A Novel Flood Risk Analysis Framework Based on Earth Observation Data to Retrieve Historical Inundations and Future Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methodology
2.3.1. Scenario-Based Flood Risk Analysis Framework
2.3.2. Historical Inundation Scenarios with Sentinel-1 Data
2.3.3. Flood Risk Assessment Baseline Model
2.3.4. Flood Risk in Future Scenarios
3. Results
3.1. Flood Risk Baseline Map Derived from the Baseline Model
3.1.1. Analysis of Historical Precipitation and Inundation Scenarios
3.1.2. Baseline Flood Risk Scenario
- Large-area counties at relatively high risk surrounding Poyang Lake (ranking from 7 to 23), from Lushan to Pengze (comprising more than 10% of the high-risk zone). An important aspect of risk management is the security of agricultural and forestry production due to the large amount of cropland and forests.
- Peripheral counties at low risk far from Poyang Lake (ranking from 24 to 38), from Xingan to Fuliang. Although most lands are below the moderate-low risk level, there still exists very high-risk units along the river banks, which are areas where appropriate prevention should be implemented.
3.2. Future Flood Risk Evolution Driven by Multiple Assessment Factors
3.2.1. Future Scenario-Based Flood Risk
3.2.2. Attribution Analysis of Risk increase
4. Discussion
4.1. The Scenario-Based Flood Risk Analysis Framework
4.2. Reliability of Future Assessment Factors
4.3. Implications and Scalability
- The persistent challenges posed by frequent and severe damage in Rank 1 areas necessitate adequate resources and efforts from authorities, including the enhancement of the capability of infrastructure to withstand floods beyond design return periods, as well as the establishment of well-organized emergency planning and rescue actions. We suggest prioritizing the protection of wetland ecosystems over the development of highly vulnerable land types, while also promoting the universal expansion of flood insurance coverage in asset-intensive industrial and residential areas. The public sector should enhance the promptness and dissemination of disaster information, including weather prediction, early warning and loss estimation, while remaining vigilant to secondary hazards arising from floods. For communities with prior flood response experience, implementing a disaster reduction demonstration project to enhance community resilience is a feasible and promising initiative [82].
- Black swan-like major flood events are of particular concern in Rank 2 areas. A typical case is the megaflood that occurred in Zhengzhou, Henan Province, China, on 20 July 2021, which was triggered by a record-breaking extreme rainstorm (maximum hourly rainfall of 201.9 mm) and caused devastating damage. Due to the infrequency of inundation events and limited experience, risk management priority differs in Rank 2 areas. Authorities need to consider the addition or upgrading of drainage networks and the rational design of physical facilities capable of withstanding a 50-year flood or more extreme events. While inclusive insurance promotion may not be applicable, it is highly recommended to promote catastrophe insurance. Industry sectors should concentrate on the prediction and warning of extreme weather. In particular, industries should promptly respond and implement linkage measures to restrict social production and commuting activities upon issuance of a warning. Most importantly, there is an urgent need for extensive flood education and knowledge dissemination in communities to foster risk awareness among residents, which is currently lacking due to infrequent floods catching them off guard. Accordingly, a bottom-up risk management approach combined with socio-economic surveys aimed at improving the adaptive capacity of residents could be implemented, especially in developing countries [20].
- Rank 3 flood events resembling gray rhinos can be equally catastrophic once flooding is out of control. We call for a prudent development plan that emphasizes risk avoidance during urbanization and construction. Unplanned development changing land cover and use, coupled with climate change, would have negative effects on flood risk, as also supported by recent work [21,83]. More land should be made available for mitigation purposes by reconverting farmland into lake, forests and natural floodplains, thus inducing its self-regulation of floods and restoration of erosion. Frequent inundations require water conservancy facilities such as river levees and reservoirs to be subject to regular maintenance as well as real-time water level monitoring and control during the flood season. Communities in Rank 3 areas may have lower population density than Rank 1 and 2 areas, so establishing strong inter-community connections and support networks could timely mitigate casualties and property damage before official relief efforts arrive during flooding.
4.4. Satellite-Based Inundation Applied in Data-Driven Flood Risk Management
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- EM-DAT. 2022 Disasters in Numbers. 2022. Available online: https://cred.be/sites/default/files/2022_EMDAT_report.pdf (accessed on 4 October 2022).
- Kundzewicz, Z.W.; Su, B.; Wang, Y.; Xia, J.; Huang, J.; Jiang, T. Flood risk and its reduction in China. Adv. Water Resour. 2019, 130, 37–45. [Google Scholar] [CrossRef]
- Winsemius, H.C.; Aerts, J.C.J.H.; van Beek, L.P.H.; Bierkens, M.F.P.; Bouwman, A.; Jongman, B.; Kwadijk, J.C.J.; Ligtvoet, W.; Lucas, P.L.; van Vuuren, D.P.; et al. Global drivers of future river flood risk. Nat. Clim. Chang. 2015, 6, 381–385. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, Q.; Shi, P.; Chen, B.; Fang, J. Flood-induced mortality across the globe: Spatiotemporal pattern and influencing factors. Sci. Total Environ. 2018, 643, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef] [PubMed]
- Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Salamon, P.; Wyser, K.; Feyen, L. Global projections of river flood risk in a warmer world. Earth’s Future 2017, 5, 171–182. [Google Scholar] [CrossRef]
- Zarekarizi, M.; Srikrishnan, V.; Keller, K. Neglecting uncertainties biases house-elevation decisions to manage riverine flood risks. Nat. Commun. 2020, 11, 5361. [Google Scholar] [CrossRef] [PubMed]
- Webber, M.K.; Samaras, C. A review of decision making under deep uncertainty applications using green infrastructure for flood management. Earth’s Future 2022, 10, e2021EF002322. [Google Scholar] [CrossRef]
- Guo, X.; Huang, J.; Luo, Y.; Zhao, Z.; Xu, Y. Projection of precipitation extremes for eight global warming targets by 17 cmip5 models. Nat. Hazards 2016, 84, 2299–2319. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K.; et al. Flood risk and climate change: Global and regional perspectives. Hydrol. Sci. J. 2013, 59, 1–28. [Google Scholar] [CrossRef]
- Collet, L.; Beevers, L.; Stewart, M.D. Decision-making and flood risk uncertainty: Statistical data set analysis for flood risk assessment. Water Resour. Res. 2018, 54, 7291–7308. [Google Scholar] [CrossRef]
- Naseri, K.; Hummel, M.A. A bayesian copula-based nonstationary framework for compound flood risk assessment along us coastlines. J. Hydrol. 2022, 610, 128005. [Google Scholar] [CrossRef]
- Taniguchi, K.; Kotone, K.; Shibuo, Y. Simulation-based assessment of inundation risk potential considering the nonstationarity of extreme flood events under climate change. J. Hydrol. 2022, 613, 128434. [Google Scholar] [CrossRef]
- You, X. Flood-prone areas are hotspots for urban development. Nature 2023. [Google Scholar] [CrossRef] [PubMed]
- Rentschler, J.; Avner, P.; Marconcini, M.; Su, R.; Strano, E.; Vousdoukas, M.; Hallegatte, S. Global evidence of rapid urban growth in flood zones since 1985. Nature 2023, 622, 87–92. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Krysanova, V.; Benestad, R.E.; Hov, Ø.; Piniewski, M.; Otto, I.M. Uncertainty in climate change impacts on water resources. Environ. Sci. Policy 2018, 79, 1–8. [Google Scholar] [CrossRef]
- Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.W.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- Marchesini, I.; Salvati, P.; Rossi, M.; Donnini, M.; Sterlacchini, S.; Guzzetti, F. Data-driven flood hazard zonation of italy. J. Environ. Manag. 2021, 294, 112986. [Google Scholar] [CrossRef] [PubMed]
- Morrison, A.; Westbrook, C.J.; Noble, B.F. A review of the flood risk management governance and resilience literature. J. Flood Risk Manag. 2018, 11, 291–304. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Nguyen, T.H.T.; Nguyen, Q.-H.; Nguyen, T.G.; Dang, D.K.; Nguyen, Y.N.; Bui, T.H.; Nguyen, N.D.; Bui, Q.-T.; Brecan, P.; et al. Bottom-up approach for flood-risk management in developing countries: A case study in the gianh river watershed of vietnam. Nat. Hazards 2023, 118, 1933–1959. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Nguyen, Q.H.; Dang, D.K.; Van, C.P.; Truong, Q.H.; Pham, S.D.; Bui, Q.T.; Petrisor, A.I. A novel flood risk management approach based on future climate and land use change scenarios. Sci. Total Environ. 2024, 921, 171204. [Google Scholar] [CrossRef] [PubMed]
- Schumann, G.; Giustarini, L.; Tarpanelli, A.; Jarihani, B.; Martinis, S. Flood modeling and prediction using earth observation data. Surv. Geophys. 2022, 44, 1553–1578. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, K.; Caloiero, T.; Mehta, D.; Singh, K. Comprehensive overview of flood modeling approaches: A review of recent advances. Hydrology 2023, 10, 141. [Google Scholar] [CrossRef]
- Kabenge, M.; Elaru, J.; Wang, H.; Li, F. Characterizing flood hazard risk in data-scarce areas, using a remote sensing and gis-based flood hazard index. Nat. Hazards 2017, 89, 1369–1387. [Google Scholar] [CrossRef]
- Skakun, S.; Kussul, N.; Shelestov, A.; Kussul, O. Flood hazard and flood risk assessment using a time series of satellite images: A case study in namibia. Risk Anal. 2014, 34, 1521–1537. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, G.; Pandey, A.C.; Parida, B.R.; Kumar, A. Flood inundation mapping and impact assessment using multi-temporal optical and sar satellite data: A case study of 2017 flood in darbhanga district, bihar, india. Water Resour. Manag. 2020, 34, 1871–1892. [Google Scholar] [CrossRef]
- Jiang, X.; Liang, S.; He, X.; Ziegler, A.D.; Lin, P.; Pan, M.; Wang, D.; Zou, J.; Hao, D.; Mao, G.; et al. Rapid and large-scale mapping of flood inundation via integrating spaceborne synthetic aperture radar imagery with unsupervised deep learning. ISPRS J. Photogramm. Remote Sens. 2021, 178, 36–50. [Google Scholar] [CrossRef]
- Qiu, J.; Cao, B.; Park, E.; Yang, X.; Zhang, W.; Tarolli, P. Flood monitoring in rural areas of the pearl river basin (China) using sentinel-1 sar. Remote Sens. 2021, 13, 1384. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, H.; Yi, S.; Xiao, Y. Assessment of flood susceptible areas using spatially explicit, probabilistic multi-criteria decision analysis. J. Hydrol. 2018, 558, 144–158. [Google Scholar] [CrossRef]
- Shadmehri Toosi, A.; Calbimonte, G.H.; Nouri, H.; Alaghmand, S. River basin-scale flood hazard assessment using a modified multi-criteria decision analysis approach: A case study. J. Hydrol. 2019, 574, 660–671. [Google Scholar] [CrossRef]
- Costache, R.; Popa, M.C.; Bui, D.T.; Diaconu, D.C.; Ciubotaru, N.; Minea, G.; Pham, Q.B. Spatial predicting of flood potential areas using novel hybridizations of fuzzy decision-making, bivariate statistics, and machine learning. J. Hydrol. 2020, 585, 124808. [Google Scholar] [CrossRef]
- Mei, C.; Liu, J.; Wang, H.; Shao, W.; Yang, Z.; Huang, Z.; Li, Z.; Li, M. Flood risk related to changing rainfall regimes in arterial traffic systems of the yangtze river delta. Anthropocene 2021, 35, 100306. [Google Scholar] [CrossRef]
- Pham, B.T.; Luu, C.; Phong, T.V.; Nguyen, H.D.; Le, H.V.; Tran, T.Q.; Ta, H.T.; Prakash, I. Flood risk assessment using hybrid artificial intelligence models integrated with multi-criteria decision analysis in quang nam province, vietnam. J. Hydrol. 2021, 592, 125815. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Lu, J. Assessment of long and short-term flood risk using the multi-criteria analysis model with the ahp-entropy method in Poyang Lake basin. Int. J. Disaster Risk Reduct. 2022, 75, 102968. [Google Scholar] [CrossRef]
- Xie, H.; Wang, P.; Huang, H. Ecological risk assessment of land use change in the Poyang Lake eco-economic zone, China. Int. J. Environ. Res. Public Health 2013, 10, 328–346. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; He, Y.; Zou, J.; Wu, Q. Spatio-temporal difference analysis of cultivated land use intensity based on emergy in the Poyang Lake eco-economic zone of China. J. Geogr. Sci. 2016, 26, 1412–1430. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Xu, C.-Y.; Ye, X. The changing patterns of floods in Poyang Lake, China: Characteristics and explanations. Nat. Hazards 2014, 76, 651–666. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, G.; Amankwah, S.O.Y.; Wei, X.; Hu, Y.; Feng, A. Monitoring the summer flooding in the Poyang Lake area of China in 2020 based on sentinel-1 data and multiple convolutional neural networks. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102400. [Google Scholar] [CrossRef]
- Dong, N.; Yu, Z.; Gu, H.; Yang, C.; Yang, M.; Wei, J.; Wang, H.; Arnault, J.; Laux, P.; Kunstmann, H. Climate-induced hydrological impact mitigated by a high-density reservoir network in the Poyang Lake basin. J. Hydrol. 2019, 579, 124148. [Google Scholar] [CrossRef]
- Yang, H.; Wang, H.; Lu, J.; Zhou, Z.; Feng, Q.; Wu, Y. Full lifecycle monitoring on drought-converted catastrophic flood using sentinel-1 sar: A case study of Poyang Lake region during summer 2020. Remote Sens. 2021, 13, 3485. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Shi, C.; Li, L.; Yang, Y.; Wu, J. Accuracy of chirps satellite-rainfall products over mainland China. Remote Sens. 2018, 10, 362. [Google Scholar] [CrossRef]
- Wang, N.; Lombardo, L.; Gariano, S.L.; Cheng, W.; Liu, C.; Xiong, J.; Wang, R. Using satellite rainfall products to assess the triggering conditions for hydro-morphological processes in different geomorphological settings in China. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102350. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. Gmes sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Katiyar, V.; Tamkuan, N.; Nagai, M. Near-real-time flood mapping using off-the-shelf models with sar imagery and deep learning. Remote Sens. 2021, 13, 2334. [Google Scholar] [CrossRef]
- Miao, S.; Zhao, Y.; Huang, J.; Li, X.; Wu, R.; Su, W.; Zeng, Y.; Guan, H.; Elbasit, M.A.M.A.; Zhang, J. A comprehensive evaluation of flooding’s effect on crops using satellite time series data. Remote Sens. 2023, 15, 1305. [Google Scholar] [CrossRef]
- Al-Ruzouq, R.; Shanableh, A.; Jena, R.; Gibril, M.B.A.; Hammouri, N.A.; Lamghari, F. Flood susceptibility mapping using a novel integration of multi-temporal sentinel-1 data and extreme deep learning model. Geosci. Front. 2024, 15, 101780. [Google Scholar] [CrossRef]
- Khemiri, L.; Katlane, R.; Khelil, M.; Gaidi, S.; Ghanmi, M.; Zargouni, F. Flood mapping of the lower mejerda valley (tunisia) using sentinel-1 sar: Geological and geomorphological controls on flood hazard. Front. Earth Sci. 2024, 11, 1332589. [Google Scholar] [CrossRef]
- Tamiru Haile, A.; Bekele, T.W.; Rientjes, T. Interannual comparison of historical floods through flood detection using multi-temporal sentinel-1 sar images, awash river basin, ethiopia. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103505. [Google Scholar] [CrossRef]
- Fichtner, F.; Mandery, N.; Wieland, M.; Groth, S.; Martinis, S.; Riedlinger, T. Time-series analysis of sentinel-1/2 data for flood detection using a discrete global grid system and seasonal decomposition. Int. J. Appl. Earth Obs. Geoinf. 2023, 119, 103329. [Google Scholar] [CrossRef]
- Demissie, B.; Vanhuysse, S.; Grippa, T.; Flasse, C.; Wolff, E. Using sentinel-1 and google earth engine cloud computing for detecting historical flood hazards in tropical urban regions: A case of dar es salaam. Geomat. Nat. Hazards Risk 2023, 14, 2202296. [Google Scholar] [CrossRef]
- Tarpanelli, A.; Mondini, A.C.; Camici, S. Effectiveness of sentinel-1 and sentinel-2 for flood detection assessment in europe. Nat. Hazards Earth Syst. Sci. 2022, 22, 2473–2489. [Google Scholar] [CrossRef]
- DeVries, B.; Huang, C.; Armston, J.; Huang, W.; Jones, J.W.; Lang, M.W. Rapid and robust monitoring of flood events using sentinel-1 and landsat data on the google earth engine. Remote Sens. Environ. 2020, 240, 111664. [Google Scholar] [CrossRef]
- Amatulli, G.; McInerney, D.; Sethi, T.; Strobl, P.; Domisch, S. Geomorpho90m, empirical evaluation and accuracy assessment of global high-resolution geomorphometric layers. Sci. Data 2020, 7, 162. [Google Scholar] [CrossRef]
- WorldPop. Global High Resolution Population Denominators Project—Funded by the Bill and Melinda Gates Foundation (opp1134076). 2020. Available online: https://hub.worldpop.org/ (accessed on 9 April 2024).
- Buchhorn, M.; Lesiv, M.; Tsendbazar, N.-E.; Herold, M.; Bertels, L.; Smets, B. Copernicus global land cover layers—Collection 2. Remote Sens. 2020, 12, 1044. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, F.; Wang, J.; Cai, W.; Wang, C.; Wang, K. Provincial and gridded population projection for China under shared socioeconomic pathways from 2010 to 2100. Sci. Data 2020, 7, 83. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Qin, D.; Jiang, T.; Wang, Y.; Feng, Z.; Zhai, J.; Cao, L.; Chao, Q.; Xu, X.; Wang, G.; et al. Effect of fertility policy changes on the population structure and economy of China: From the perspective of the shared socioeconomic pathways. Earth’s Future 2019, 7, 250–265. [Google Scholar] [CrossRef]
- Jiang, T.; Su, B.; Wang, Y.; Huang, J.; Jing, C.; Gao, M.; Wang, G.; Lin, Q.; Jiang, S.; Liu, S.; et al. Gridded Datasets for Population and Economy under Shared Socioeconomic Pathways. 2020. Available online: https://www.scidb.cn/en/detail?dataSetId=73c1ddbd79e54638bd0ca2a6bd48e3ff(accessed on 9 April 2024).
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Lin, Q.; Steger, S.; Pittore, M.; Zhang, J.; Wang, L.; Jiang, T.; Wang, Y. Evaluation of potential changes in landslide susceptibility and landslide occurrence frequency in China under climate change. Sci. Total Environ. 2022, 850, 158049. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, B.C.; Tebaldi, C.; Van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J. The scenario model intercomparison project (scenariomip) for cmip6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Fricko, O.; Havlik, P.; Rogelj, J.; Klimont, Z.; Gusti, M.; Johnson, N.; Kolp, P.; Strubegger, M.; Valin, H.; Amann, M. The marker quantification of the shared socioeconomic pathway 2: A middle-of-the-road scenario for the 21st century. Glob. Environ. Chang. 2017, 42, 251–267. [Google Scholar] [CrossRef]
- ESRI. Arcgis Desktop, version 10.6; Environmental Systems Research Institute: Redlands, CA, USA, 2018. [Google Scholar]
- Dai, X.; Wan, R.; Yang, G. Non-stationary water-level fluctuation in China’s Poyang Lake and its interactions with yangtze river. J. Geogr. Sci. 2015, 25, 274–288. [Google Scholar] [CrossRef]
- UN-SPIDER. Step-by-step: Recommended Practice: Flood Mapping and Damage Assessment Using Sentinel-1 Sar Data in Google Earth Engine. 2022. Available online: https://www.un-spider.org/advisory-support/recommended-practices/recommended-practice-google-earth-engine-flood-mapping/step-by-step (accessed on 22 October 2022).
- Devrani, R.; Srivastava, P.; Kumar, R.; Kasana, P. Characterization and assessment of flood inundated areas of lower brahmaputra river basin using multitemporal synthetic aperture radar data: A case study from ne india. Geol. J. 2021, 57, 622–646. [Google Scholar] [CrossRef]
- Pandey, A.C.; Kaushik, K.; Parida, B.R. Google earth engine for large-scale flood mapping using sar data and impact assessment on agriculture and population of ganga-brahmaputra basin. Sustainability 2022, 14, 4210. [Google Scholar] [CrossRef]
- Rahaman, S.N.; Shermin, N. Identifying the effect of monsoon floods on vegetation and land surface temperature by using google earth engine. Urban Clim. 2022, 43, 101162. [Google Scholar] [CrossRef]
- Shi, P.; Ye, T.; Wang, Y.; Zhou, T.; Xu, W.; Du, J.; Wang, J.A.; Li, N.; Huang, C.; Liu, L.; et al. Disaster risk science: A geographical perspective and a research framework. Int. J. Disaster Risk Sci. 2020, 11, 426–440. [Google Scholar] [CrossRef]
- Shi, P. Disaster Risk Science; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Liu, Y.; Wang, S.; Wang, X.; Jiang, D.; Ravindranath, N.; Rahman, A.; Htwe, N.; Vijitpan, T. Flood risk assessment in bangladesh, india and myanmar based on the ahp weight method and entropy weight method. Geogr. Res. 2020, 39, 1892–1906. [Google Scholar]
- Lyu, H.M.; Sun, W.J.; Shen, S.L.; Arulrajah, A. Flood risk assessment in metro systems of mega-cities using a gis-based modeling approach. Sci. Total Environ. 2018, 626, 1012–1025. [Google Scholar] [CrossRef]
- Sun, F.; Lai, X.; Shen, J.; Nie, L.; Gao, X. Initial allocation of flood drainage rights based on a psr model and entropy-based matter-element theory in the sunan canal, China. PLoS ONE 2020, 15, e0233570. [Google Scholar] [CrossRef] [PubMed]
- Mou, N.; Wang, C.; Yang, T.; Zhang, L. Evaluation of development potential of ports in the yangtze river delta using fahp-entropy model. Sustainability 2020, 12, 493. [Google Scholar] [CrossRef]
- Fang, J.; Lincke, D.; Brown, S.; Nicholls, R.J.; Wolff, C.; Merkens, J.-L.; Hinkel, J.; Vafeidis, A.T.; Shi, P.; Liu, M. Coastal flood risks in China through the 21st century–an application of diva. Sci. Total Environ. 2020, 704, 135311. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Wang, Z.; Wu, X.; Lai, C.; Zeng, Z. Strengthened tropical cyclones and higher flood risk under compound effect of climate change and urbanization across China’s greater bay area. Urban Clim. 2022, 44, 101224. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (flus) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Li, K.; Wu, S.; Dai, E.; Xu, Z. Flood loss analysis and quantitative risk assessment in China. Nat. Hazards 2012, 63, 737–760. [Google Scholar] [CrossRef]
- Wu, J.; Yang, S.; Wang, W.; Jaeger, C. How effective are community-based disaster reduction strategies? Evidence from the largest-scale program so far. Risk Anal. 2022, 43, 1667–1681. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.D.; Dang, D.K.; Nguyen, Q.-H.; Bui, Q.-T.; Petrisor, A.-I. Evaluating the effects of climate and land use change on the future flood susceptibility in the central region of vietnam by integrating land change modeler, machine learning methods. Geocarto Int. 2022, 37, 12810–12845. [Google Scholar] [CrossRef]
- de Brito, M.M.; Evers, M. Multi-criteria decision-making for flood risk management: A survey of the current state of the art. Nat. Hazards Earth Syst. Sci. 2016, 16, 1019–1033. [Google Scholar] [CrossRef]
- Ziarh, G.F.; Asaduzzaman, M.; Dewan, A.; Nashwan, M.S.; Shahid, S. Integration of catastrophe and entropy theories for flood risk mapping in peninsular malaysia. J. Flood Risk Manag. 2020, 14, 12686. [Google Scholar] [CrossRef]
- Pham, B.T.; Luu, C.; Dao, D.V.; Phong, T.V.; Nguyen, H.D.; Le, H.V.; von Meding, J.; Prakash, I. Flood risk assessment using deep learning integrated with multi-criteria decision analysis. Knowl.-Based Syst. 2021, 219, 106899. [Google Scholar] [CrossRef]
- Chen, J.; Huang, G.; Chen, W. Towards better flood risk management: Assessing flood risk and investigating the potential mechanism based on machine learning models. J. Environ. Manag. 2021, 293, 112810. [Google Scholar] [CrossRef] [PubMed]
- Manfreda, S.; Di Leo, M.; Sole, A. Detection of flood-prone areas using digital elevation models. J. Hydrol. Eng. 2011, 16, 781–790. [Google Scholar] [CrossRef]
- Parsian, S.; Amani, M.; Moghimi, A.; Ghorbanian, A.; Mahdavi, S. Flood hazard mapping using fuzzy logic, analytical hierarchy process, and multi-source geospatial datasets. Remote Sens. 2021, 13, 4761. [Google Scholar] [CrossRef]
- Hazarika, N.; Barman, D.; Das, A.K.; Sarma, A.K.; Borah, S.B. Assessing and mapping flood hazard, vulnerability and risk in the upper brahmaputra river valley using stakeholders’ knowledge and multicriteria evaluation (mce). J. Flood Risk Manag. 2018, 11, S700–S716. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Tang, Z.; Zeng, G. A gis-based spatial multi-criteria approach for flood risk assessment in the dongting lake region, hunan, central China. Water Resour. Manag. 2011, 25, 3465–3484. [Google Scholar] [CrossRef]
- Duan, G.; Zhao, W.; Hu, Z.; Fang, D. An improved model of regional flood disaster risk assessment based on remote sensing data. In Proceedings of the 2011 19th International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011; pp. 1–6. [Google Scholar]
Target | Composition (Weight of FAHP) | Factor | Weight | |||
---|---|---|---|---|---|---|
AHP | FAHP | Entropy Method | FAHP–Entropy | |||
Flood risk | Hazardousness (0.401) | RMAX3 | 0.270 | 0.175 | 0.022 | 0.115 |
Historical flood inundation frequency | 0.330 | 0.227 | 0.409 | 0.298 | ||
Sensitivity (0.299) | Elevation | 0.023 | 0.066 | 0.001 | 0.040 | |
TWI | 0.112 | 0.097 | 0.016 | 0.065 | ||
NDVI | 0.013 | 0.055 | 0.054 | 0.055 | ||
Proximity to river system | 0.052 | 0.081 | 0.089 | 0.084 | ||
Vulnerability (0.299) | Population density | 0.052 | 0.100 | 0.200 | 0.139 | |
GDP | 0.021 | 0.074 | 0.162 | 0.109 | ||
Land use | 0.127 | 0.125 | 0.047 | 0.095 |
Scenario | Period | Intensity of Risk Change (Area Percentage) | Average Contribution Rate of Assessment Factors to Risk Increase | |||
---|---|---|---|---|---|---|
RMAX3 | Population Density | GDP | Land Use | |||
SSP2-RCP4.5 | 2030s | Significant increase (6.77%) | 0.56% | −0.07% | 0.59% | 98.92% |
Moderate increase (93.23%) | 49.92% | −1.91% | 20.52% | 31.47% | ||
Total | 46.58% | −1.79% | 19.17% | 36.04% | ||
2040s | Significant increase (1.62%) | 6.87% | −0.22% | 0.64% | 92.71% | |
Moderate increase (98.38%) | 87.62% | −1.67% | 8.41% | 5.64% | ||
Total | 86.31% | −1.64% | 8.28% | 7.05% | ||
2050s | Significant increase (1.78%) | 3.30% | 0.04% | 1.96% | 94.70% | |
Moderate increase (98.22%) | 77.63% | −1.56% | 14.26% | 9.67% | ||
Total | 76.31% | −1.53% | 14.04% | 11.18% | ||
SSP5-RCP8.5 | 2030s | Significant increase (1.93%) | 9.91% | −0.11% | 0.77% | 89.43% |
Moderate increase (98.07%) | 92.18% | −0.84% | 5.13% | 3.53% | ||
Total | 90.59% | −0.82% | 5.04% | 5.19% | ||
2040s | Significant increase (1.64%) | 7.56% | −0.25% | 0.87% | 91.82% | |
Moderate increase (98.36%) | 86.08% | −1.65% | 10.64% | 4.93% | ||
Total | 84.79% | −1.63% | 10.48% | 6.36% | ||
2050s | Significant increase (1.40%) | 8.37% | −0.19% | 5.72% | 86.10% | |
Moderate increase (98.60%) | 85.23% | −2.44% | 13.29% | 3.92% | ||
Total | 84.15% | −2.40% | 13.18% | 5.07% |
Scenario | Period | Areas Converted from Unused Lands Such as Wetland and Bare Land to Cropland (km2) | Total Areas of Significant Increase (km2) | Ratio (%) |
---|---|---|---|---|
SSP2-RCP4.5 | 2030s | 52 | 64 | 81.25% |
2040s | 51 | 69 | 73.91% | |
2050s | 33 | 44 | 75.00% | |
SSP5-RCP8.5 | 2030s | 78 | 118 | 66.10% |
2040s | 54 | 77 | 70.13% | |
2050s | 45 | 69 | 65.22% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, K.; Yang, S.; Wang, Z.; Liu, W.; Han, J.; Liu, Y.; Zhou, Z.; Gariano, S.L.; Shi, Y.; Jaeger, C. A Novel Flood Risk Analysis Framework Based on Earth Observation Data to Retrieve Historical Inundations and Future Scenarios. Remote Sens. 2024, 16, 1413. https://doi.org/10.3390/rs16081413
Yao K, Yang S, Wang Z, Liu W, Han J, Liu Y, Zhou Z, Gariano SL, Shi Y, Jaeger C. A Novel Flood Risk Analysis Framework Based on Earth Observation Data to Retrieve Historical Inundations and Future Scenarios. Remote Sensing. 2024; 16(8):1413. https://doi.org/10.3390/rs16081413
Chicago/Turabian StyleYao, Kezhen, Saini Yang, Zhihao Wang, Weihang Liu, Jichong Han, Yimeng Liu, Ziying Zhou, Stefano Luigi Gariano, Yongguo Shi, and Carlo Jaeger. 2024. "A Novel Flood Risk Analysis Framework Based on Earth Observation Data to Retrieve Historical Inundations and Future Scenarios" Remote Sensing 16, no. 8: 1413. https://doi.org/10.3390/rs16081413
APA StyleYao, K., Yang, S., Wang, Z., Liu, W., Han, J., Liu, Y., Zhou, Z., Gariano, S. L., Shi, Y., & Jaeger, C. (2024). A Novel Flood Risk Analysis Framework Based on Earth Observation Data to Retrieve Historical Inundations and Future Scenarios. Remote Sensing, 16(8), 1413. https://doi.org/10.3390/rs16081413