Extracting Typical Samples Based on Image Environmental Factors to Obtain an Accurate and High-Resolution Soil Type Map
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Typical Sampling Design
2.4. Data-Mining Methods
2.5. Methods for Evaluating Model Performance
3. Results and Analysis
3.1. Analysis of Variance and Feature Selection
3.2. Training Samples Acquisition
3.3. Model Evaluation
3.4. Feature Importance Analysis
3.5. Soil Spatial Distribution Mapping
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, S.; Arrouays, D.; Leatitia Mulder, V.; Poggio, L.; Minasny, B.; Roudier, P.; Libohova, Z.; Lagacherie, P.; Shi, Z.; Hannam, J.; et al. Digital mapping of GlobalSoilMap soil properties at a broad scale: A review. Geoderma 2022, 409, 115567. [Google Scholar] [CrossRef]
- Graham, R.C.; Indorante, S.J. Concepts of Soil Formation and Soil Survey. In Soils of the USA; West, L.T., Singer, M.J., Hartemink, A.E., Eds.; Springer: Cham, Switzerland, 2017; pp. 9–27. [Google Scholar] [CrossRef]
- Liu, F.; Wu, H.; Zhao, Y.; Li, D.; Yang, J.L.; Song, X.; Shi, Z.; Zhu, A.X.; Zhang, G.L. Mapping high resolution National Soil Information Grids of China. Sci. Bull. 2022, 67, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Jenny, H. Factors of soil formation: A system of quantitative pedology/Hans Jenny. Soil Sci. 1941, 52, 415. [Google Scholar] [CrossRef]
- McBratney, A.B.; Mendonça Santos, M.L.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Chen, S.; Liang, Z.; Webster, R.; Zhang, G.; Zhou, Y.; Teng, H.; Hu, B.; Arrouays, D.; Shi, Z. A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution. Sci. Total Environ. 2019, 655, 273–283. [Google Scholar] [CrossRef]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotic, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef]
- Kempen, B.; Brus, D.J.; de Vries, F. Operationalizing digital soil mapping for nationwide updating of the 1:50,000 soil map of the Netherlands. Geoderma 2015, 241–242, 313–329. [Google Scholar] [CrossRef]
- Malone, B.P.; Jha, S.K.; Minasny, B.; McBratney, A.B. Comparing regression-based digital soil mapping and multiple-point geostatistics for the spatial extrapolation of soil data. Geoderma 2016, 262, 243–253. [Google Scholar] [CrossRef]
- Odgers, N.P.; McBratney, A.B.; Minasny, B. Digital soil property mapping and uncertainty estimation using soil class probability rasters. Geoderma 2015, 237–238, 190–198. [Google Scholar] [CrossRef]
- Zhang, G.-l.; Liu, F.; Song, X.-d. Recent progress and future prospect of digital soil mapping: A review. J. Integr. Agric. 2017, 16, 2871–2885. [Google Scholar] [CrossRef]
- Hengl, T.; Rossiter, D.G. Supervised Landform Classification to Enhance and Replace Photo-Interpretation in Semi-Detailed Soil Survey. Soil Sci. Soc. Am. J. 2003, 67, 1810–1822. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Walvoort, D.J.J. The variance quadtree algorithm: Use for spatial sampling design. Comput. Geosci. 2007, 33, 383–392. [Google Scholar] [CrossRef]
- An, Y.; Yang, L.; Zhu, A.X.; Qin, C.; Shi, J. Identification of representative samples from existing samples for digital soil mapping. Geoderma 2018, 311, 109–119. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, A.X.; Yang, L.; Pei, T.; Qi, F.; Liu, J.; Wang, D.; Zeng, C.; Ma, T. Influence of legacy soil map accuracy on soil map updating with data mining methods. Geoderma 2022, 416, 115802. [Google Scholar] [CrossRef]
- Yang, L.; Zhu, A.X.; Qi, F.; Qin, C.Z.; Li, B.; Pei, T. An integrative hierarchical stepwise sampling strategy for spatial sampling and its application in digital soil mapping. Int. J. Geogr. Inf. Sci. 2013, 27, 1–23. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Comput. Geosci. 2006, 32, 1378–1388. [Google Scholar] [CrossRef]
- Mulder, V.L.; de Bruin, S.; Schaepman, M.E. Representing major soil variability at regional scale by constrained Latin Hypercube Sampling of remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 301–310. [Google Scholar] [CrossRef]
- Stumpf, F.; Schmidt, K.; Behrens, T.; Schönbrodt-Stitt, S.; Buzzo, G.; Dumperth, C.; Wadoux, A.; Xiang, W.; Scholten, T. Incorporating limited field operability and legacy soil samples in a hypercube sampling design for digital soil mapping. J. Plant Nutr. Soil Sci. 2016, 179, 499–509. [Google Scholar] [CrossRef]
- Amundson, R. Factors of soil formation in the 21st century. Geoderma 2021, 391, 114960. [Google Scholar] [CrossRef]
- Amirian-Chakan, A.; Minasny, B.; Taghizadeh-Mehrjardi, R.; Akbarifazli, R.; Darvishpasand, Z.; Khordehbin, S. Some practical aspects of predicting texture data in digital soil mapping. Soil Tillage Res. 2019, 194, 104289. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Ayoubi, S.; Jafari, A.; Tajik, S.; Finke, P. Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran. Geoderma 2019, 338, 445–452. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Chen, J.; Pan, J.; Haase, D.; Lausch, A. High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms. Sci. Total Environ. 2020, 729, 138244. [Google Scholar] [CrossRef] [PubMed]
- Taghizadeh-Mehrjardi, R.; Nabiollahi, K.; Kerry, R. Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma 2016, 266, 98–110. [Google Scholar] [CrossRef]
- Flynn, T.; de Clercq, W.; Rozanov, A.; Clarke, C. High-resolution digital soil mapping of multiple soil properties: An alternative to the traditional field survey? S. Afr. J. Plant Soil 2019, 36, 237–247. [Google Scholar] [CrossRef]
- Friedman, J.H. MULTIVARIATE ADAPTIVE REGRESSION SPLINES. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- Hengl, T.; Heuvelink, G.B.; Kempen, B.; Leenaars, J.G.; Walsh, M.G.; Shepherd, K.D.; Sila, A.; MacMillan, R.A.; Mendes de Jesus, J.; Tamene, L.; et al. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE 2015, 10, e0125814. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Machado, D.F.T.; de Menezes, M.D.; Silva, S.H.G.; Curi, N. Transferability, accuracy, and uncertainty assessment of different knowledge-based approaches for soil types mapping. Catena 2019, 182, 104134. [Google Scholar] [CrossRef]
- Bui, E.N.; Loughhead, A.; Corner, R. Extracting soil-landscape rules from previous soil surveys. Aust. J. Soil Res. 1999, 37, 495–508. [Google Scholar] [CrossRef]
- Bui, E.N.; Moran, C.J. A strategy to fill gaps in soil survey over large spatial extents: An example from the Murray-Darling basin of Australia. Geoderma 2003, 111, 21–44. [Google Scholar] [CrossRef]
- Kempen, B.; Brus, D.J.; Heuvelink, G.B.M.; Stoorvogel, J.J. Updating the 1:50,000 Dutch soil map using legacy soil data: A multinomial logistic regression approach. Geoderma 2009, 151, 311–326. [Google Scholar] [CrossRef]
- Lagacherie, P.; Legros, J.P.; Burrough, P.A. A Soil Survey Procedure Using The Knowledge of Soil Pattern Established on A Previously Mapped Reference Area. Geoderma 1995, 65, 283–301. [Google Scholar] [CrossRef]
- Stoorvogel, J.J.; Kempen, B.; Heuvelink, G.B.M.; de Bruin, S. Implementation and evaluation of existing knowledge for digital soil mapping in Senegal. Geoderma 2009, 149, 161–170. [Google Scholar] [CrossRef]
- Dragut, L.; Eisank, C.; Strasser, T. Local variance for multi-scale analysis in geomorphometry. Geomorphology 2011, 130, 162–172. [Google Scholar] [CrossRef]
- Dragut, L.; Schauppenlehner, T.; Muhar, A.; Strobl, J.; Blaschke, T. Optimization of scale and parametrization for terrain segmentation: An application to soil-landscape modeling. Comput. Geosci. 2009, 35, 1875–1883. [Google Scholar] [CrossRef]
- Long, J.; Li, J.; Huang, Q.; Qiu, L.X.; Lu, L.M.; Bian, A.A.; Zhu, L.X.; Li, H.H.; Qian, X.J.; Xing, S.H.; et al. Effects of raster resolution on quantifying farmland soil organic carbon stock in various landforms of a complex topography, China. Geoderma Reg. 2023, 34, e00668. [Google Scholar] [CrossRef]
- Urbina-Salazar, D.; Vaudour, E.; Baghdadi, N.; Ceschia, E.; Richer-de-Forges, A.C.; Lehmann, S.; Arrouays, D. Using Sentinel-2 Images for Soil Organic Carbon Content Mapping in Croplands of Southwestern France. The Usefulness of Sentinel-1/2 Derived Moisture Maps and Mismatches between Sentinel Images and Sampling Dates. Remote Sens. 2021, 13, 5115. [Google Scholar] [CrossRef]
- Atkinson, J.; de Clercq, W.; Rozanov, A. Multi-resolution soil-landscape characterisation in KwaZulu Natal: Using geomorphons to classify local soilscapes for improved digital geomorphological modelling. Geoderma Reg. 2020, 22, e00291. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Foody, G.M. The impact of imperfect ground reference data on the accuracy of land cover change estimation. Int. J. Remote Sens. 2009, 30, 3275–3281. [Google Scholar] [CrossRef]
- Friedl, M.A.; Woodcock, C.; Gopal, S.; Muchoney, D.; Strahler, A.H.; Barker-Schaaf, C. A note on procedures used for accuracy assessment in land cover maps derived from AVHRR data. Int. J. Remote Sens. 2000, 21, 1073–1077. [Google Scholar] [CrossRef]
- Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; de Abelleyra, D.; Ferraz, R.P.D.; Lebourgeois, V.; Lelong, C.; Simões, M.; Verón, S.R. Remote Sensing and Cropping Practices: A Review. Remote Sens. 2018, 10, 99. [Google Scholar] [CrossRef]
- Bellón, B.; Bégué, A.; Lo Seen, D.; de Almeida, C.; Simões, M. A Remote Sensing Approach for Regional-Scale Mapping of Agricultural Land-Use Systems Based on NDVI Time Series. Remote Sens. 2017, 9, 600. [Google Scholar] [CrossRef]
- King, C.; Baghdadi, N.; Lecomte, V.; Cerdan, O. The application of remote-sensing data to monitoring and modelling of soil erosion. Catena 2005, 62, 79–93. [Google Scholar] [CrossRef]
- Sanchez, P.A.; Ahamed, S.; CarrÃ, F.; Hartemink, A.E.; Hempel, J.; Huising, J.; Lagacherie, P.; McBratney, A.B.; McKenzie, N.J.; Mendonça-Santos, M.d.L.; et al. Digital Soil Map of the World. Science 2009, 325, 680–681. [Google Scholar] [CrossRef] [PubMed]
Factors of Soil Formation | Environmental Covariates | Analysis of Variance | Native Resolution/m | Data Type | |
---|---|---|---|---|---|
F | p | ||||
Topography factors | Elevation | 43.45 | <2.00 × 10−16 *** | 2.1 | Quantitative |
CNBL | 11.84 | 1.25 × 10−8 *** | 30 | ||
PlC | 3.33 | 0.0115 * | 30 | ||
RSP | 23.54 | 6.79 × 10−16 *** | 30 | ||
Slope | 9.77 | 3.17 × 10−7 *** | 30 | ||
TWI | 7.33 | 1.60 × 10−5 *** | 30 | ||
Organism factors | GF2DVI | 26.18 | <2.00 × 10−16 *** | 1 | |
S2RVI | 14.56 | 2.00 × 10−10 *** | 10 | ||
ZY302EVI | 9.02 | 1.05 × 10−6 *** | 5.8 | ||
Soil properties | S2SRI | 5.04 | 6.94 × 10−5 *** | 10 | |
ZY302SCI | 5.64 | 2.57 × 10−4 *** | 5.8 | ||
Organism/human factor | LU | 0.67 | 1 | Category | |
Parent material | PM | 0.09 | 1:200,000 |
Sample Type | Models | Calibration Set | Validation Set | ||
---|---|---|---|---|---|
Accuracy | Kappa | Accuracy | Kappa | ||
Typical Sample (TS) | RF | 0.82 | 0.72 | 0.86 | 0.78 |
bagCART | 0.80 | 0.70 | 0.80 | 0.69 | |
bagFDA | 0.84 | 0.75 | 0.84 | 0.76 | |
NNet | 0.81 | 0.72 | 0.82 | 0.73 | |
Random Sample (RS) | RF | 0.51 | 0.15 | 0.38 | 0.03 |
bagCART | 0.49 | 0.15 | 0.38 | 0.04 | |
bagFDA | 0.50 | 0.18 | 0.50 | 0.20 | |
NNet | 0.51 | 0.16 | 0.46 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.; Zhu, F.; Li, C.; Yan, Y.; Lu, W.; Fang, Z.; Li, Z.; Pan, J. Extracting Typical Samples Based on Image Environmental Factors to Obtain an Accurate and High-Resolution Soil Type Map. Remote Sens. 2024, 16, 1128. https://doi.org/10.3390/rs16071128
Zhu C, Zhu F, Li C, Yan Y, Lu W, Fang Z, Li Z, Pan J. Extracting Typical Samples Based on Image Environmental Factors to Obtain an Accurate and High-Resolution Soil Type Map. Remote Sensing. 2024; 16(7):1128. https://doi.org/10.3390/rs16071128
Chicago/Turabian StyleZhu, Changda, Fubin Zhu, Cheng Li, Yunxin Yan, Wenhao Lu, Zihan Fang, Zhaofu Li, and Jianjun Pan. 2024. "Extracting Typical Samples Based on Image Environmental Factors to Obtain an Accurate and High-Resolution Soil Type Map" Remote Sensing 16, no. 7: 1128. https://doi.org/10.3390/rs16071128
APA StyleZhu, C., Zhu, F., Li, C., Yan, Y., Lu, W., Fang, Z., Li, Z., & Pan, J. (2024). Extracting Typical Samples Based on Image Environmental Factors to Obtain an Accurate and High-Resolution Soil Type Map. Remote Sensing, 16(7), 1128. https://doi.org/10.3390/rs16071128