Spatiotemporal Variation and Causes of Typical Extreme Precipitation Events in Shandong Province over the Last 50 Years
Abstract
:1. Introduction
2. Study Area, Data, and Methods
2.1. Study Area Overview
2.2. Data Sources
2.3. Method
2.3.1. Extraction of Extreme Precipitation Events
2.3.2. Classification of Rain Patterns for Extreme Precipitation Events
2.3.3. Comparative Analysis of the Causes of Extreme Precipitation Events
- (1)
- Comparison of the average situation field, average dynamic field, and average water vapor field
- (2)
- Comparison of water vapor flux divergence
2.3.4. Other Methods
3. Results and Analysis
3.1. Variation Characteristics of Typical Extreme Precipitation Events
3.1.1. Characteristics of the Changes in Total Precipitation
3.1.2. Characteristics of Precipitation Duration Variation
3.1.3. Characteristics of the Changes in the Average and Extreme Rainfall Intensities
3.1.4. Start Time Characteristics
3.1.5. Spatial Distribution of the Extreme Precipitation Frequency
3.2. Extreme Precipitation Characteristics of Different Rainfall Patterns
3.2.1. Rain Pattern Classification and Its Characteristics
3.2.2. Spatial Distribution of the Different Rain Patterns
3.2.3. Analysis of the Occurrence Times of the Different Rainfall Patterns
3.3. Analysis of the Causes of Typical Extreme Precipitation Events
3.3.1. Comparative Analysis of the Average Situation Fields of the Different Rain Patterns against the Background of Large-Scale Circulation
3.3.2. Comparative Analysis of the Average Dynamic Fields of the Different Rain Patterns in Mesoscale Convective Systems
3.3.3. Comparative Analysis of the Average Water Vapor Fields of the Different Rain Patterns in Mesoscale Convective Systems
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Zhao, S.S. Floods losses and hazards in china from 2001 to 2020. Clim. Chang. Res. 2022, 18, 154–165. [Google Scholar]
- Qiu, C.; Liu, H.B.; Wan, C.C.; Zhao, L.N.; Wen, J.H. Tempo-spatial variation and cause analysis of rainstorms and related flood disasters in Shandong from 1984 to 2019. J. Catastrophol. 2022, 37, 57–63. [Google Scholar]
- Yuan, X.; Yang, K.; Sun, J.; Wang, Y.; He, Y.Y.; Zou, M.J.; Jiang, Y.Z. Why was Pakistan extreme precipitation stronger in 2022 than in 2010? Adv. Clim. Chang. Res. 2023, 14, 913–920. [Google Scholar]
- Siena, M.; Levizzani, V.; Marra, F. A method to derive satellite-based extreme precipitation return levels in poorly gauged areas. J. Hydrol. 2023, 626, 130295. [Google Scholar] [CrossRef]
- Kim, J.; Amodeo, M.; Kearns, E.J. Atlas of probabilistic extreme precipitation based on the early 21st century records in the United States. J. Hydrol. Reg. Stud. 2023, 48, 101480. [Google Scholar] [CrossRef]
- Gründemann, G.J.; Zorzetto, E.; Beck, H.E.; Schleiss, M.; van de Giesen, N.; Marani, M.; van der Ent, R.J. Extreme precipitation return levels for multiple durations on a global scale. J. Hydrol. 2023, 621, 129558. [Google Scholar] [CrossRef]
- Rojpratak, S.; Supharatid, S. Regional extreme precipitation index: Evaluations and projections from the multi-model ensemble CMIP5 over Thailand. Weather Clim. Extrem. 2022, 37, 100475. [Google Scholar] [CrossRef]
- Regmi, S.; Bookhagen, B. The spatial pattern of extreme precipitation from 40 years of gaugedatain the central Himalaya. Weather Clim. Extrem. 2022, 37, 100470. [Google Scholar] [CrossRef]
- Yanagisawa, H.; Touge, Y.; Kazama, S. Spatial frequency analysis of annual extreme daily precipitati on across Japan. J. Hydrol. Reg. Stud. 2022, 42, 101131. [Google Scholar] [CrossRef]
- Miao, S.L.; Cao, Y.P.; Li, Q.Q. Spationtemporal distribution of extreme climate events in the yellow river basin during 1951–2019. J. Henan Univ. (Nat. Sci. Ed.) 2022, 52, 416–429. [Google Scholar]
- Bai, D.Y.; Cao, L.; Zhang, Y. Temporal and spatial distribution of extreme precipitation in Qinghai Province in recent 60 years. Yangtze River 2022, 53, 59–64. [Google Scholar]
- Li, S.; Chen, X.Y.; Gong, W.T.; Shen, Z.Y.; Zhu, W.L. Characteristics of precipitation extremes in three gorges reservoir intervening basin during 1961–2020. Resour. Environ. Yangtze Basin 2022, 31, 2166–2175. [Google Scholar]
- Sun, G.K.; Ma, L.; Wang, X.C.; Huang, R.; Wang, L.; Du, T.; Mo, C.X. Spatial distribution characteristic and recurrence period analysis of extreme precipitation in Guangxi. Water Resour. Power 2022, 40, 931. [Google Scholar]
- VishnuPriya, M.S.; Agilan, V. Evaluation of change factor methods in downscaling extreme precipitationover India. J. Hydrol. 2022, 614, 128531. [Google Scholar] [CrossRef]
- Jiao, Y.F.; Liu, J.; Li, C.Z.; Zhang, X.J.; Yu, F.L.; Cui, Y.J. Spatial and temporal trends of extreme temperature and precipitation in the Daqing River Basin, North China. Theor. Appl. Climatol. 2021, 147, 627–650. [Google Scholar] [CrossRef]
- Shang, S.W.; Wang, L.Z.; Wang, Y.T.; Deng, P.X.; Gai, Y.W.; Jie, S.Q. Analysis of spatial and temporal evolution characteristics of extreme precipitation in Chendu area from 1960 to 2019. Water Resour. Prot. 2023, 39, 195–204. [Google Scholar]
- Cheng, P.; Yang, M.; Sun, H.Y.; Zhang, Y.; Xiao, G.L.; Zhu, X.L.; Zhu, X.L. Study on the return period of extreme precipitation in Liaoning Province based onthe compound extreme Value Model. Torrential Rain Disasters 2023, 42, 662–670. [Google Scholar]
- Zhang, Y.H.; Liang, K.; Liu, C.M.; Lv, J.X.; Bai, P. Spatio-temporal distribution characteristics and possible causes of extreme climatein the Niyang River Basin. Geogr. Res. 2022, 41, 2808–2820. [Google Scholar]
- Yang, H.; Liu, M.; Wang, M.; Qin, P.C.; Fang, S.D. Projections of extreme precipitation in the middle and upper Yangtze River at 1.5 °C and 2 °C warming thresholds based on bias correction. Theor. Appl. Climatol. 2022, 147, 1589–1600. [Google Scholar] [CrossRef]
- Khodayar, S.; Pastor, F.; Valiente, J.A.; Benetó, P.; Ehmele, F. What causes a heavy precipitation period to become extreme? The exceptional October of 2018 in the western Mediterranean. Weather Clim. Extrem. 2022, 38, 100493. [Google Scholar] [CrossRef]
- Blanchet, J.; Blanc, A.; Creutin, J.-D. Explaining recent trends in extreme precipitation in the southwestern alps by changes in atmospheric influences. Weather Clim. Extrem. 2021, 33, 100356. [Google Scholar]
- Patricola, C.M.; Wehner, M.F.; Bercos-Hickey, E.; Maciel, F.V.; May, C.; Mak, M.; Yip, O.; Roche, A.M.; Leal, S. Future changes in extreme precipitation over the San Francisco Bay Area: Dependence on atmospheric river and extratropical cyclone events. Weather Clim. Extrem. 2022, 36, 100440. [Google Scholar] [CrossRef]
- Huguenin, C.N.; Serafin, K.A.; Waylen, P.R. A spatio-temporal analysis of the role of climatic driversinfluencing extreme precipitation events in a Costa Rican basin. Weather Clim. Extrem. 2023, 42, 100602. [Google Scholar] [CrossRef]
- Gimeno-Sotelo, L.; Gimeno, L. Where does the link between atmospheric moisture transport and extreme precipitation matter? Weather Clim. Extrem. 2023, 39, 100536. [Google Scholar]
- Huang, H.; Patricola, C.M.; Winter, J.M.; Osterberg, E.C.; Mankin, J.S. Rise in Northeast US extreme precipitation caused by Atlantic variability and climate change. Weather Clim. Extrem. 2021, 33, 100351. [Google Scholar] [CrossRef]
- Xiao, Y.; Nurshati; Ma, B.H.; Li, H.H.; Ma, Z.Y. Analysis on causes of extreme precipitation events in the Yuan river Basin. J. Mar. Meteorol. 2022, 42, 77–87. [Google Scholar]
- Zhang, J.G.; Wang, J.; Wu, T.; Zhou, J.L.; Zhong, M.; Wang, S.S.; Huang, X.Y.; Li, S.J.; Han, F.R.; Wang, X.C. Weather system types of extreme precipitation in the middle reaches of the Yangtze river. Torre-Ntial Rain Disasters 2018, 37, 14–23. [Google Scholar]
- Xiang, S.Q.; Zhou, M.; Xu, Y.Q.; Du, J.S. The characteristics of typhoon “Lekima” and the of extreme rainfall. Mar. Forecast. 2020, 37, 76–85. [Google Scholar]
- Hu, S.Q.; Xi, R.T.; Li, N.; Ran, L.K.; Chang, Y.Z. Comparative analysis of two extreme rainstorms in the Arid Area of western south Xinjiang. Chin. J. Atmos. Sci. 2022, 46, 1177–1197. (In Chinese) [Google Scholar]
- Xu, J.; Li, R.M.; Zhang, Q.H.; Chen, Y.; Liang, X.D.; Gu, X. Extreme large-scale atmospheric circulation associated with the “21·7” Henan flood. Sci. China Earth Sci. 2022, 52, 1873–1886. [Google Scholar] [CrossRef]
- Zhang, L.; Xiong, K.G.; Zhou, Y. Characteristics and Circulation Classification of Extreme Daily Precipitation Events in Hubei Province During Summer. Resour. Environ. Yangtze Basin 2022, 31, 1393–1401. [Google Scholar]
- Chang, J.; Wang, J.; Wu, L.; Shi, H.B.; Zhu, L.L. Characteristics of the synoptic conditions of summer extreme heavy precipitation in the Yellow River Basin. Torrential Rain Disasters 2022, 41, 536–543. [Google Scholar]
- Michel, C.; Sorteberg, A.; Eckhardt, S.; Weijenborg, C.; Stohl, A.; Cassiani, M. Characterization of the atmospheric environmentduring extremeprecipitation events associated with atmospheric rivers in Norway-Seasonal and regional aspect. Weather Clim. Extrem. 2021, 34, 100370. [Google Scholar] [CrossRef]
- Gimeno-Sotelo, L.; Gimeno, L. Concurrent extreme events of atmospheric moisture transport and continental precipitation:The role of land falling atmospheric rivers. Atmos. Res. 2022, 278, 106356. [Google Scholar] [CrossRef]
- Barton, Y.; Rivoire, P.; Koh, J.; Muhabashir, A.S.; Kopp, J.; Martius, O. On the temporal clustering of European extreme precipitation events and it relationship to persistent and transient large-scale atmospheric drivers. Weather Clim. Extrem. 2022, 38, 100518. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, T.; Zhang, W.; Luo, M. Implications of the Pacific meridional mode for summer precipitation extremes over China. Weather Clim. Extrem. 2021, 33, 100359. [Google Scholar] [CrossRef]
- Nan, Y.T.; Sun, J.Q.; Zhang, M.Q.; Hong, H.X.; Yuan, J. Strengthened influence of the East Asian trough on springextreme precipitation variability over eastern Southwest China after the late 1980s. Atmos. Ocean. Sci. Lett. 2022, 15, 100191. [Google Scholar] [CrossRef]
- Zuo, Q.T.; Song, Y.X.; Wang, H.J.; Li, J.L.; Han, C.H. Spatial variations of extreme precipitation events and attribution analysis in the main water resource area of the Belt and Road Initiative. Theor. Appl. Climatol. 2021, 144, 535–554. [Google Scholar] [CrossRef]
- Yang, H.W.; Gong, Z.Q.; Wang, X.; Feng, G.L. Analysis of the characteristics and causes of interdecadal changes in the Summer Extreme Precipitation over eastern China. Chin. J. Atmos. Sci. 2021, 45, 683–696. [Google Scholar]
- Qin, H.; Yuan, W.; Wang, J.; Chen, Y.; Dai, P.X.; Sobel Adam, H.; Meng, Z.Y.; Nei, J. Climate change attribution of the 2021 Henan extreme precipitation: Impacts of convective organization. Sci. China Earth Sci. 2022, 65, 1837–1846. [Google Scholar] [CrossRef]
- Dong, T.Y.; Zhu, X.; Deng, R.; Ma, Y.L.; Dong, W.J. Detection and attribution of extreme precipitation events over the Asian monsoon region. Weather Clim. Extrem. 2022, 38, 100497. [Google Scholar] [CrossRef]
- Yang, X.B. Multi-Scale Integrated Analysis of Extreme Heavy Rain in Shandong in Spring of 2009; Lanzhou University: Lanzhou, China, 2010; pp. 1–53. [Google Scholar]
- Kong, F.; Shi, P.J.; Fang, J.; Lu, L.L.; Fang, J.Y.; Guo, J.P. Advances and prospects of spatiotemporal pattern variation of extreme precipitation and its affecting factors under the background of global climate change. J. Catastrophol. 2017, 32, 165–173. [Google Scholar]
- Hu, Q.; Yue, D.P.; Zhao, J.B.; Ma, A.H. Characteristics and disasters of rainstorms in GansuProvince in recent50 years. Bull. Soil Water Conserv. 2019, 39, 68–75. [Google Scholar]
- Guo, Z.; Zhang, X.; Zhao, Y.; Liu, J. Study on regional design storm in urban area: A case of Wuhan city. Water Wastewater Eng. 2022, 48, 78–83. [Google Scholar]
- He, S.; Zhao, W.; Wang, D.G.; Liao, W.L.; Wu, X.S.; Lai, C.G. Spatiotemporal variability of event-based rainstorm: The perspective ofrainfallpattern and concentration. R. Meteorol. Soc. 2022, 42, 6258–6276. [Google Scholar] [CrossRef]
- Hu, R.; Wang, S.Y.; Wang, P.F. Research on rainstorm pattern of short duration based on cluster analysis. Water Resour. Power 2021, 39, 8–10. [Google Scholar]
- Liu, J.; Guan, Z.Y.; Gong, Z.B.; Chen, Y.D. Characteristics and causes of extreme precipitation events over Fujian province during May and June in recent three decades. J. Meteorol. Sci. 2016, 36, 28–35. [Google Scholar]
- Yuan, J.; Peng, Y.; Li, C.; Gu, P.S. Analysis on characteristics of heavy precipitation in Nantong region. Resour. Environ. Sci. 2021, 9, 197–200. [Google Scholar]
- Yang, F.; Zhou, Y.; Luo, L.Y.; Miao, X.Y.; Ma, M.H.; Liu, R.H. Analysis of spatiotemporal distribution characteristics of rainfall in Guangdong Province. China Flood Drought Manag. 2023, 33, 46–51, 82. [Google Scholar]
- Wang, X.J.; Liu, Y.; Song, L.J. Correlation between Climate Change and El Nino/La Nina Events in Shandong Province. Beijing Surveying and Mapping. Beijing Surv. Mapp. 2021, 35, 712–716. [Google Scholar]
- Song, G.Y.; Li, X.Z.; Jiang, J.; Xun, X.Y.; Chen, L.; Ma, S.Y. Procession and causes of the extreme rainstorm event in Inner Mongolia in July 2012. Plateau Meteorol. 2015, 34, 163–172. [Google Scholar]
- Wei, F.Y.; Chen, G.J.; Li, Q. Differences of oceanic and atmospheric circulation featureamong the rainfall-band patterns insummer in eastern China. Acta Meteorol. Sin. 2012, 70, 1004–1020. [Google Scholar]
- Hu, Y.P.; Guo, H.Q.; Wu, W.; Shan, T.L. Analysis of the Mesoscale Characteristics of an extreme short-time heavy rainfall in Shaying River Basin. Meteorol. Environ. Sci. 2021, 44, 63–71. [Google Scholar]
Number | Start Date | Start Time | Total Precipitation/mm | Precipitation Duration/h | Number | Start Date | Start Time | Total Precipitation/mm | Precipitation Duration/h |
---|---|---|---|---|---|---|---|---|---|
1 | 8 August 1971 | 12:00 | 259 | 37 | 22 | 6 August 1994 | 6:00 | 251 | 43 |
2 | 20 August 1971 | 2:00 | 264 | 47 | 23 | 21 August 1995 | 10:00 | 230 | 39 |
3 | 23 September 1971 | 12:00 | 256 | 37 | 24 | 19 August 1997 | 13:00 | 234 | 36 |
4 | 29 July 1973 | 21:00 | 256 | 28 | 25 | 21 August 1998 | 18:00 | 260 | 31 |
5 | 30 August 1973 | 17:00 | 217 | 32 | 26 | 30 August 2000 | 2:00 | 274 | 47 |
6 | 12 August 1974 | 7:00 | 265 | 42 | 27 | 29 July 2001 | 16:00 | 320 | 81 |
7 | 13 August 1975 | 4:00 | 419 | 69 | 28 | 20 July 2003 | 12:00 | 264 | 37 |
8 | 4 July 1977 | 17:00 | 263 | 32 | 29 | 28 August 2005 | 16:00 | 230 | 33 |
9 | 9 July 1978 | 2:00 | 307 | 71 | 30 | 2 July 2006 | 7:00 | 245 | 42 |
10 | 28 July 1980 | 14:00 | 231 | 35 | 31 | 4 July 2007 | 17:00 | 284 | 56 |
11 | 18 July 1983 | 2:00 | 463 | 95 | 32 | 21 July 2008 | 23:00 | 279 | 50 |
12 | 20 July 1984 | 13:00 | 239 | 36 | 33 | 7 August 2009 | 3:00 | 371 | 46 |
13 | 23 July 1984 | 17:00 | 273 | 32 | 34 | 26 August 2010 | 2:00 | 313 | 71 |
14 | 29 August 1984 | 5:00 | 284 | 47 | 35 | 6 September 2010 | 3:00 | 316 | 46 |
15 | 13 August 1987 | 9:00 | 233 | 40 | 36 | 10 August 2011 | 4:00 | 250 | 45 |
16 | 2 August 1990 | 2:00 | 366 | 47 | 37 | 23 July 2014 | 9:00 | 265 | 64 |
17 | 14 August 1990 | 14:00 | 379 | 59 | 38 | 8 July 2018 | 7:00 | 232 | 42 |
18 | 23 July 1991 | 23:00 | 239 | 50 | 39 | 10 August 2019 | 4:00 | 364 | 69 |
19 | 10 August 1992 | 8:00 | 234 | 41 | 40 | 22 July 2020 | 15:00 | 225 | 34 |
20 | 31 August 1992 | 16:00 | 222 | 33 | 41 | 5 August 2020 | 6:00 | 320 | 43 |
21 | 3 August 1993 | 23:00 | 412 | 50 |
Rainfall Pattern | Maximum Value | Minimum Value | Range | Average Value | Standard Deviation | Coefficient of Variation |
---|---|---|---|---|---|---|
Pattern I (factory shape) | 319.89 | 230.03 | 89.86 | 254.77 | 22.16 | 0.09 |
Pattern II (square-root shape) | 370.60 | 216.64 | 153.96 | 269.83 | 54.31 | 0.20 |
Pattern III (wave shape) | 462.68 | 264.54 | 198.14 | 354.23 | 72.75 | 0.21 |
Pattern IV (spoon-shaped buckle) | 411.68 | 313.38 | 98.30 | 348.50 | 54.83 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Li, B.; Ma, M. Spatiotemporal Variation and Causes of Typical Extreme Precipitation Events in Shandong Province over the Last 50 Years. Remote Sens. 2024, 16, 1283. https://doi.org/10.3390/rs16071283
Liu J, Li B, Ma M. Spatiotemporal Variation and Causes of Typical Extreme Precipitation Events in Shandong Province over the Last 50 Years. Remote Sensing. 2024; 16(7):1283. https://doi.org/10.3390/rs16071283
Chicago/Turabian StyleLiu, Jie, Baofu Li, and Mengqiu Ma. 2024. "Spatiotemporal Variation and Causes of Typical Extreme Precipitation Events in Shandong Province over the Last 50 Years" Remote Sensing 16, no. 7: 1283. https://doi.org/10.3390/rs16071283
APA StyleLiu, J., Li, B., & Ma, M. (2024). Spatiotemporal Variation and Causes of Typical Extreme Precipitation Events in Shandong Province over the Last 50 Years. Remote Sensing, 16(7), 1283. https://doi.org/10.3390/rs16071283