Methane Retrieval from Hyperspectral Infrared Atmospheric Sounder on FY3D
Abstract
:1. Introduction
2. Data
2.1. HIRAS and MERSI
2.2. ERA5
2.3. Validation Data
3. Retrieval Algorithm
3.1. Channels Selection
3.2. Retrieval Algorithm
4. Results
4.1. Validation with CARIBIC
4.2. Validation with FTIR
4.3. Uncertainty Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bousquet, P.; Ciais, P.; Miller, J.B.; Dlugokencky, E.J.; Hauglustaine, D.A.; Prigent, C.; Van der Werf, G.R.; Peylin, P.; Brunke, E.G.; Carouge, C.; et al. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 2006, 443, 439–443. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Gregor, L.; Hauck, J.; Le Quéré, C.; Luijkx, I.T.; Olsen, A.; Peters, G.P.; et al. Global Carbon Budget 2022. Earth Syst. Sci. Data 2022, 14, 4811–4900. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Bousquet, P.; Ciais, P.; Li, B.; Lin, X.; Tao, S.; Wang, Z.; Zhang, Y.; Zhou, F. Inventory of anthropogenic methane emissions in China’s mainland from 1980 to 2010. Atmos. Chem. Phys. 2016, 16, 14545–14562. [Google Scholar] [CrossRef]
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.K.; et al. The Global Methane Budget 2000–2017. Earth Syst Sci Data 2020, 12, 1561–1623. [Google Scholar] [CrossRef]
- Wuebbles, D.J.; Hayhoe, K. Atmospheric methane and global change. Earth Sci. Rev. 2002, 57, 177–210. [Google Scholar] [CrossRef]
- Sepúlveda, E.; Schneider, M.; Hase, F.; García, O.E.; Gomez-Pelaez, A.; Dohe, S.; Blumenstock, T.; Guerra, J.C. Long-term validation of tropospheric column-averaged CH4 mole fractions obtained by mid-infrared ground-based FTIR spectrometry. Atmos. Meas. Tech. 2012, 5, 1425–1441. [Google Scholar] [CrossRef]
- Sha, M.K.; Langerock, B.; Blavier, J.F.L.; Blumenstock, T.; Borsdorff, T.; Buschmann, M.; Dehn, A.; De Mazière, M.; Deutscher, N.M.; Feist, D.G.; et al. Validation of methane and carbon monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations. Atmos. Meas. Tech. 2021, 14, 6249–6304. [Google Scholar] [CrossRef]
- Buchholz, R.R.; Deeter, M.N.; Worden, H.M.; Gille, J.; Edwards, D.P.; Hannigan, J.W.; Jones, N.B.; Paton-Walsh, C.; Griffith, D.W.T.; Smale, D.; et al. Validation of MOPITT carbon monoxide using ground-based Fourier transform infrared spectrometer data from NDACC. Atmos. Meas. Tech. 2017, 10, 1927–1956. [Google Scholar] [CrossRef]
- Barret, B.; Gouzenes, Y.; Le Flochmoen, E.; Ferrant, S. Retrieval of Metop-A/IASI N2O Profiles and Validation with NDACC FTIR Data. Atmosphere 2021, 12, 219. [Google Scholar] [CrossRef]
- García, O.E.; Sanromá, E.; Schneider, M.; Hase, F.; León-Luis, S.F.; Blumenstock, T.; Sepúlveda, E.; Redondas, A.; Carreño, V.; Torres, C.; et al. Improved ozone monitoring by ground-based FTIR spectrometry. Atmos. Meas. Tech. 2022, 15, 2557–2577. [Google Scholar] [CrossRef]
- Brenninkmeijer, C.A.M.; Crutzen, P.; Boumard, F.; Dauer, T.; Dix, B.; Ebinghaus, R.; Filippi, D.; Fischer, H.; Franke, H.; Friess, U.; et al. Civil Aircraft for the regular investigation of the atmosphere based on an instrumented container: The new CARIBIC system. Atmos. Chem. Phys. 2007, 7, 4953–4976. [Google Scholar] [CrossRef]
- De Wachter, E.; Kumps, N.; Vandaele, A.C.; Langerock, B.; De Mazière, M. Retrieval and validation of MetOp/IASI methane. Atmos. Meas. Tech. 2017, 10, 4623–4638. [Google Scholar] [CrossRef]
- Zhang, L.J.; Wei, C.; Liu, H.; Jiang, H.; Lu, X.H.; Zhang, X.Y.; Jiang, C. Comparison analysis of global methane concentration derived from SCIAMACHY, AIRS, and GOSAT with surface station measurements. Int. J. Remote Sens. 2021, 42, 1823–1840. [Google Scholar] [CrossRef]
- Fu, D.; Bowman, K.W.; Worden, H.M.; Natraj, V.; Worden, J.R.; Yu, S.; Veefkind, P.; Aben, I.; Landgraf, J.; Strow, L.; et al. High-resolution tropospheric carbon monoxide profiles retrieved from CrISand TROPOMI. Atmos. Meas. Tech. 2016, 9, 2567–2579. [Google Scholar] [CrossRef]
- Wu, C.Q.; Qi, C.L.; Hu, X.Q.; Gu, M.J.; Yang, T.H.; Xu, H.L.; Lee, L.; Yang, Z.D.; Zhang, P. FY-3D HIRAS Radiometric Calibration and Accuracy Assessment. IEEE Trans. Geosci. Remote 2020, 58, 3965–3976. [Google Scholar] [CrossRef]
- Noël, S.; Bramstedt, K.; Hilker, M.; Liebing, P.; Plieninger, J.; Reuter, M.; Rozanov, A.; Sioris, C.E.; Bovensmann, H.; Burrows, J.P. Stratospheric CH4 and CO2 profiles derived from SCIAMACHY solar occultation measurements. Atmos. Meas. Tech. 2016, 9, 1485–1503. [Google Scholar] [CrossRef]
- Wang, S.P.; van der A, R.J.; Stammes, P.; Wang, W.H.; Zhang, P.; Lu, N.M.; Zhang, X.Y.; Bi, Y.M.; Wang, P.; Fang, L. Carbon Dioxide Retrieval from TanSat Observations and Validation with TCCON Measurements. Remote Sens. 2020, 12, 3626. [Google Scholar] [CrossRef]
- Feng, L.; Palmer, P.I.; Bösch, H.; Parker, R.J.; Webb, A.J.; Correia, C.S.C.; Deutscher, N.M.; Domingues, L.G.; Feist, D.G.; Gatti, L.V.; et al. Consistent regional fluxes of CH4 and CO2 inferred from GOSAT proxy XCH4: XCO2 retrievals, 2010–2014. Atmos. Chem. Phys. 2017, 17, 4781–4797. [Google Scholar] [CrossRef]
- Das, C.; Kunchala, R.K.; Chandra, N.; Chhabra, A.; Pandya, M.R. Characterizing the regional XCO2 variability and its association with ENSO over India inferred from GOSAT and OCO-2 satellite observations. Sci. Total Environ. 2023, 902, 166176. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.Z.; Xing, Z.Y.; Vollrath, C.; Hugenholtz, C.H.; Barchyn, T.E. Global observational coverage of onshore oil and gas methane sources with TROPOMI. Sci. Rep. 2023, 13, 16759. [Google Scholar] [CrossRef] [PubMed]
- Trieu, T.T.N.; Morino, I.; Uchino, O.; Tsutsumi, Y.; Sakai, T.; Nagai, T.; Yamazaki, A.; Okumura, H.; Arai, K.; Shiomi, K.; et al. Influences of aerosols and thin cirrus clouds on GOSAT XCO2 and XCH4 using Total Carbon Column Observing Network, sky radiometer, and lidar data. Int. J. Remote Sens. 2022, 43, 1770–1799. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, X.; Tao, J.; Yu, C.; Zou, M.; Su, L.; Chen, L. Methane retrieval from Atmospheric Infrared Sounder using EOF-based regression algorithm and its validation. Chin. Sci. Bull. 2014, 59, 1508–1518. [Google Scholar] [CrossRef]
- Xiong, X.; Barnet, C.; Maddy, E.; Sweeney, C.; Liu, X.; Zhou, L.; Goldberg, M. Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS). J. Geophys. Res. Biogeosci. 2008, 113, G3. [Google Scholar] [CrossRef]
- Crevoisier, C.; Nobileau, D.; Fiore, A.M.; Armante, R.; Chédin, A.; Scott, N.A. Tropospheric methane in the tropics—First year from IASI hyperspectral infrared observations. Atmos. Chem. Phys. 2009, 9, 6337–6350. [Google Scholar] [CrossRef]
- Nalli, N.R.; Tan, C.Y.; Warner, J.; Divakarla, M.; Gambacorta, A.; Wilson, M.; Zhu, T.; Wang, T.Y.; Wei, Z.G.; Pryor, K.; et al. Validation of Carbon Trace Gas Profile Retrievals from the NOAA-Unique Combined Atmospheric Processing System for the Cross-Track Infrared Sounder. Remote Sens. 2020, 12, 3245. [Google Scholar] [CrossRef]
- Li, H.; Gu, M.; Zhang, C.; Xie, M.; Yang, T.; Hu, Y. Retrieving Atmospheric Gas Profiles Using FY-3E/HIRAS-II Infrared Hyperspectral Data by Neural Network Approach. Remote Sens. 2023, 15, 2931. [Google Scholar] [CrossRef]
- Turquety, S.; Hadji-Lazaro, J.; Clerbaux, C.; Hauglustaine, D.A.; Clough, S.A.; Cassé, V.; Schlüssel, P.; Mégie, G. Operational trace gas retrieval algorithm for the Infrared Atmospheric Sounding Interferometer. J. Geophys. Res. Atmos. 2004, 109, D21. [Google Scholar] [CrossRef]
- Rodgers, C.D. Retrieval of Atmospheric-Temperature and Composition from Remote Measurements of Thermal-Radiation. Rev. Geophys. 1976, 14, 609–624. [Google Scholar] [CrossRef]
- Susskind, J.; Barnet, C.D.; Blaisdell, J.M. Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens. 2003, 41, 390–409. [Google Scholar] [CrossRef]
- Xu, N.; Niu, X.H.; Hu, X.Q.; Wang, X.H.; Wu, R.H.; Chen, S.S.; Chen, L.; Sun, L.; Ding, L.; Yang, Z.D.; et al. Prelaunch Calibration and Radiometric Performance of the Advanced MERSI II on FengYun-3D. IEEE Trans. Geosci. Remote 2018, 56, 4866–4875. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, C.; Si, Y.; Letu, H.; Wang, L.; Tang, C.; Xu, N.; He, X.; Yin, S.; Zhang, Z.; et al. Remote Sensing of Aerosols and Water-Leaving Radiance from Chinese FY-3/MERSI Based on a Simultaneous Method. Remote Sens. 2023, 15, 5650. [Google Scholar] [CrossRef]
- Si, Y.D.; Chen, L.; Zheng, Z.J.; Yang, L.K.; Wang, F.; Xu, N.; Zhang, X.Y. A Novel Algorithm of Haze Identification Based on FY3D/MERSI-II Remote Sensing Data. Remote Sens. 2023, 15, 438. [Google Scholar] [CrossRef]
- Bell, B.; Hersbach, H.; Simmons, A.; Berrisford, P.; Dahlgren, P.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis: Preliminary extension to 1950. Q. J. Roy. Meteor. Soc. 2021, 147, 4186–4227. [Google Scholar] [CrossRef]
- Almeida, M.; Coelho, P. A first assessment of ERA5 and ERA5-Land reanalysis air temperature in Portugal. Int. J. Climatol. 2023, 43, 6643–6663. [Google Scholar] [CrossRef]
- Saunders, R.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.; Geer, A.; et al. An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev. 2018, 11, 2717–2732. [Google Scholar] [CrossRef]
- Chevallier, F.; Chéruy, F.; Scott, N.A.; Chédin, A. A Neural Network Approach for a Fast and Accurate Computation of a Longwave Radiative Budget. J. Appl. Meteorol. 1998, 37, 1385–1397. [Google Scholar] [CrossRef]
- Zhang, X.X.; Zhang, Y.; Bai, L.; Tao, J.H.; Chen, L.F.; Zou, M.M.; Han, Z.F.; Wang, Z.B. Retrieval of Carbon Dioxide Using Cross-Track Infrared Sounder (CrIS) on S-NPP. Remote Sens. 2021, 13, 1163. [Google Scholar] [CrossRef]
- Marco, M. The Generation of RTTOV Regression Coefficients for IASI and Airs Using a New Profile Training Set and a New Line-by-Line Database; ECMWF Technical Memoranda: Reading, UK, 2008. [Google Scholar]
- Xiong, X.; Han, Y.; Liu, Q.; Weng, F. Comparison of Atmospheric Methane Retrievals From AIRS and IASI. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3297–3303. [Google Scholar] [CrossRef]
Sites | Latitude | Longitude | Altitude (m) | Days | Start Date | End Date |
---|---|---|---|---|---|---|
St. Petersburg (Russia) | 59.88 | 29.83 | 20 | 109 | 1 May 2019 | 29 August 2021 |
Bremen (Germany) | 53.1 | 8.8 | 27 | 81 | 1 May 2019 | 27 November 2020 |
Toronto (Canada) | 43.66 | 79.36 | 174 | 238 | 5 May 2019 | 29 November 2020 |
Rikubetsu (Japan) | 43.46 | 143.77 | 370 | 344 | 2 May 2019 | 29 September 2021 |
Altzomoni (Mexico) | 19.1187 | −98.6552 | 3985 | 328 | 28 June 2019 | 30 May 2021 |
Wollongong (Australia) | −34.41 | 150.88 | 30 | 225 | 8 June 2020 | 9 August 2021 |
Date | Latitude | RMSE (ppbv) | RD (%) | r | N |
---|---|---|---|---|---|
1 May 2019 | 30°N–60°N | 19 | 0.036 | 0.75 | 23 |
14 August 2019 | 30°N–60°N | 30 | 0.066 | 0.7 | 19 |
9 January 2020 | 30°S–60°N | 15.1 | 0.015 | 0.84 | 40 |
30°N–60°N | 19.2 | 0.08 | 0.2 | 10 | |
0°N–30°N | 16.7 | 0.04 | 0.63 | 15 | |
30°S–0°N | 8.9 | 0.03 | 0.74 | 15 | |
10 January 2020 | 0°N–60°N | 20.9 | 0.029 | 0.75 | 31 |
30°N–60°N | 19.3 | 0.108 | 0.66 | 8 | |
0°N–30°N | 21.2 | 0.0382 | 0.76 | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhang, Y.; Meng, F.; Tao, J.; Wang, H.; Wang, Y.; Chen, L. Methane Retrieval from Hyperspectral Infrared Atmospheric Sounder on FY3D. Remote Sens. 2024, 16, 1414. https://doi.org/10.3390/rs16081414
Zhang X, Zhang Y, Meng F, Tao J, Wang H, Wang Y, Chen L. Methane Retrieval from Hyperspectral Infrared Atmospheric Sounder on FY3D. Remote Sensing. 2024; 16(8):1414. https://doi.org/10.3390/rs16081414
Chicago/Turabian StyleZhang, Xinxin, Ying Zhang, Fan Meng, Jinhua Tao, Hongmei Wang, Yapeng Wang, and Liangfu Chen. 2024. "Methane Retrieval from Hyperspectral Infrared Atmospheric Sounder on FY3D" Remote Sensing 16, no. 8: 1414. https://doi.org/10.3390/rs16081414
APA StyleZhang, X., Zhang, Y., Meng, F., Tao, J., Wang, H., Wang, Y., & Chen, L. (2024). Methane Retrieval from Hyperspectral Infrared Atmospheric Sounder on FY3D. Remote Sensing, 16(8), 1414. https://doi.org/10.3390/rs16081414