Unmanned Aerial Vehicle (UAV)-Based Vegetation Restoration Monitoring in Coal Waste Dumps after Reclamation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.2.1. UAV Data Collection and Preprocessing
2.2.2. Alfalfa AGB Measurement
3. Methodology
3.1. Alfalfa Coverage Extraction
3.2. UAV Imagery Feature Extraction
3.2.1. Spectral Information
3.2.2. Texture Information
3.2.3. Thermal Information
3.2.4. Structure Information
3.2.5. Feature Selection
3.3. Modeling Method
3.4. Accuracy Assessment
3.5. Workflow in This Study
4. Results and Discussion
4.1. Modeling and Validation of Alfalfa AGB
4.1.1. Combination of Different Sensors/Information in Alfalfa AGB Estimation
4.1.2. Regression Model in Alfalfa AGB Estimation
4.2. Spatial Analysis of Alfalfa AGB in Coal Waste Dump
4.2.1. Map of Alfalfa AGB
4.2.2. Alfalfa AGB Response to Spontaneous Combustion of Coal Waste Dump
4.3. Monitoring Strategy in Vegetation Restoration of Coal Waste Dumps
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, W.; Zhang, W.; Ye, Y.; Lv, X.; Yang, W. Is underground coal mining causing land degradation and significantly damaging ecosystems in semi-arid areas? A study from an Ecological Capital perspective. Land. Degrad. Dev. 2020, 31, 1969–1989. [Google Scholar] [CrossRef]
- Li, J.; Wang, J. Comprehensive utilization and environmental risks of coal gangue: A review. J. Clean. Prod. 2020, 239, 117946. [Google Scholar] [CrossRef]
- Abramowicz, A.; Rahmonov, O.; Chybiorz, R. Environmental management and landscape transformation on self-heating coal-waste dumps in the Upper Silesian Coal Basin. Land 2020, 10, 23. [Google Scholar] [CrossRef]
- Fabiańska, M.J.; Nádudvari, Á.; Ciesielczuk, J.; Szram, E.; Misz-Kennan, M.; Więcław, D. Organic contaminants of coal-waste dump water in the Lower-and Upper Silesian Coal Basins (Poland). Appl. Geochem. 2020, 122, 104690. [Google Scholar] [CrossRef]
- Nádudvari, Á.; Cabała, J.; Marynowski, L.; Jabłońska, M.; Dziurowicz, M.; Malczewski, D.; Kozielska, B.; Siupka, P.; Piotrowska-Seget, Z.; Simoneit, B.R.; et al. High concentrations of HgS, MeHg and toxic gas emissions in thermally affected waste dumps from hard coal mining in Poland. J. Hazard. Mater. 2022, 431, 128542. [Google Scholar] [CrossRef]
- Ren, H.; Zhao, Y.; Xiao, W.; Yang, X.; Ding, B.; Chen, C. Monitoring potential spontaneous combustion in a coal waste dump after reclamation through unmanned aerial vehicle RGB imagery based on alfalfa aboveground biomass. Land. Degrad. Dev. 2022, 33, 2728–2742. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, X.; Hu, S.; Shao, H.; Liao, Q.; Fan, Y. Experimental study of the effects of stacking modes on the spontaneous combustion of coal gangue. Process. Saf. Environ. 2019, 123, 39–47. [Google Scholar] [CrossRef]
- Abramowicz, A.; Rahmonov, O.; Fabiańska, M.J.; Nádudvari, Á.; Chybiorz, R.; Michalak, M. Changes in soil chemical composition caused by self-heating of a coal-waste dump. Land. Degrad. Dev. 2021, 32, 4340–4349. [Google Scholar] [CrossRef]
- Smoliński, A.; Dombek, V.; Pertile, E.; Drobek, L.; Gogola, K.; Żechowska, S.W.; Magdziarczyk, M. An analysis of self-ignition of mine waste dumps in terms of environmental protection in industrial areas in Poland. Sci. Rep. 2021, 11, 8851. [Google Scholar] [CrossRef]
- Ren, H.; Zhao, Y.; Xiao, W.; Zhang, J.; Chen, C.; Ding, B.; Yang, X. Vegetation growth status as an early warning indicator for the spontaneous combustion disaster of coal waste dump after reclamation: An unmanned aerial vehicle remote sensing approach. J. Environ. Manag. 2022, 317, 115502. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Xiao, W.; Zhao, Y. Examining the effect of spontaneous combustion on vegetation resto-ration at coal waste dumps after reclamation: Taking Medicago sativa L.(alfalfa) as an indicator. Sci. Total Environ. 2023, 901, 165668. [Google Scholar] [CrossRef]
- Ciesielczuk, J.; Czylok, A.; Fabiańska, M.J.; Misz-Kennan, M. Plant occurrence on burning coal waste–a case study from the Katowice-Wełnowiec dump, Poland. Environ. Socio-Econ. S. 2015, 3, 1–10. [Google Scholar] [CrossRef]
- Abramowicz, A.; Rahmonov, O.; Chybiorz, R.; Ciesielczuk, J. Vegetation as an indicator of underground smoldering fire on coal-waste dumps. Fire Saf. J. 2021, 121, 103287. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Li, C.; Li, Z.; Wang, Y.; Feng, H.; Xu, B. Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height im-proved models. Remote Sens. 2017, 9, 708. [Google Scholar] [CrossRef]
- Ge, J.; Hou, M.; Liang, T.; Feng, Q.; Meng, X.; Liu, J.; Bao, X.; Gao, H. Spatiotemporal dynamics of grassland aboveground biomass and its driving factors in North China over the past 20 years. Sci. Total Environ. 2022, 826, 154226. [Google Scholar] [CrossRef]
- Yang, Q.; Niu, C.; Liu, X.; Feng, Y.; Ma, Q.; Wang, X.; Tang, H.; Guo, Q. Mapping high-resolution forest aboveground biomass of China using multisource remote sensing data. GISCI. Remote Sens. 2023, 60, 2203303. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, Z.; Wang, B.; Kan, H.; Sun, Y.; Qin, Y.; Meng, B.; Li, M.; Chen, J.; Lv, Y.; et al. A 250 m annual alpine grassland AGB dataset over the Qinghai–Tibet Plateau (2000–2019) in China based on in situ measurements, UAV photos, and MODIS data. Earth. Sys. Sci. Data 2023, 15, 821–846. [Google Scholar] [CrossRef]
- Ren, H.; Zhao, Y.; Xiao, W.; Hu, Z. A review of UAV monitoring in mining areas: Current status and future perspectives. Int. J. Coal Sci. Technol. 2019, 6, 320–333. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth. Obs. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.; Yue, J.; Jin, X.; Li, Z.; Yang, G. Estimation of potato above-ground biomass based on unmanned aerial vehicle red-green-blue images with different texture features and crop height. Front. Plant. Sci. 2022, 13, 938216. [Google Scholar] [CrossRef]
- Zhao, Y.; Lyu, X.; Xiao, W.; Tian, S.; Zhang, J.; Hu, Z.; Fu, Y. Evaluation of the soil profile quality of subsided land in a coal mining area backfilled with river sediment based on monitoring wheat growth biomass with UAV systems. Environ. Monit. Assess. 2021, 193, 1–18. [Google Scholar] [CrossRef]
- Fei, S.; Hassan, M.A.; Xiao, Y.; Su, X.; Chen, Z.; Cheng, Q.; Duan, F.; Chen, R.; Ma, Y. UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat. Precis. Agric. 2023, 24, 187–212. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, W.; Xiao, W.; Zhang, S.; Lv, X.; Zhang, J. Rapid monitoring of reclaimed farmland effects in coal mining subsidence area using a multi-spectral UAV platform. Environ. Monit. Assess. 2020, 192, 1–19. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Z.; Cheng, Q.; Duan, F.; Sui, R.; Huang, X.; Xu, H. UAV-based hyperspectral and ensemble machine learning for predicting yield in winter wheat. Agronomy 2022, 12, 202. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Hartling, S.; Esposito, F.; Fritschi, F.B. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sens. Environ. 2020, 237, 111599. [Google Scholar] [CrossRef]
- Dang, J. Problems and challenges of ecological environment in coal mine areas of Shanxi. China Coal. 2021, 47, 117–121, (In Chinese with English abstract). [Google Scholar]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant. Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Kataoka, T.; Kaneko, T.; Okamoto, H.; Hata, S. Crop growth estimation system using machine vision. In Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Kobe, Japan, 20–24 July 2003; Volume 2, pp. 1079–1083. [Google Scholar]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color indices for weed identification under various soil, residue, and lighting conditions. Transact. ASABE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Neto, J.C. A Combined Statistical-Soft Computing Approach for Classification and Mapping Weed Species in Minimum-Tillage Systems; The University of Nebraska-Lincoln: Lincoln, NE, USA, 2004. [Google Scholar]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto. Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Chianucci, F.; Disperati, L.; Guzzi, D.; Bianchini, D.; Nardino, V.; Lastri, C.; Rindinella, A.; Corona, P. Estimation of canopy attributes in beech forests using true colour digital images from a small fixed-wing UAV. Int. J. Appl. Earth Obs. 2016, 47, 60–68. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Gong, P.; Pu, R.; Biging, G.S.; Larrieu, M.R. Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data. IEEE. Trans. Geosci. Remote 2003, 41, 1355–1362. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Pearson, R.L.; Miller, L.D. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. Remote Sens. Environ. 1972, VIII, 1355. [Google Scholar]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T.; et al. Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA, 16 July 2000; Volume 1619, p. 6. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE.T. Syst. Man. Cy-s. 1973, 6, 610–621. [Google Scholar] [CrossRef]
- Jackson, R.D.; Reginato, R.J.; Idso, S. Wheat canopy temperature: A practical tool for evaluating water requirements. Water. Resource Res. 1977, 13, 651–656. [Google Scholar] [CrossRef]
- Idso, S.B.; Jackson, R.D.; Pinter, P.J., Jr.; Reginato, R.J.; Hatfield, J.L. Normalizing the stress-degree-day parameter for environmental variability. Agric. Meteorol. 1981, 24, 45–55. [Google Scholar] [CrossRef]
- Kursa, M.B.; Rudnicki, W.R. Feature selection with the Boruta package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef]
- Shu, M.; Zuo, J.; Shen, M.; Yin, P.; Wang, M.; Yang, X.; Tang, J.; Li, B.; Ma, Y. Improving the estimation accuracy of SPAD values for maize leaves by removing UAV hyperspectral image backgrounds. Int. J. Remote Sens. 2021, 42, 5862–5881. [Google Scholar] [CrossRef]
- Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [Google Scholar] [CrossRef]
- Zhai, W.; Li, C.; Cheng, Q.; Mao, B.; Li, Z.; Li, Y.; Ding, F.; Qin, S.; Fei, S.; Chen, Z. Enhancing Wheat Above-Ground Biomass Estimation Using UAV RGB Images and Machine Learning: Multi-Feature Combinations, Flight Height, and Algorithm Implications. Remote Sens. 2023, 15, 3653. [Google Scholar] [CrossRef]
- Liang, Y.; Kou, W.; Lai, H.; Wang, J.; Wang, Q.; Xu, W.; Wang, H.; Lu, N. Improved estimation of aboveground biomass in rubber plantations by fusing spectral and textural information from UAV-based RGB imagery. Ecol. Indic. 2022, 142, 109286. [Google Scholar] [CrossRef]
- Li, W.; Niu, Z.; Chen, H.; Li, D.; Wu, M.; Zhao, W. Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system. Ecol. Indic. 2016, 67, 637–648. [Google Scholar] [CrossRef]
- Wu, S.; Deng, L.; Guo, L.; Wu, Y. Wheat leaf area index prediction using data fusion based on high-resolution unmanned aerial vehicle imagery. Plant Methods 2022, 18, 68. [Google Scholar] [CrossRef]
- Wang, Q.; Che, Y.; Shao, K.; Zhu, J.; Wang, R.; Sui, Y.; Guo, Y.; Li, B.; Meng, L.; Ma, Y. Estimation of sugar content in sugar beet root based on UAV multi-sensor data. Comput. Electron. Agr. 2022, 203, 107433. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Ghulam, A.; Sidike, P.; Hartling, S.; Maimaitiyiming, M.; Peterson, K.; Shavers, E.; Fishman, J.; Peterson, J.; Kadam, S.; et al. Unmanned Aerial System (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine. ISPRS. J. Photogramm. 2017, 134, 43–58. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, Z.; Ma, Y.; Du, Q.; Williams, P.; Drewry, J.; Luck, B. Alfalfa yield prediction using UAV-based hyperspectral imagery and ensemble learning. Remote Sens. 2020, 12, 2028. [Google Scholar] [CrossRef]
- Marcial-Pablo, M.D.J.; Gonzalez-Sanchez, A.; Jimenez-Jimenez, S.I.; Ontiveros-Capurata, R.E.; Ojeda-Bustamante, W. Estimation of vegetation fraction using RGB and multispectral images from UAV. Int. J. Remote Sens. 2019, 40, 420–438. [Google Scholar] [CrossRef]
Imagery Feature | Sensor | Imagery Feature | Calculation | Reference |
---|---|---|---|---|
Spectral information | RGB | Normalized Green–Red Difference Index (NGRDI) | NGRDI = (G − R)/(G + R) | [27] |
RGB | Color Index of Vegetation Extraction (CIVE) | CIVE = 0.441r − 0.881g + 0.385b + 18.78745 | [28] | |
RGB | Excess Green Index (EXG) | EXG = 2g − r − b | [29] | |
RGB | Excess Green Minus Excess Red Index (EXGR) | EXGR = EXG − 1.4r − g | [30] | |
RGB | Modified Green–Red Vegetation Index (MGRVI) | MGRVI = (g2 − r2)/(g2 + r2) | [19] | |
RGB | RGB-based Vegetation Index (RGBVI) | RGBVI = (g2 − rb)/(g2 + rb) | [31] | |
RGB | Visible Atmospherically Resistant Index (VARI) | VARI = (g − r)/(g + r − b) | [28] | |
RGB | Green Leaf Index (GLI) | GLI = (2g − r − b)/(2g + r + b) | [31] | |
RGB | Green–Red Vegetation Index (GRVI) | GRVI = (g − r)/(g + r) | [19] | |
RGB | Normalized Green–Blue Difference Vegetation Index (NGBDI) | NGBDI = (g − b)/(g + b) | [32] | |
MS | Green Normalized Difference Vegetation Index (GNDVI) | (ρNIR − ρGreen)/(ρNIR + ρGreen) | [33] | |
MS | Normalized Difference Vegetation Index (NDVI) | (ρNIR − ρRed)/(ρNIR + ρRed) | [34] | |
MS | Nonlinear Vegetation Index (NLI) | (ρNIR2 − ρRed)/(ρNIR2 + ρRed) | [35] | |
MS | Enhanced Vegetation Index (EVI) | 2.5(ρNIR − ρRed)/(ρNIR + 6ρRed − 7.5ρBlue + 1) | [36] | |
MS | Ratio Vegetation Index (RVI) | ρNIR/ρRed | [37] | |
MS | Optimized Soil Adjusted Vegetation Index (OSAVI) | (ρNIR − ρRed)/(ρNIR + ρRed + 0.16) | [38] | |
MS | Modified Simple Ratio (MSR) | (ρNIR/ρRed − 1)/(ρNIR/ρRed + 1)1/2 | [39] | |
MS | Green Chlorophyll Index (CIgreen) | ρNIR/ρGreen − 1 | [27] | |
MS | Normalized Difference Rededge Index (NDRE) | (ρNIR-ρRededge)/(ΡNIR+ρRededge) | [40] | |
MS | Chlorophyll Index-rededge (CIrededge) | ρNIR/ρRededge − 1 | [27] | |
Texture information | RGB/MS/TIR | MEA, HOM, COR, DIS, ENT, CON, SEC, VAR | GLCM | [41] |
Thermal information | TIR | Canopy temperature depression (CTD) | Tcanopy − Tair | [42] |
TIR | Crop water stress index (CWSI) | (Tcanopy − Twet)/(Tdry − Twet) | [43] | |
Structure information | RGB | Plant height (PH) | DSM–DEM | [19] |
Sensor Type | Select Feature | Number |
---|---|---|
RGB | PH, EXGR, CIVE, VARI, NGRDI, MGRVI, GRVI, and G_VAR | 8 |
MS | RVI, NDRE, OSAVI, NDVI, MSR, CI-rededge, R_MEA, and NIR_MEA | 8 |
TIR | CWSIs, thermal_VAR, and thermal_MEA | 3 |
Model | Metric | Combination I | Combination II | Combination III | Combination IV | ||||
---|---|---|---|---|---|---|---|---|---|
Train | Test | Train | Test | Train | Test | Train | Test | ||
R2 | 0.96 | 0.82 | 0.96 | 0.87 | 0.96 | 0.86 | 0.96 | 0.87 | |
RFR | RMSE | 48.33 | 96.64 | 48.51 | 84.87 | 48.65 | 85.97 | 48.17 | 84.36 |
MAE | 34.73 | 68.28 | 35.05 | 65.21 | 33.38 | 59.02 | 33.53 | 61.56 | |
R2 | 0.77 | 0.62 | 0.85 | 0.76 | 0.85 | 0.77 | 0.85 | 0.77 | |
SVR | RMSE | 115.62 | 143.94 | 94.80 | 113.19 | 93.21 | 111.30 | 92.78 | 110.97 |
MAE | 77.68 | 92.83 | 55.30 | 76.60 | 52.50 | 73.78 | 52.04 | 73.45 | |
R2 | 0.85 | 0.78 | 0.89 | 0.81 | 0.85 | 0.82 | 0.96 | 0.83 | |
GBDT | RMSE | 94.23 | 107.79 | 80.08 | 100.88 | 93.68 | 99.16 | 51.08 | 96.06 |
MAE | 72.58 | 81.62 | 61.48 | 79.16 | 71.83 | 74.85 | 39.44 | 78.64 | |
R2 | 0.77 | 0.65 | 0.76 | 0.79 | 0.77 | 0.79 | 0.79 | 0.79 | |
KNN | RMSE | 114.84 | 136.53 | 118.68 | 107.29 | 116.75 | 106.79 | 107.46 | 105.58 |
MAE | 79.68 | 84.04 | 82.47 | 70.51 | 83.13 | 72.41 | 72.70 | 72.22 | |
R2 | 0.90 | 0.86 | 0.94 | 0.88 | 0.93 | 0.86 | 0.95 | 0.88 | |
Stacking | RMSE | 76.61 | 86.87 | 60.31 | 80.82 | 62.64 | 85.34 | 54.89 | 80.06 |
MAE | 55.09 | 60.24 | 42.72 | 61.45 | 43.79 | 62.69 | 37.78 | 60.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, H.; Zhao, Y.; Xiao, W.; Zhang, L. Unmanned Aerial Vehicle (UAV)-Based Vegetation Restoration Monitoring in Coal Waste Dumps after Reclamation. Remote Sens. 2024, 16, 881. https://doi.org/10.3390/rs16050881
Ren H, Zhao Y, Xiao W, Zhang L. Unmanned Aerial Vehicle (UAV)-Based Vegetation Restoration Monitoring in Coal Waste Dumps after Reclamation. Remote Sensing. 2024; 16(5):881. https://doi.org/10.3390/rs16050881
Chicago/Turabian StyleRen, He, Yanling Zhao, Wu Xiao, and Lifan Zhang. 2024. "Unmanned Aerial Vehicle (UAV)-Based Vegetation Restoration Monitoring in Coal Waste Dumps after Reclamation" Remote Sensing 16, no. 5: 881. https://doi.org/10.3390/rs16050881
APA StyleRen, H., Zhao, Y., Xiao, W., & Zhang, L. (2024). Unmanned Aerial Vehicle (UAV)-Based Vegetation Restoration Monitoring in Coal Waste Dumps after Reclamation. Remote Sensing, 16(5), 881. https://doi.org/10.3390/rs16050881