Mapping Dissolved Organic Carbon and Organic Iron by Comparing Deep Learning and Linear Regression Techniques Using Sentinel-2 and WorldView-2 Imagery (Byers Peninsula, Maritime Antarctica)
Abstract
:1. Introduction
- To train models of soil properties using optical satellite imagery such as Sentinel-2 and WordView2.
- To search for spectral indices that could be useful for tracking dissolved organic carbon and iron chelates in Byers Peninsula as a training plot for maritime Antarctic periglacial areas.
- To look for the areas most likely to be biologically colonized. These areas, if accessible, should be the main target of exhaustive inventories and analyses to elucidate the true causes of the increase in their indicators of biological activity.
2. Materials and Methods
2.1. Byers Peninsula
2.1.1. Geology and Geomorphology
2.1.2. Climate, Weathering, and Soils
2.2. Sampling and Analysis
2.3. Satellite Imagery
2.4. Modeling
- Input layer (size = 6);
- First hidden layer (500 neurons);
- Second hidden layer (100 neurons);
- Third hidden layer (50 neurons);
- Output layer (1 neuron).
2.5. Validation and Statistical Analysis
3. Results and Discussion
3.1. Analysis of Soil Properties
3.2. Generated Models and Maps of Soil Properties
3.3. Spatial Distribution of Soil Properties
3.4. Dissolved Organic Carbon (DOC) Models
3.5. Organic Fe Models
3.6. pH Models
3.7. Searching Areas of Biological Occupation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Velázquez, D.; Lezcano, M.Á.; Frias, A.; Quesada, A. Ecological relationships and stoichiometry within a Maritime Antarctic watershed. Antarct. Sci. 2013, 25, 191–197. [Google Scholar] [CrossRef]
- Barbosa, A.; De Mas, E.; Benzal, J.; Diaz, J.I.; Motas, M.; Jerez, S.; Pertierra, L.; Benayas, J.; Justel, A.; Lauzurica, P.; et al. Pollution and physiological variability in gentoo penguins at two rookeries with different levels of human visitation. Antarct. Sci. 2013, 25, 329–338. [Google Scholar] [CrossRef]
- Quesada, A.; Camacho, A.; Rochera, C.; Velázquez, D. Byers Peninsula: A reference site for coastal, terrestrial and limnetic ecosystem studies in maritime Antarctica. Polar Sci. 2009, 3, 181–187. [Google Scholar] [CrossRef]
- de Pablo, M.A.; Ramos, M.; Molina, A. Thermal characterization of the active layer at the Limnopolar Lake CALM-S site on Byers Peninsula (Livingston Island), Antarctica. Solid Earth 2014, 5, 721–739. [Google Scholar] [CrossRef]
- Lyons, W.B.; Welch, K.; Welch, S.; Camacho, A.; Rochera, C.; Michaud, L.; Dewit, R.; Carey, A. Geochemistry of streams from byers peninsula, Livingston Island. Antarct. Sci. 2013, 25, 181–190. [Google Scholar] [CrossRef]
- Toro, M.; Granados, I.; Pla, S.; Giralt, S.; Antoniades, D.; Galán, L.; Cortizas, A.M.; Lim, H.S.; Appleby, P.G. Chronostratigraphy of the sedimentary record of limnopolar lake, Byers peninsula, Livingston island, Antarctica. Antarct. Sci. 2013, 25, 198–212. [Google Scholar] [CrossRef]
- Vera, M.L.; Fernández-Teruel, T.; Quesada, A. Distribution and reproductive capacity of Deschampsia antarctica and Colobanthus quitensis on Byers Peninsula, Livingston Island, South Shetland Islands, Antarctica. Antarct. Sci. 2013, 25, 292–302. [Google Scholar] [CrossRef]
- Villaescusa, J.A.; Casamayor, E.O.; Rochera, C.; Quesada, A.; Michaud, L.; Camacho, A. Heterogeneous vertical structure of the bacterioplankton community in a non-stratified Antarctic lake. Antarct. Sci. 2013, 25, 229–238. [Google Scholar] [CrossRef]
- Emslie, S.D.; Polito, M.J.; Patterson, W.P. Stable isotope analysis of ancient and modern gentoo penguin egg membrane and the krill surplus hypothesis in Antarctica. Antarct. Sci. 2013, 25, 213–218. [Google Scholar] [CrossRef]
- Nakai, R.; Shibuya, E.; Justel, A.; Rico, E.; Quesada, A.; Kobayashi, F.; Iwasaka, Y.; Shi, G.Y.; Amano, Y.; Iwatsuki, T.; et al. Phylogeographic analysis of filterable bacteria with special reference to Rhizobiales strains that occur in cryospheric habitats. Antarct. Sci. 2013, 25, 219–228. [Google Scholar] [CrossRef]
- Kopalová, K.; Van de Vijver, B. Structure and ecology of freshwater benthic diatom communities from Byers Peninsula, Livingston Island, South Shetland Islands. Antarct. Sci. 2013, 25, 239–253. [Google Scholar] [CrossRef]
- Benayas, J.; Pertierra, L.R.; Tejedo, P.; Lara, F.; Bermudez, O.; Hughes, K.A.; Quesada, A. A review of scientific research trends within ASPA No. 126 Byers Peninsula, South Shetland Islands, Antarctica. Antarct. Sci. 2013, 25, 128–145. [Google Scholar] [CrossRef]
- Campbell, I.; Claridge, G. Antarctica: Soils, Weathering Processes and Environment; Elsevier Science: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Beyer, L. Properties, formation, and geo-ecological significance of organic soils in the coastal region of East Antarctica (Wilkes Land). CATENA 2000, 39, 79–93. [Google Scholar] [CrossRef]
- Ugolini, F.; Bockheim, J. Antarctic soils and soil formation in a changing environment: A review. Geoderma 2008, 144, 1–8. [Google Scholar] [CrossRef]
- Simas, F.N.B.; Schaefer, C.E.G.R.; Michel, R.F.; Francelino, M.R.; Bockheim, J.G. Soils of the South Orkney and South Shetland Islands, Antarctica. In The Soils of Antarctica; Springer International Publishing: Cham, Switzerland, 2015; pp. 227–273. [Google Scholar] [CrossRef]
- Ugolini, F. Ornithogenic soils of Antarctica. Antarct. Terr. Biol. 1972, 20, 181–193. [Google Scholar]
- Tatur, A.; Myrcha, A. Ornithogenic Ecosystems in the Maritime Antarctic-Formation, Development and Disintegration. In Ornithogenic Ecosystems in the Maritime Antarctic—Formation, Development and Disintegration; Ecological Studies; Springer: Berlin/Heidelberg, Germany, 2002; pp. 161–186. [Google Scholar]
- Navas, A.; López-Martínez, J.; Casas, J.; Machín, J.; Durán, J.J.; Serrano, E.; Cuchi, J.A. Soil characteristics along a transect on raised marine surfaces on Byers Peninsula, Livingston Island, South Shetland Islands. In Antarctica: Contributions to Global Earth Sciences; Springer: Berlin/Heidelberg, Germany, 2006; pp. 467–473. [Google Scholar]
- Bölter, M.; Kandeler, E. Microorganisms and microbial processes in Antarctic soils. In Cryosols: Permafrost-Affected Soils; Springer: Berlin/Heidelberg, Germany, 2004; pp. 557–572. [Google Scholar]
- Otero, X.; Fernández, S.; de Pablo Hernandez, M.; Nizoli, E.; Quesada, A. Plant communities as a key factor in biogeochemical processes involving micronutrients (Fe, Mn, Co, and Cu) in Antarctic soils (Byers Peninsula, maritime Antarctica). Geoderma 2013, 195, 145–154. [Google Scholar] [CrossRef]
- Gamble, A.; Howe, J.; Delaney, D.; Van Santen, E.; Yates, R. Iron chelates alleviate iron chlorosis in soybean on high pH soils. Agron. J. 2014, 106, 1251–1257. [Google Scholar] [CrossRef]
- Chen, S.; Arrouays, D.; Leatitia Mulder, V.; Poggio, L.; Minasny, B.; Roudier, P.; Libohova, Z.; Lagacherie, P.; Shi, Z.; Hannam, J.; et al. Digital mapping of GlobalSoilMap soil properties at a broad scale: A review. Geoderma 2022, 409, 115567. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; Malenovský, Z.; King, D.; Robinson, S.A. Assessment of Antarctic moss health from multi-sensor UAS imagery with Random Forest Modelling. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 168–179. [Google Scholar] [CrossRef]
- Román, A.; Tovar-Sánchez, A.; Fernández-Marín, B.; Navarro, G.; Barbero, L. Characterization of an antarctic penguin colony ecosystem using high-resolution UAV hyperspectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2023, 125, 103565. [Google Scholar] [CrossRef]
- Zmarz, A.; Rodzewicz, M.; Dąbski, M.; Karsznia, I.; Korczak-Abshire, M.; Chwedorzewska, K.J. Application of UAV BVLOS remote sensing data for multi-faceted analysis of Antarctic ecosystem. Remote Sens. Environ. 2018, 217, 375–388. [Google Scholar] [CrossRef]
- Fernández, S.; Muñiz, R.; Peón, J.; Rodríguez-Cielos, R.; Pisabarro, A.; Calleja, J. Machine learning and linear regression models for mapping soil properties and albedo in periglacial areas using Sentinel imagery (Byers Peninsula, Marine Antarctica). Sensors 2024, in press. [Google Scholar]
- Minasny, B.; McBratney, A. Digital soil mapping: A brief history and some lessons. Geoderma 2016, 264, 301–311. [Google Scholar] [CrossRef]
- Siqueira, R.G.; Moquedace, C.M.; Francelino, M.R.; Schaefer, C.E.; Fernandes-Filho, E.I. Machine learning applied for Antarctic soil mapping: Spatial prediction of soil texture for Maritime Antarctica and Northern Antarctic Peninsula. Geoderma 2023, 432, 116405. [Google Scholar] [CrossRef]
- Quayle, W.C.; Convey, P.; Peck, L.S.; Ellis-Evans, C.J.; Butler, H.G.; Peat, H.J. Ecological responses of maritime Antarctic lakes to regional climate change. Antarct. Res. Ser. 2003, 79, 159–170. [Google Scholar]
- Lopez-Martinez, J.; Thomson, M.; Arche, A.; Bjorck, S.; Ellis-Evans, J.C.; Hatway, B.; Hernández-Cifuentes, F.; Hjort, C.; Ingolfsson, O.; Ising, J.; et al. Geomorphological Map of Byers Peninsula, Livingston Island; British Antarctic Survey: Cambridge, UK, 1996. [Google Scholar]
- Björck, S.; Hjort, C.; Ingólfsson, O.; Zale, R.; Ising, J. Holocene deglaciation chronology from lake sediments. In Geomorphological map of Byers Peninsula, Livingston Island; BAS GEOMAP Series, Sheet; BAS: Cambridge, UK, 1996; pp. 49–51. [Google Scholar]
- Hobbs, G. The Geology of the South Shetland Islands: IV. The Geology of Livingston Island; British Antarctic Survey: Cambridge, UK, 1968. [Google Scholar]
- Hathway, B. Nonmarine sedimentation in an Early Cretaceous extensional continental-margin arc, Byers Peninsula, Livingston Island, South Shetland Islands. J. Sediment. Res. 1997, 67, 686–697. [Google Scholar] [CrossRef]
- van Zinderen Bakker, E.M. Palaeoecology of Africa & of the Surrounding Islands & Antarctica; AA Balkema: Rotterdam, The Netherlands, 1966; Volume 16. [Google Scholar]
- Simms, A.R.; Milliken, K.T.; Anderson, J.B.; Wellner, J.S. The marine record of deglaciation of the South Shetland Islands, Antarctica since the Last Glacial Maximum. Quat. Sci. Rev. 2011, 30, 1583–1601. [Google Scholar] [CrossRef]
- Bañón, M.; Justel, A.; Velázquez, D.; Quesada, A. Regional weather survey on Byers Peninsula, Livingston Island, South Shetland Islands, Antarctica. Antarct. Sci. 2013, 25, 146–156. [Google Scholar] [CrossRef]
- Hall, M.; Allinson, D. Assessing the effects of soil grading on the moisture content-dependent thermal conductivity of stabilised rammed earth materials. Appl. Therm. Eng. 2009, 29, 740–747. [Google Scholar] [CrossRef]
- Navas, A.; López-Martínez, J.; Casas, J.; Machín, J.; Durán, J.J.; Serrano, E.; Cuchi, J.A.; Mink, S. Soil characteristics on varying lithological substrates in the South Shetland Islands, maritime Antarctica. Geoderma 2008, 144, 123–139. [Google Scholar] [CrossRef]
- Moura, P.A.; Francelino, M.R.; Schaefer, C.E.G.; Simas, F.N.; de Mendonça, B.A. Distribution and characterization of soils and landform relationships in Byers Peninsula, Livingston Island, Maritime Antarctica. Geomorphology 2012, 155–156, 45–54. [Google Scholar] [CrossRef]
- Mars, J.C.; Rowan, L.C. ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan. Geosphere 2011, 7, 276–289. [Google Scholar] [CrossRef]
- Escadafal, R.; Girard, M.C.; Courault, D. Munsell soil color and soil reflectance in the visible spectral bands of landsat MSS and TM data. Remote Sens. Environ. 1989, 27, 37–46. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Misra, A.; Prasad, R.C.; Chauhan, V.S.; Srilakshmi, B. A theoretical model for the electromagnetic radiation emission during plastic deformation and crack propagation in metallic materials. Int. J. Fract. 2007, 145, 99–121. [Google Scholar] [CrossRef]
- Hewson, R.; Robson, D.; Mauger, A.; Cudahy, T.; Thomas, M.; Jones, S. Using the Geoscience Australia-CSIRO ASTER maps and airborne geophysics to explore Australian geoscience. J. Spat. Sci. 2015, 60, 207–231. [Google Scholar] [CrossRef]
- Murtagh, F. Multilayer perceptrons for classification and regression. Neurocomputing 1991, 2, 183–197. [Google Scholar] [CrossRef]
- Muñiz, R.; Cuevas-Valdés, M.; de la Roza-Delgado, B. Milk quality control requirement evaluation using a handheld near infrared reflectance spectrophotometer and a bespoke mobile application. J. Food Compos. Anal. 2020, 86, 103388. [Google Scholar] [CrossRef]
- Gaudart, J.; Giusiano, B.; Huiart, L. Comparison of the performance of multi-layer perceptron and linear regression for epidemiological data. Comput. Stat. Data Anal. 2004, 44, 547–570. [Google Scholar] [CrossRef]
- Hodson, T.O.; Over, T.M.; Foks, S.S. Mean squared error, deconstructed. J. Adv. Model. Earth Syst. 2021, 13, e2021MS002681. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Beyer, L.; Bölter, M. Chemical and biological properties, formation, occurrence and classification of Spodic Cryosols in a terrestrial ecosystem of East Antarctica (Wilkes Land). CATENA 2000, 39, 95–119. [Google Scholar] [CrossRef]
- da Silva, J.P.; Lelis Leal de Souza, J.J.; Mercês Barros Soares, E.; Schaefer, C.E.G. Soil organic matter accumulation before, during, and after the last glacial maximum in Byers Peninsula, Maritime Antarctica. Geoderma 2022, 428, 116221. [Google Scholar] [CrossRef]
- Blume, H.P.; Kuhn, D.; Bölter, M. Soils and soilscapes. In Geoecology of Antarctic Ice-Free Coastal Landscapes; Springer: Berlin/Heidelberg, Germany, 2002; pp. 91–113. [Google Scholar]
- Arrouays, D.; Poggio, L.; Salazar Guerrero, O.A.; Mulder, V.L. Digital soil mapping and GlobalSoilMap. Main advances and ways forward. Geoderma Reg. 2020, 21, e00265. [Google Scholar] [CrossRef]
- Padarian, J.; Minasny, B.; McBratney, A. Using deep learning to predict soil properties from regional spectral data. Geoderma Reg. 2019, 16, e00198. [Google Scholar] [CrossRef]
- Wadoux, A.M.C.; Minasny, B.; McBratney, A.B. Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Sci. Rev. 2020, 210, 103359. [Google Scholar] [CrossRef]
- Ma, Y.; Minasny, B.; McBratney, A.; Poggio, L.; Fajardo, M. Predicting soil properties in 3D: Should depth be a covariate? Geoderma 2021, 383, 114794. [Google Scholar] [CrossRef]
- Abakumov, E.; Gagarina, E.; Sapega, V.; Vlasov, D.Y. Micromorphological features of the fine earth and skeletal fractions of soils of West Antarctica in the areas of Russian Antarctic stations. Eurasian Soil Sci. 2013, 46, 1219–1229. [Google Scholar] [CrossRef]
- Silvero, N.E.; Demattê, J.A.; de Souza Vieira, J.; de Oliveira Mello, F.A.; Amorim, M.T.A.; Poppiel, R.R.; de Sousa Mendes, W.; Bonfatti, B.R. Soil property maps with satellite images at multiple scales and its impact on management and classification. Geoderma 2021, 397, 115089. [Google Scholar] [CrossRef]
- Hathway, B.; Lomas, S. The jurassic–lower cretaceous Byers group, South Shetland islands, Antarctica: Revised stratigraphy and regional correlations. Cretac. Res. 1998, 19, 43–67. [Google Scholar] [CrossRef]
Indexes | Expression | Sentinel-2 Bands | WV-2 Bands | Authors |
---|---|---|---|---|
Ferric iron (Fe3) | B4-VIS-RED B3-VIS-GREEN | B2-GREEN-GREEN B3-RED-RED | [41] | |
Hue | B2-VIS-BLUE B3-VIS-GREEN B4-VIS-BLUE | B1-BLUE-BLUE B2-GREEN-GREEN B3-RED-RED | [42] | |
IR550 | B3-VIS-GREEN | B2-GREEN-GREEN | [43] | |
IR700 | B5-NIR | B3-RED-RED | [43] | |
Missa Soil Brightness Index (MSBI) v2 | B3-VIS-GREEN B4-VIS-RED B6-NIR-NIR1 B8a-NIR-NIR2 | B0-PAN-NIR1 B2-GREEN-GREEN B3-RED-RED B4-NIR1-NIR2 | [44] | |
I/O (Oxides) | IO= | B2-VIS-BLUE B4-VIS-RED | B1-BLUE-BLUE B3-RED-RED | [45] |
n 49 | Mean | Minimum | Maximum | Std. Dev. |
---|---|---|---|---|
DOC (mg/kg) | 193.31 | 0.00 | 3671.09 | 656.77 |
Organic Fe (mg/kg) | 286.01 | 53.60 | 1768.00 | 374.26 |
pH O | 7.32 | 5.07 | 8.26 | 0.72 |
Density (g/cm3) | 1.16 | 0.17 | 1.50 | 0.27 |
OC (%) | 1.14 | 0.31 | 11.92 | 2.49 |
CLAY | 15.23 | 4.13 | 32.42 | 5.33 |
SILT | 20.34 | 4.37 | 38.59 | 8.39 |
SAND | 64.45 | 43.85 | 87.38 | 11.26 |
Mn (g/Kg) | 6.40 | 1.76 | 10.91 | 2.04 |
Ca (mg/kg) | 17.17 | 2.20 | 29.20 | 7.62 |
Beta | Std. Err. of Beta | B | Std. Err. of B | p-Level | |
---|---|---|---|---|---|
Intercept | 6.405 | 0.6747 | 0.00000 | ||
S_Fe3 | 0.4416 | 0.1069 | 2.955 | 0.7149 | 0.00015 |
S_Oxides | −0.7970 | 0.1069 | −1.578 | 0.2116 | 0.00000 |
Variable: O pH; R = 0.74499237; = 0.55501364; Adjusted = 0.53566640; F (2.46) = 28.687 p | |||||
Intercept | 2897.36 | 523.5466 | 0.00000 | ||
S_Fe3 | −0.7904 | 0.0960 | 4796.81 | 582.4167 | 0.00000 |
S_IR700 | −0.3992 | 0.1227 | −90.82 | 27.9104 | 0.00216 |
S_Oxides | 1.1207 | 0.1333 | 2013.34 | 239.4086 | 0.00000 |
Variable: DOC (mg/L); R = 0.84590926; = 0.71556248; Adjusted = 0.69659998; F (3.45) = 37.736 p | |||||
Intercept | 782.16 | 312.7250 | 0.01600 | ||
S_Fe3 | −0.4729 | 0.0956 | −1638.15 | 331.3458 | 0.00001 |
S_Oxides | 0.8587 | 0.0956 | 880.5 | 98.0785 | 0.00000 |
Variable: Organic Fe (mg/kg); R = 0.80217191; = 0.64347977; Adjusted = 0.62797889 F (2.46) = 41.512 p |
Beta | Std. Err. of Beta | B | Std. Err. of B | p-Level | |
---|---|---|---|---|---|
Intercept | 2.5146 | 1.3910 | 0.0775 | ||
WV_Fe3 | 1.1717 | 0.2775 | 5.8471 | 1.3849 | 0.0001 |
WV_IR700 | 2.5089 | 0.8228 | 0.3687 | 0.1209 | 0.0039 |
WV_IR500 | −2.0843 | 0.7100 | −0.4143 | 0.1411 | 0.0053 |
WV_MSBI | −0.6200 | 0.1391 | −7.3855 | 1.6568 | 0.0001 |
Variable: O pH; R = 0.73199980; = 0.53582371; Adjusted = 0.49362587; F (2.46) = 12.698 p | |||||
Intercept | −728.0 | 163.55 | 0.0001 | ||
WV_HUE | −0.5351 | 0.05473 | −57,338.5 | 5864.86 | 0.0000 |
WV_Oxides | 0.1219 | 0.05341 | 160.4 | 70.26 | 0.0273 |
WV_MSBI | 0.9559 | 0.05468 | 10329.5 | 590.85 | 0.0000 |
Variable: DOC (mg/L); R = 0.93861507; = 0.88099825; Adjusted = 0.87306480; F (3.45) = 111.05 p | |||||
WV_Fe3 | −0.8607 | 0.2981 | −2223.94 | 770.284 | 0.0060 |
WV_IR700 | −2.0499 | 0.8839 | −155.98 | 67.257 | 0.0251 |
WV_IR500 | 1.8132 | 0.7627 | 186.60 | 78.487 | 0.0218 |
WV_MSBI | 0.7001 | 0.1494 | 4318.06 | 921.569 | 0.0000 |
Variable: Organic Fe (mg/kg); R = 0.68146494; = 0.46439447; Adjusted = 0.415703 F (4.44) = 9.5375 |
Image | Model | MAE | RMSE | Residuals |
---|---|---|---|---|
Sentinel | DL_pH | 0.51 | 0.70 | −0.49 |
Sentinel | LRM_pH | 3.04 | 3.53 | −0.99 |
WV2 | LRM_pH | 1.21 | 1.37 | −0.43 |
Sentinel | DL_DOC | 131.87 | 156.20 | 0.68 |
Sentinel | LRM_DOC | 189.39 | 343.23 | 0.00 |
WV2 | LRM_DOC | 202.52 | 402.12 | 0.43 |
Sentinel | DL_Fe | 116.70 | 209.93 | −0.05 |
Sentinel | LRM_Fe | 131.27 | 219.35 | 0.00 |
WV2 | LRM_Fe | 2689.00 | 2756.65 | −0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández, S.d.C.; Muñiz, R.; Peón, J.; Rodríguez-Cielos, R.; Ruíz, J.; Calleja, J.F. Mapping Dissolved Organic Carbon and Organic Iron by Comparing Deep Learning and Linear Regression Techniques Using Sentinel-2 and WorldView-2 Imagery (Byers Peninsula, Maritime Antarctica). Remote Sens. 2024, 16, 1192. https://doi.org/10.3390/rs16071192
Fernández SdC, Muñiz R, Peón J, Rodríguez-Cielos R, Ruíz J, Calleja JF. Mapping Dissolved Organic Carbon and Organic Iron by Comparing Deep Learning and Linear Regression Techniques Using Sentinel-2 and WorldView-2 Imagery (Byers Peninsula, Maritime Antarctica). Remote Sensing. 2024; 16(7):1192. https://doi.org/10.3390/rs16071192
Chicago/Turabian StyleFernández, Susana del Carmen, Rubén Muñiz, Juanjo Peón, Ricardo Rodríguez-Cielos, Jesús Ruíz, and Javier F. Calleja. 2024. "Mapping Dissolved Organic Carbon and Organic Iron by Comparing Deep Learning and Linear Regression Techniques Using Sentinel-2 and WorldView-2 Imagery (Byers Peninsula, Maritime Antarctica)" Remote Sensing 16, no. 7: 1192. https://doi.org/10.3390/rs16071192
APA StyleFernández, S. d. C., Muñiz, R., Peón, J., Rodríguez-Cielos, R., Ruíz, J., & Calleja, J. F. (2024). Mapping Dissolved Organic Carbon and Organic Iron by Comparing Deep Learning and Linear Regression Techniques Using Sentinel-2 and WorldView-2 Imagery (Byers Peninsula, Maritime Antarctica). Remote Sensing, 16(7), 1192. https://doi.org/10.3390/rs16071192