almazroui, M. Temperature Variability over Saudi Arabia and Its Association with Global Climate Indices. JKAU Met. Environ. Arid. Land Agric. Sci. 2011, 23, 85–108. [Google Scholar] [CrossRef]
- Almazroui, M. Sensitivity of a Regional Climate Model on the Simulation of High Intensity Rainfall Events over the Arabian Peninsula and around Jeddah (Saudi Arabia). Theor. Appl. Climatol. 2011, 104, 261–276. [Google Scholar] [CrossRef]
- Almazroui, M. Rainfall Trends and Extremes in Saudi Arabia in Recent Decades. Atmosphere 2020, 11, 964. [Google Scholar] [CrossRef]
- Al-Taher, A.A. Drought and Human Adjustment in Saudi Arabia. GeoJournal 1994, 33, 411–422. [Google Scholar] [CrossRef]
- Al-Ahmadi, K.; Al-Ahmadi, S. Rainfall-Altitude Relationship in Saudi Arabia. Adv. Meteorol. 2013, 2013, 363029. [Google Scholar] [CrossRef]
- Hasanean, H.; Almazroui, M. Rainfall: Features and Variations over Saudi Arabia, A Review. Climate 2015, 3, 578–626. [Google Scholar] [CrossRef]
- Chen, C.; Li, Z.; Song, Y.; Duan, Z.; Mo, K.; Wang, Z.; Chen, Q. Performance of Multiple Satellite Precipitation Estimates over a Typical Arid Mountainous Area of China: Spatiotemporal Patterns and Extremes. J. Hydrometeorol. 2020, 21, 533–550. [Google Scholar] [CrossRef]
- Katiraie-Boroujerdy, P.-S.; Ashouri, H.; Hsu, K.; Sorooshian, S. Trends of Precipitation Extreme Indices over a Subtropical Semi-Arid Area Using PERSIANN-CDR. Theor. Appl. Climatol. 2017, 130, 249–260. [Google Scholar] [CrossRef]
- Liu, J.; Xia, J.; She, D.; Li, L.; Wang, Q.; Zou, L. Evaluation of Six Satellite-Based Precipitation Products and Their Ability for Capturing Characteristics of Extreme Precipitation Events over a Climate Transition Area in China. Remote Sens. 2019, 11, 1477. [Google Scholar] [CrossRef]
- Rojas, Y.; Minder, J.R.; Campbell, L.S.; Massmann, A.; Garreaud, R. Assessment of GPM IMERG satellite precipitation estimation and its dependence on microphysical rain regimes over the mountains of south-central Chile. Atmos. Res. 2021, 253, 105454. [Google Scholar] [CrossRef]
- Barros, A.P.; Kuligowski, R.J. Orographic Effects during a Severe Wintertime Rainstorm in the Appalachian Mountains. Mon. Wea. Rev. 1998, 126, 2648–2672. [Google Scholar] [CrossRef]
- Chen, H.; Sun, L.; Cifelli, R.; Xie, P. Deep Learning for Bias Correction of Satellite Retrievals of Orographic Precipitation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4104611. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, W.; Li, Z.; Du, Z.; Yang, P.; Yao, W.; Yao, Y. A high-precision ZTD interpolation method considering large area and height differences. GPS Solut. 2024, 4, 28. [Google Scholar] [CrossRef]
- Derin, Y.; Anagnostou, E.; Berne, A.; Borga, M.; Boudevillain, B.; Buytaert, W.; Chang, C.-H.; Chen, H.; Delrieu, G.; Hsu, Y.; et al. Evaluation of GPM-Era Global Satellite Precipitation Products over Multiple Complex Terrain Regions. Remote Sens. 2019, 11, 2936. [Google Scholar] [CrossRef]
- Hobouchian, M.P.; Salio, P.; García Skabar, Y.; Vila, D.; Garreaud, R. Assessment of satellite precipitation estimates over the slopes of the subtropical Andes. Atmos. Res. 2017, 190, 43–54. [Google Scholar] [CrossRef]
- Tao, Y.; Gao, X.; Hsu, K.; Sorooshian, S.; Ihler, A. A Deep Neural Network Modeling Framework to Reduce Bias in Satellite Precipitation Products. J. Hydrometeorol. 2016, 17, 931–945. [Google Scholar] [CrossRef]
Index | Equation | Optimal Value |
---|---|---|
CC | 1 | |
MB | 0 | |
RMSE | 0 | |
POD | 1 | |
FAR | 0 | |
CSI | 1 |
Index | Equation |
---|---|
No Rain | Rainfall Rate ≤ 0.5 |
Light Rain | 0.5 < Rainfall Rate ≤ 2 |
Moderate Rain | 2 < Rainfall Rate ≤ 10 |
Heavy Rain | Rainfall Rate > 10 |
Index | Descriptive Name | Definition | Units |
---|---|---|---|
RX1day | Maximum 1-day precipitation | Annual maximum 1-day rainfall | mm |
RX5day | Maximum 5-day precipitation | Annual maximum consecutive 5-day rainfall | mm |
CWD | Consecutive wet days | Annual maximum consecutive rainy days | days |
CDD | Consecutive dry days | Annual maximum consecutive dry days | days |
RX1day (mm) | RX5day (mm) | CDD (Days) | CWD (Days) | |
---|---|---|---|---|
Elevation < 500 m | ||||
CC | 0.60 | 0.60 | 0.58 | 0.57 |
RMSE | 20.05 | 28.76 | 85.91 | 5.08 |
MB | −2.89 | −3.98 | −75.53 | 4.30 |
500–1000 m | ||||
CC | 0.64 | 0.66 | 0.76 | 0.42 |
RMSE | 21.56 | 25.51 | 98.97 | 4.86 |
MB | −2.23 | −1.62 | −84.72 | 4.05 |
>1000 m | ||||
CC | 0.18 | 0.17 | 0.53 | 0.42 |
RMSE | 24.31 | 32.23 | 70.24 | 5.28 |
MB | −3.58 | −4.24 | −60.73 | 4.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, R.S.; Dao, V.; Jimenez Arellano, C.; Nguyen, P. Comprehensive Evaluation of Near-Real-Time Satellite-Based Precipitation: PDIR-Now over Saudi Arabia. Remote Sens. 2024, 16, 703. https://doi.org/10.3390/rs16040703
Alharbi RS, Dao V, Jimenez Arellano C, Nguyen P. Comprehensive Evaluation of Near-Real-Time Satellite-Based Precipitation: PDIR-Now over Saudi Arabia. Remote Sensing. 2024; 16(4):703. https://doi.org/10.3390/rs16040703
Chicago/Turabian StyleAlharbi, Raied Saad, Vu Dao, Claudia Jimenez Arellano, and Phu Nguyen. 2024. "Comprehensive Evaluation of Near-Real-Time Satellite-Based Precipitation: PDIR-Now over Saudi Arabia" Remote Sensing 16, no. 4: 703. https://doi.org/10.3390/rs16040703
APA StyleAlharbi, R. S., Dao, V., Jimenez Arellano, C., & Nguyen, P. (2024). Comprehensive Evaluation of Near-Real-Time Satellite-Based Precipitation: PDIR-Now over Saudi Arabia. Remote Sensing, 16(4), 703. https://doi.org/10.3390/rs16040703