Potential of Lightweight Drones and Object-Oriented Image Segmentation in Forest Plantation Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Control Point Survey
2.3. Aerial Data Acquisition
2.4. Close Range Photogrammetry: Data Processing
2.5. Object-Based Image Analysis (OBIA)
2.5.1. Object-Based Feature Extraction for Pits
2.5.2. Dataset Composition
2.6. Stream Network Extraction and Pit Density Mapping
2.7. Accuracy Assessment
2.7.1. Reference Data Collection and Sampling Procedure
2.7.2. Error Matrix Construction and Accuracy Metrics
2.7.3. Kappa Coefficient Calculation
3. Results
3.1. Elevation Profile
3.2. Stream Network Extraction from DSM, Nayla Plantation Site
3.3. Pit Density Map and Pit Extraction
4. Discussion
4.1. Vegetation Cover Monitoring
4.2. Nayla Plantation Sites
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Njana, M.A.; Mbilinyi, B.; Eliakimu, Z. The role of forests in the mitigation of global climate change: Emprical evidence from Tanzania. Environ. Chall. 2021, 4, 100170. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Meireles, C.I.R.; Gomes, C.J.P.; Ribeiro, N.M.C.A. Forest Contribution to Climate Change Mitigation: Management Oriented to Carbon Capture and Storage. Climate 2020, 8, 21. [Google Scholar] [CrossRef]
- Perera, P.; Rupasinghe, R.L.; Weerasekera, D.; Vlosky, R.; Bandara, R. Revisiting Forest Certification in Sri Lanka: The Forest Management and Export Wood-Based Manufacturing Sector Perspectives. Forests 2022, 13, 179. [Google Scholar] [CrossRef]
- Tognetti, R.; Smith, M.; Panzacchi, P. An Introduction to Climate-Smart Forestry in Mountain Regions. In Climate-Smart Forestry in Mountain Regions; Tognetti, R., Smith, M., Panzacchi, P., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–33. [Google Scholar] [CrossRef]
- Di Sacco, A.; Hardwick, K.A.; Blakesley, D.; Brancalion, P.H.S.; Breman, E.; Cecilio Rebola, L.; Chomba, S.; Dixon, K.; Elliott, S.; Ruyonga, G.; et al. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob. Chang. Biol. 2021, 27, 1328–1348. [Google Scholar] [CrossRef] [PubMed]
- Langner, A.; Miettinen, J.; Kukkonen, M.; Vancutsem, C.; Simonetti, D.; Vieilledent, G.; Verhegghen, A.; Gallego, J.; Stibig, H.-J. Towards Operational Monitoring of Forest Canopy Disturbance in Evergreen Rain Forests: A Test Case in Continental Southeast Asia. Remote Sens. 2018, 10, 544. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Tian, T.; Yin, J. A Review of Unmanned Aerial Vehicle Low-Altitude Remote Sensing (UAV-LARS) Use in Agricultural Monitoring in China. Remote Sens. 2021, 13, 1221. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, L. A Review on Unmanned Aerial Vehicle Remote Sensing: Platforms, Sensors, Data Processing Methods, and Applications. Drones 2023, 7, 398. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Othman, N.Q.H.; Li, Y.; Alsharif, M.H.; Khan, M.A. Unmanned aerial vehicles (UAVs): Practical aspects, applications, open challenges, security issues, and future trends. Intell. Serv. Robot. 2023, 16, 109–137. [Google Scholar] [CrossRef] [PubMed]
- Higashi, Y.; Yamazaki, K. Autonomous Flight Using UWB-Based Positioning System with Optical Flow Sensors in a GPS-Denied Environment. J. Robot. Mechatron. 2023, 35, 328–337. [Google Scholar] [CrossRef]
- Ecke, S.; Stehr, F.; Frey, J.; Tiede, D.; Dempewolf, J.; Klemmt, H.J.; Endres, E.; Seifert, T. Towards operational UAV-based forest health monitoring: Species identification and crown condition assessment by means of deep learning. Comput. Electron. Agric. 2024, 219, 108785. [Google Scholar] [CrossRef]
- Malek, M.; Dhiraj, B.; Upadhyaya, D.; Patel, D. A Review of Precision Agriculture Methodologies, Challenges, and Applications. In Emerging Technologies for Computing, Communication and Smart Cities: Proceedings of ETCCS 2021, Punjab, India, 21–22 August 2021; Springer: Berlin/Heidelberg, Germany, 2022; pp. 329–346. [Google Scholar]
- van Blerk, J.J.; West, A.G.; Smit, J.; Altwegg, R.; Hoffman, M.T. UAVs improve detection of seasonal growth responses during post-fire shrubland recovery. Landsc. Ecol. 2022, 37, 3179–3199. [Google Scholar] [CrossRef]
- Byrne, B.; Baker, D.F.; Basu, S.; Bertolacci, M.; Bowman, K.W.; Carroll, D.; Chatterjee, A.; Chevallier, F.; Ciais, P.; Cressie, N.; et al. National CO2 budgets (2015–2020) inferred from atmospheric CO2 observations in support of the global stocktake. Earth Syst. Sci. Data 2023, 15, 963–1004. [Google Scholar] [CrossRef]
- Coulston, J.W.; Edgar, C.B.; Westfall, J.A.; Taylor, M.E. Estimation of Forest Disturbance from Retrospective Observations in a Broad-Scale Inventory. Forests 2020, 11, 1298. [Google Scholar] [CrossRef]
- Ye, Z.; Yang, K.; Lin, Y.; Guo, S.; Sun, Y.; Chen, X.; Lai, R.; Zhang, H. A comparison between Pixel-based deep learning and Object-based image analysis (OBIA) for individual detection of cabbage plants based on UAV Visible-light images. Comput. Electron. Agric. 2023, 209, 107822. [Google Scholar] [CrossRef]
- Abdollahi, A.; Pradhan, B. Urban Vegetation Mapping from Aerial Imagery Using Explainable AI (XAI). Sensors 2021, 21, 4738. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, Z.; Cao, L.; Coops, N.C.; Goodbody, T.R.; Liu, H.; Shen, X.; Wu, X. Assessment of approaches for monitoring forest structure dynamics using bi-temporal digital aerial photogrammetry point clouds. Remote Sens. Environ. 2021, 255, 112300. [Google Scholar] [CrossRef]
- Khuzaimah, Z.; Nawi, N.M.; Adam, S.N.; Kalantar, B.; Emeka, O.J.; Ueda, N. Application and Potential of Drone Technology in Oil Palm Plantation: Potential and Limitations. J. Sens. 2022, 2022, e5385505. [Google Scholar] [CrossRef]
- Tang, L.; Shao, G. Drone remote sensing for forestry research and practices. J. For. Res. 2015, 26, 791–797. [Google Scholar] [CrossRef]
- Ahmed, I.; Ahmad, M.; Jeon, G. A real-time efficient object segmentation system based on U-Net using aerial drone images. J. Real-Time Image Process. 2021, 18, 1745–1758. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Seng, K.P.; Ang, L.M.; Pachas, N.A.; Lewis, T. Drone-Based Environmental Monitoring and Image Processing Approaches for Resource Estimates of Private Native Forest. Sensors 2022, 22, 7872. [Google Scholar] [CrossRef]
- Natesan, S.; Armenakis, C.; Vepakomma, U. Resnet-based tree species classification using uav images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 475–481. [Google Scholar] [CrossRef]
- Nduji, N.N.; Tolpekin, V.A.; Stein, A. An object-based image analysis approach for comparing tree detection from satellite imagery at different scales; A case study in Sukumba Mali. Remote Sens. Appl. Soc. Environ. 2023, 30, 100960. [Google Scholar] [CrossRef]
- Zhou, Z.; Majeed, Y.; Naranjo, G.D.; Gambacorta, E.M.T. Assessment for crop water stress with infrared thermal imagery in precision agriculture: A review and future prospects for deep learning applications. Comput. Electron. Agric. 2021, 182, 106019. [Google Scholar] [CrossRef]
- Lausch, A.; Heurich, M.; Gordalla, D.; Dobner, H.J.; Gwillym-Margianto, S.; Salbach, C. Forecasting potential bark beetle outbreaks based on spruce forest vitality using hyperspectral remote-sensing techniques at different scales. For. Ecol. Manag. 2013, 308, 76–89. [Google Scholar] [CrossRef]
- Gülci, S.; Akay, A.E.; Aricak, B.; Sariyildiz, T. Recent Advances in UAV-Based Structure-from-Motion Photogrammetry for Aboveground Biomass and Carbon Storage Estimations in Forestry. In Concepts and Applications of Remote Sensing in Forestry; Suratman, M.N., Ed.; Springer Nature: Singapore, 2022; pp. 395–409. [Google Scholar] [CrossRef]
- Munoz, J.E.V.; Srivastava, S.; Tuia, D.; Falcao, A.X. OpenStreetMap: Challenges and Opportunities in Machine Learning and Remote Sensing. IEEE Geosci. Remote Sens. Mag. 2021, 9, 184–199. [Google Scholar] [CrossRef]
- The Drone Rules, 2021. Realising Our Collective Vision of an Aatmanirbhar Bharat. Available online: https://static.pib.gov.in/WriteReadData/specificdocs/documents/2022/mar/doc202232932501.pdf (accessed on 15 April 2024).
- Cheng, A.; Casati, B.; Tivy, A.; Zagon, T.; Lemieux, J.-F.; Tremblay, L.B. Accuracy and inter-analyst agreement of visually estimated sea ice concentrations in Canadian Ice Service ice charts using single-polarization RADARSAT-2. Cryosphere 2020, 14, 1289–1310. [Google Scholar] [CrossRef]
- Liu, P.; Wei, Y.; Wang, Q.; Xie, J.; Chen, Y.; Li, Z.; Zhou, H. A research on landslides automatic extraction model based on the improved mask R-CNN. ISPRS Int. J. Geo-Inf. 2021, 10, 168. [Google Scholar] [CrossRef]
- Tessema, Y.M.; Jasińska, J.; Yadeta, L.T.; Świtoniak, M.; Puchałka, R.; Gebregeorgis, E.G. Soil Loss Estimation for Conservation Planning in the Welmel Watershed of the Genale Dawa Basin, Ethiopia. Agronomy 2020, 10, 777. [Google Scholar] [CrossRef]
- Emeka, O.J.; Nahazanan, H.; Kalantar, B.; Khuzaimah, Z.; Sani, O.S. Evaluation of the Effect of Hydroseeded Vegetation for Slope Reinforcement. Land 2021, 10, 995. [Google Scholar] [CrossRef]
- Lima, F.; Blanco-Sepúlveda, R.; Gómez-Moreno, M.L.; Dorado, J.; Peña, J.M. Mapping tillage direction and contour farming by object-based analysis of UAV images. Comput. Electron. Agric. 2021, 187, 106281. [Google Scholar] [CrossRef]
- Akay, S.S.; Ozcan, O.; Sen, O.L. Modeling morphodynamic processes in a meandering river with unmanned aerial vehicle-based measurements. J. Appl. Remote Sens. 2019, 13, 044523. [Google Scholar] [CrossRef]
- Kamamia, A.W.; Vogel, C.; Mwangi, H.M.; Feger, K.; Sang, J.; Julich, S. Using soil erosion as an indicator for integrated water resources management: A case study of Ruiru drinking water reservoir, Kenya. Environ. Earth Sci. 2022, 81, 502. [Google Scholar] [CrossRef]
- Žížala, D.; Minařík, R.; Beitlerova, H.; Juřicová, A.; Skála, J.; Rojas, J.R.; Penizek, V.; Zádorová, T. High-Resolution Soil Property Maps from Digital Soil Mapping Methods, Czech Republic. SSRN Electron. J. 2021. [Google Scholar] [CrossRef]
- Qiu, S.; Peng, J.; Zheng, H.; Xu, Z.; Meersmans, J. How can massive ecological restoration programs interplay with social-ecological systems? A review of research in the South China karst region. Sci. Total Environ. 2022, 807, 150723. [Google Scholar] [CrossRef]
- Brock, J. Applying Ecological Research to Improve Long-Term Outcomes of Wilding Conifer Management. NZES. Available online: https://newzealandecology.org/nzje/3475 (accessed on 15 April 2024).
- Brandt, E. A Review of Silvics, Stand Dynamics, Density Management, and Vegetation Management in the Ontario Boreal Forest. Bachelor’s Thesis, Lakehead University, Thunder Bay, ON, Canada, 2023. [Google Scholar]
- Meraj, G.; Singh, S.K.; Kanga, S.; Islam, M.N. Modeling on comparison of ecosystem services concepts, tools, methods and their ecological-economic implications: A review. Model. Earth Syst. Environ. 2022, 8, 15–34. [Google Scholar] [CrossRef]
- Nath, N.; Sahariah, D.; Meraj, G.; Debnath, J.; Kumar, P.; Lahon, D.; Chand, K.; Farooq, M.; Chandan, P.; Singh, S.K.; et al. Land use and land cover change monitoring and prediction of a UNESCO world heritage site: Kaziranga eco-sensitive zone using cellular automata-Markov model. Land 2023, 12, 151. [Google Scholar] [CrossRef]
- Meraj, G. Assessing the Impacts of Climate Change on Ecosystem Service Provisioning in Kashmir Valley India. Ph.D. Thesis, 2021. Available online: http://hdl.handle.net/10603/354338 (accessed on 1 January 2024).
- Le, H.D.; Smith, C.; Herbohn, J.; Harrison, S. More than just trees: Assessing reforestation success in tropical developing countries. J. Rural Stud. 2012, 28, 5–19. [Google Scholar] [CrossRef]
- Jim, C.Y. Sustainable urban greening strategies for compact cities in developing and developed economies. Urban Ecosyst. 2013, 16, 741–761. [Google Scholar] [CrossRef]
- Duguma, L.A.; Minang, P.A.; Aynekulu, B.E.; Carsan, S.; Nzyoka, J.; Bah, A.; Jamnadass, R.H. From Tree Planting to Tree Growing: Rethinking Ecosystem Restoration through Tree; World Agroforestry Working Paper; World Agroforestry: Nairobi, Kenya, 2020. [Google Scholar]
UTM Coordinates | Geographic Coordinates | ||||||
---|---|---|---|---|---|---|---|
Point ID | Date | Description | Northing | Easting | Elevation (m) | Longitude | Latitude |
1 | 6 February 2023 | BASE-1 | 2,978,882 | 597,205.9 | 402.6608 | 75°58′44.762 | 26°55′42.269 |
2 | 13 February 2023 | GCP-1 | 2,978,850 | 597,219.4 | 397.1401 | 75°58′45.241 | 26°55′41.220 |
4 | 20 February 2023 | GCP-2 | 2,978,456 | 597,218.2 | 407.881 | 75°58′45.088 | 26°55′28.405 |
8 | 27 February 2023 | GCP-3 | 2,979,172 | 597,392.7 | 387.494 | 75°58′51.615 | 26°55′51.642 |
9 | 6 February 2023 | GCP-4 | 2,979,429 | 597,313.4 | 399.0403 | 75°58′48.814 | 26°56′0.0279 |
10 | 5 March 2023 | GCP-5 | 2,978,855 | 597,394.5 | 378.6349 | 75°58′51.591 | 26°55′41.352 |
12 | 5 March 2023 | GCP-6 | 2,978,977 | 597,311.5 | 391.3266 | 75°58′48.616 | 26°55′45.339 |
Takeoff Weight | Mavic 2 Pro: 907 g Mavic 2 Zoom: 905 g |
---|---|
Dimensions | Folded: 214 × 91 × 84 mm (length × width × height) Unfolded: 322 × 242 × 84 mm (length × width × height) |
Diagonal Distance | 354 mm |
Max Ascent Speed | 5 m/s (S-mode) 4 m/s (P-mode) |
Max Descent Speed | 3 m/s (S-mode) 3 m/s (P-mode) |
Max Speed (near sea level, no wind) | 72 kph (S-mode) |
Maximum Takeoff Altitude | 6000 m |
Max Flight Time (no wind) | 31 min (at a consistent 25 kph) |
Max Hovering Time (no wind) | 29 min |
Max Flight Distance (no wind) | 18 km (at a consistent 50 kph) |
Max Wind Speed Resistance | 29–38 kph |
Max Tilt Angle | 35° (S-mode, with remote controller) 25° (P-mode) |
Max Angular Velocity | 200°/s |
Operating Temperature Range | −10 °C to 40 °C |
Operating Frequency | 2.400–2.483 GHz 5.725–5.850 GHz |
Transmission Power (EIRP) | 2.400–2.483 GHz FCC: ≤26 dBm CE: ≤20 dBm SRRC: ≤20 dBm MIC: ≤20 dBm 5.725–5.850 GHz FCC: ≤26 dBm CE: ≤14 dBm SRRC: ≤26 dBm |
GNSS | GPS+GLONASS |
Hovering Accuracy Range | Vertical: ±0.1 m (when vision positioning is active) ±0.5 m (with GPS positioning) Horizontal: ±0.3 m (when vision positioning is active) ±1.5 m (with GPS positioning) |
Internal Storage | 8 GB |
Fishnet ID | No. of Pits | Fishnet ID | No. of Pits | Fishnet ID | No. of Pits | Fishnet ID | No. of Pits |
---|---|---|---|---|---|---|---|
1 | 4 | 44 | Nil | 21 | 12 | 64 | Nil |
2 | 63 | 45 | Nil | 22 | 292 | 65 | Nil |
3 | Nil | 46 | 55 | 23 | 290 | 66 | Nil |
4 | Nil | 47 | 296 | 24 | Nil | 67 | Nil |
5 | Nil | 48 | 67 | 25 | Nil | 68 | Nil |
6 | 69 | 49 | Nil | 26 | 23 | 69 | 11 |
7 | Nil | 50 | Nil | 27 | 433 | 70 | 123 |
8 | 11 | 51 | Nil | 28 | 383 | 71 | Nil |
9 | 8 | 52 | Nil | 29 | Nil | 72 | 17 |
10 | 60 | 53 | Nil | 30 | Nil | 73 | 58 |
11 | Nil | 54 | 224 | 31 | 9 | 74 | Nil |
12 | Nil | 55 | 142 | 32 | 232 | 75 | Nil |
13 | 8 | 56 | Nil | 33 | 240 | 76 | Nil |
14 | 247 | 57 | Nil | 34 | 63 | 77 | 49 |
15 | Nil | 58 | Nil | 35 | Nil | 78 | 22 |
16 | Nil | 59 | Nil | 36 | Nil | 79 | 1 |
17 | 2 | 60 | Nil | 37 | Nil | 80 | Nil |
18 | 204 | 61 | 8 | 38 | 1 | 81 | Nil |
19 | 16 | 62 | 139 | 39 | 175 | 82 | 10 |
20 | Nil | 63 | 92 | 40 | 214 | 83 | 31 |
43 | Nil | 86 | 9 | 41 | 91 | 84 | 5 |
87 | 23 | 89 | Nil | 42 | Nil | 85 | Nil |
88 | Nil | 90 | Nil |
Grid-1 (Ref) | Grid-2 (Ref) | Grid-3 (Ref) | Total | |
---|---|---|---|---|
Grid-1 (Classified) | 29 | 2 | 4 | 35 |
Grid-2 (Classified) | 1 | 31 | 3 | 35 |
Grid-3 (Classified) | 0 | 1 | 25 | 26 |
Total | 30 | 34 | 32 | 96 |
No. | Slope Range (%) | Area Covered (%) |
---|---|---|
1 | 0–3 | 0.90 |
2 | 3–6 | 2.33 |
3 | 6–20 | 19.81 |
4 | 20–100 | 69.14 |
5 | >100 | 7.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dixit, J.; Bhardwaj, A.K.; Gupta, S.K.; Singh, S.K.; Meraj, G.; Kumar, P.; Kanga, S.; Singh, S.; Sajan, B. Potential of Lightweight Drones and Object-Oriented Image Segmentation in Forest Plantation Assessment. Remote Sens. 2024, 16, 1554. https://doi.org/10.3390/rs16091554
Dixit J, Bhardwaj AK, Gupta SK, Singh SK, Meraj G, Kumar P, Kanga S, Singh S, Sajan B. Potential of Lightweight Drones and Object-Oriented Image Segmentation in Forest Plantation Assessment. Remote Sensing. 2024; 16(9):1554. https://doi.org/10.3390/rs16091554
Chicago/Turabian StyleDixit, Jitendra, Ashok Kumar Bhardwaj, Saurabh Kumar Gupta, Suraj Kumar Singh, Gowhar Meraj, Pankaj Kumar, Shruti Kanga, Saurabh Singh, and Bhartendu Sajan. 2024. "Potential of Lightweight Drones and Object-Oriented Image Segmentation in Forest Plantation Assessment" Remote Sensing 16, no. 9: 1554. https://doi.org/10.3390/rs16091554
APA StyleDixit, J., Bhardwaj, A. K., Gupta, S. K., Singh, S. K., Meraj, G., Kumar, P., Kanga, S., Singh, S., & Sajan, B. (2024). Potential of Lightweight Drones and Object-Oriented Image Segmentation in Forest Plantation Assessment. Remote Sensing, 16(9), 1554. https://doi.org/10.3390/rs16091554