Comparative Analysis of Earth Observation Methodologies for Irrigation Water Accounting in the Bekaa Valley of Lebanon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Study Area
2.2. Collected Data Overview
2.3. Prediction Methods for Actual Evapotranspiration and Net Irrigation Water Use
2.3.1. Method (A): NIW Prediction According to Maselli et al. (2020) [18]
2.3.2. Method (B): NIW Prediction According to D’Urso et al. (2021) [14]
Estimation of Maximum Evapotranspiration ETp and Effective Precipitation
From ETp to ETa by Use of SWIR Observations
2.4. Data Evaluation and Validation
3. Results
3.1. Crop and Surface Parameters Derived from Remote Sensing
3.2. NIW Prediction According to Method (A)
3.2.1. Meteorological, FVC, and NIW Patterns in 2020
3.2.2. Trends of Estimated FVC, ETa, and NIW in Validation Fields
3.3. NIW Prediction According to Method (B)
3.4. Data Evaluation and Validation
4. Discussion
5. Limitations and Further Investigation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Early Season | Late Season | ||
---|---|---|---|
Date | Date | ||
S2A | 5 February 2020 | S2A | 4 July 2020 |
S2A | 16 March 2020 | S2A | 24 July 2020 |
S2A | 26 March 2020 | S2A | 3 August 2020 |
S2A | 15 April 2020 | S2A | 13 August 2020 |
S2A | 15 May 2020 | S2A | 23 August 2020 |
S2A | 25 May 2020 | S2A | 2 September 2020 |
S2A | 4 June 2020 | S2A | 12 September 2020 |
S2A | 14 June 2020 | S2A | 22 September 2020 |
S2A | 24 June 2020 | S2A | 2 October 2020 |
S2A | 4 July 2020 | S2A | 12 October 2020 |
S2A | 24 July 2020 | S2A | 22 October 2020 |
S2A | 3 August 2020 | S2A | 1 November 2020 |
S2A | 13 August 2020 | S2A | 11 December 2020 |
S2A | 23 August 2020 | S2A | 21 December 2020 |
S2A | 31 December 2020 | ||
S2B | 11 March 2020 | S2B | 9 July 2020 |
S2B | 31 March 2020 | S2B | 19 July 2020 |
S2B | 20 April 2020 | S2B | 29 July 2020 |
S2B | 10 May 2020 | S2B | 8 August 2020 |
S2B | 20 May 2020 | S2B | 18 August 2020 |
S2B | 30 May 2020 | S2B | 28 August 2020 |
S2B | 9 June 2020 | S2B | 7 September 2020 |
S2B | 29 June 2020 | S2B | 17 September 2020 |
S2B | 9 July 2020 | S2B | 27 September 2020 |
S2B | 19 July 2020 | S2B | 7 October 2020 |
S2B | 29 July 2020 | S2B | 17 October 2020 |
S2B | 8 August 2020 | S2B | 27 October 2020 |
S2B | 18 August 2020 | S2B | 16 November 2020 |
S2B | 28 August 2020 | S2B | 26 December 2020 |
Appendix B
Sentinel-2 MSI Spectral Band | Central Wavelength (μm) | Bandwidth (μm) | Exo-Atmosph. Sun Irradiance | Coefficient |
---|---|---|---|---|
Esun,λ (W m−2) | ωλ | |||
1 | 0.443 | 0.020 | 1893.4 | |
2 | 0.490 | 0.065 | 1926.7 | 0.1836 |
3 | 0.560 | 0.035 | 1845.7 | 0.1759 |
4 | 0.665 | 0.030 | 1528.5 | 0.1457 |
5 | 0.705 | 0.015 | 1412.6 | 0.1346 |
6 | 0.740 | 0.015 | 1294.4 | 0.1234 |
7 | 0.783 | 0.020 | 1189.7 | 0.1134 |
8 | 0.842 | 0.115 | 1050.3 | 0.1001 |
8a | 0.865 | 0.020 | 970.4 | |
9 | 0.945 | 0.020 | 831.0 | |
10 | 1.375 | 0.030 | 360.1 | |
11 | 1.610 | 0.090 | 242.3 | 0.0231 |
12 | 2.190 | 0.180 | 3.0 | 0.0003 |
References
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Ozdogan, M.; Gutman, G. A new methodology to map irrigated areas using multitemporal MODIS and ancillary data: An application example in the continental US. Remote Sens. Environ. 2008, 112, 3520–3537. [Google Scholar] [CrossRef]
- Novelli, F.; Spiegel, H.; Sandén, T.; Vuolo, F. Assimilation of Sentinel-2 Leaf Area Index Data into a Physically Based Crop Growth Model for Yield Estimation. Agronomy 2019, 9, 255. [Google Scholar] [CrossRef]
- Calera, A.; Campos, I.; Osann, A.; D’Urso, G.; Menenti, M. Remote sensing for crop water management: From ET modelling to services for the end users. Sensors 2017, 17, 1104. [Google Scholar] [CrossRef] [PubMed]
- Bausch, W.C. Remote sensing of crop coefficients for improving the irrigation scheduling of corn. Agric. Water Manag. 1995, 27, 55–68. [Google Scholar] [CrossRef]
- D’Urso, G.; Menenti, M.; Santini, A. Regional application of one-dimensional water flow models for irrigation management. Agric. Water Manag. 1999, 40, 291–302. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.; Molden, D.J.; Makin, I.W. Remote sensing for irrigated agriculture: Examples from research and possible applications. Agric. Water Manag. 2000, 46, 137–155. [Google Scholar] [CrossRef]
- Belmonte, A.C.; Jochum, A.M.; GarcÍa, A.C.; Rodríguez, A.M.; Fuster, P.L. Irrigation management from space: Towards user-friendly products. Irrig. Drain. Syst. 2005, 19, 337–353. [Google Scholar] [CrossRef]
- D’Urso, G.; Richter, K.; Calera, A.; Osann, M.A.; Escadafal, R.; Garatuza-Pajan, J.; Hanich, L.; Perdigão, A.; Tapia, J.B.; Vuolo, F. Earth Observation products for operational irrigation management in the context of the PLEIADeS project. Agric. Water Manag. 2010, 98, 271–282. [Google Scholar] [CrossRef]
- Jensen, M.E.; Burman, R.D.; Allen, R.G. Evapotranspiration and Irrigation Water Requirements; FAO: Rome, Italy, 1990. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Ferreira, A.; Rolim, J.; Paredes, P.; Do Rosario Cameira, M. Methodologies for Water Accounting at the Collective Irrigation System Scale Aiming at Optimizing Water Productivity. Agronomy 2023, 13, 1938. [Google Scholar] [CrossRef]
- Garrido-Rubio, J.; González-Piqueras, J.; Campos, I.; Osann, A.; González-Gómez, L.; Calera, A. Remote sensing–based soil water balance for irrigation water accounting at plot and water user association management scale. Agric. Water Manag. 2020, 238, 106236. [Google Scholar] [CrossRef]
- D’Urso, G.; Bolognesi, S.F.; Kustas, W.P.; Knipper, K.R.; Anderson, M.C.; Alsina, M.M.; Hain, C.R.; Alfieri, J.G.; Prueger, J.H.; Gao, F.; et al. Determining Evapotranspiration by Using Combination Equation Models with Sentinel-2 Data and Comparison with Thermal-Based Energy Balance in a California Irrigated Vineyard. Remote Sens. 2021, 13, 3720. [Google Scholar] [CrossRef]
- Sadeghi, M.; Babaeian, E.; Tuller, M.; Jones, S.B. The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote Sens. Environ. 2017, 198, 52–68. [Google Scholar] [CrossRef]
- Sadeghi, M.; Jones, S.B.; Philpot, W.D. A linear physically based model for remote sensing of soil moisture using short wave infrared bands. Remote Sens. Environ. 2015, 164, 66–76. [Google Scholar] [CrossRef]
- Ambrosone, M.; Matese, A.; Di Gennaro, S.F.; Gioli, B.; Tudoroiu, M.; Genesio, L.; Miglietta, F.; Baronti, S.; Maienza, A.; Ungaro, F.; et al. Retrieving soil moisture in rainfed and irrigated fields using Sentinel-2 observations and a modified OPTRAM approach. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102113. [Google Scholar] [CrossRef]
- Maselli, F.; Battista, P.; Chiesi, M.; Rapi, B.; Angeli, L.; Fibbi, L.; Magno, R.; Gozzini, B. Use of Sentinel-2 MSI data to monitor crop irrigation in Mediterranean areas. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102216. [Google Scholar] [CrossRef]
- Pelosi, A.; Belfiore, O.R.; D’Urso, G.; Chirico, G.B. Assessing Crop Water Requirement and Yield by Combining ERA5-Land Reanalysis Data with CM-SAF Satellite-Based Radiation Data and Sentinel-2 Satellite Imagery. Remote Sens. 2022, 14, 6233. [Google Scholar] [CrossRef]
- Maselli, F.; Angeli, L.; Chiesi, M.; Fibbi, L.; Rapi, B.; Romani, M.; Sabatini, F.; Battista, P. An improved NDVI-based method to predict actual evapotranspiration of irrigated grasses and crops. Agric. Water Manag. 2020, 233, 106077. [Google Scholar] [CrossRef]
- Maselli, F.; Papale, D.; Chiesi, M.; Matteucci, G.; Angeli, L.; Raschi, A.; Seufert, G. Operational monitoring of daily evapotranspiration by the combination of MODIS NDVI and ground meteorological data: Application and validation in Central Italy. Remote Sens. Environ. 2014, 152, 279–290. [Google Scholar] [CrossRef]
- Vuolo, F.; Żółtak, M.; Pipitone, C.; Zappa, L.; Wenng, H.; Immitzer, M.; Weiss, M.; Baret, F.; Atzberger, C. Data Service Platform for Sentinel-2 Surface Reflectance and Value-Added Products: System Use and Examples. Remote Sens. 2016, 8, 938. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F. Sentinel-2 ToolBox Level 2 Products: LAI, FAPAR, FCOVER, Version 1.1; European Space Agency: Noordwijk, The Netherlands, 2016; Available online: https://step.esa.int/docs/extra/ATBD_S2ToolBox_L2B_V1.1.pdf (accessed on 16 September 2021).
- Vuolo, F.; D’Urso, G.; De Michele, C.; Bianchi, B.; Cutting, M. Satellite-based irrigation advisory services: A common tool for different experiences from Europe to Australia. Agric. Water Manag. 2015, 147, 82–95. [Google Scholar] [CrossRef]
- Szeicz, G.; Long, I.F. Surface Resistance of Crop Canopies. Water Resour. Res. 1969, 5, 622–633. [Google Scholar] [CrossRef]
- Spank, U.; Köstner, B.; Moderow, U.; Grunwald, T.; Bernhofer, C. Surface Conductance of Five Different Crops Based on 10 Years of Eddy-Covariance Measurements. Meteorol. Z. 2016, 25, 251–266. [Google Scholar] [CrossRef]
- Chávez, J.L.; López-Urrea, R. One-step approach for estimating maize actual water use: Part I. Modeling a variable surface resistance. Irrig. Sci. 2019, 3, 123–137. [Google Scholar] [CrossRef]
- Leuning, R.; Zhang, Y.; Rajaud, A.; Cleugh, H.; Tu, K. A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Babaeian, E.; Sadeghi, M.; Jones, S.B.; Montzka, C.; Vereecken, H.; Tuller, M. Ground, Proximal, and Satellite Remote Sensing of Soil Moisture. Rev. Geophys. 2019, 57, 530–616. [Google Scholar] [CrossRef]
- Chen, D.; Huang, J.; Jackson, T.J. Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands. Remote Sens. Environ. 2005, 98, 225–236. [Google Scholar] [CrossRef]
- Feddes, R.; Kabat, P.; Van Bakel, P.; Bronswijk, J.; Halbertsma, J. Modelling soil water dynamics in the unsaturated zone—State of the art. J. Hydrol. 1988, 100, 69–111. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F.; Jay, S. S2 ToolBox Level 2 Products: LAI, FAPAR, FCOVER; Institut National de la Recherche Agronomique (INRA): Avignon, France, 2020; Available online: https://step.esa.int/docs/extra/ATBD_S2ToolBox_V2.0.pdf (accessed on 24 April 2024).
- West, H.; Quinn, N.; Horswell, M. Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities. Remote Sens. Environ. 2019, 232, 111251. [Google Scholar]
- Maselli, F.; Angeli, L.; Battista, P.; Fibbi, L.; Gardin, L.; Magno, R.; Rapi, B.; Chiesi, M. Evaluation of MODIS and MSI NDVI data for predicting actual evapo-transpiration in Mediterranean areas. Int. J. Remote Sens. 2020, 41, 5186–5205. [Google Scholar] [CrossRef]
- Zelikova, T.J.; Williams, D.G.; Hoenigman, R.; Blumenthal, D.M.; Morgan, J.A.; Pendall, E. Seasonality of soil moisture mediates responses of ecosystem phenology to elevated CO2 and warming in a semi-arid grassland. J. Ecol. 2015, 103, 1119–1130. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, D.; Luo, L.; Pokhrel, Y.; Deb, K.; Huang, J.; Ran, Y. Detecting irrigation extent, frequency, and timing in a heterogeneous arid agricultural region using MODIS time series, Landsat imagery, and ancillary data. Remote Sens. Environ. 2018, 204, 197–211. [Google Scholar] [CrossRef]
- Ozdogan, M.; Yang, Y.; Allez, G.; Cervantes, C. Remote Sensing of Irrigated Agriculture: Opportunities and Challenges. Remote Sens. 2010, 2, 2274–2304. [Google Scholar] [CrossRef]
- Zaussinger, F.; Dorigo, W.; Gruber, A.; Tarpanelli, A.; Filippucci, P.; Brocca, L. Estimating irrigation water use over the contiguous United States by combining satellite and reanalysis soil moisture data. Hydrol. Earth Syst. Sci. 2019, 23, 897–923. [Google Scholar] [CrossRef]
Crop Type | Sowing Window | Harvest Window |
---|---|---|
Potato (early season) | February–March | June–August |
Potato (late season) | July–August | November–December |
Season | X | Y | Planting Date | Number of Sprinklers per ha | Sprinkler Application Rate (m3/h) | Net Irrigation Water Use (mm) | Total Net Irrigation Water Use (mm/Season) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Until Day 45 | Days 45 to 70 | Days 70 to 100 | Days 100 to 110 | Days 110 to 120 | |||||||
Early season | 36.062545 | 34.010629 | 15 March | 30 | 1.5 | 19 | 63 | 142 | 38 | 6 | 268 |
36.087906 | 33.912448 | 22 March | 30 | 1.5 | 19 | 57 | 126 | 19 | 6 | 227 | |
36.008369 | 33.870860 | 18 March | 30 | 1.5 | 25 | 47 | 95 | 25 | 6 | 198 | |
36.119467 | 34.002163 | 1 April | 30 | 1.5 | 28 | 95 | 227 | 38 | 6 | 394 | |
35.943419 | 33.778937 | 15 March | 30 | 1.5 | 13 | 57 | 189 | 28 | 6 | 293 | |
35.808920 | 33.702613 | 25 March | 30 | 1.5 | 9 | 79 | 198 | 50 | 6 | 343 | |
35.892434 | 33.738782 | 25 March | 30 | 1.5 | 19 | 57 | 142 | 25 | 6 | 249 | |
35.837074 | 33.694242 | 15 March | 30 | 1.5 | 13 | 79 | 198 | 38 | 6 | 334 | |
36.003494 | 33.817086 | 1 April | 30 | 1.5 | 50 | 110 | 221 | 28 | 6 | 416 | |
Late season | 35.995051 | 33.832279 | 1 August | 30 | 1.5 | 28 | 57 | 63 | 0 | 0 | 148 |
35.773305 | 33.659328 | 4 August | 30 | 1.5 | 38 | 57 | 63 | 0 | 0 | 158 | |
35.765647 | 33.627283 | 5 August | 30 | 1.5 | 38 | 47 | 28 | 0 | 0 | 113 | |
35.832065 | 33.665258 | 1 August | 30 | 1.5 | 63 | 32 | 63 | 0 | 0 | 158 | |
36.094344 | 33.902884 | 8 August | 30 | 1.5 | 47 | 16 | 57 | 0 | 0 | 120 | |
36.093712 | 33.909883 | 1 August | 30 | 1.5 | 50 | 57 | 63 | 0 | 0 | 170 | |
36.048899 | 33.903378 | 17 July | 30 | 1.5 | 28 | 32 | 57 | 0 | 0 | 117 | |
36.145770 | 33.990577 | 1 August | 30 | 1.5 | 38 | 32 | 63 | 0 | 0 | 132 |
2020 | P (mm) | ET0 (mm) | ||
---|---|---|---|---|
Month | Min | Max | Min | Max |
January | 83 | 135 | 23 | 28 |
February | 77 | 141 | 34 | 38 |
March | 90 | 137 | 64 | 68 |
April | 35 | 78 | 89 | 97 |
May | 15 | 42 | 136 | 148 |
June | 1 | 4 | 150 | 171 |
July | 0 | 6 | 163 | 185 |
August | 0 | 5 | 149 | 168 |
September | 2 | 5 | 124 | 135 |
October | 2 | 6 | 84 | 90 |
November | 61 | 97 | 33 | 39 |
December | 37 | 57 | 27 | 32 |
Cumulative values in the early season (February to August) | 219 | 413 | 785 | 875 |
Cum. values in late season (August to November) | 65 | 112 | 391 | 432 |
Yearly totals | 404 | 713 | 1075 | 1199 |
Season | Field Number | NIW_Field Data | NIW_(A) | NIW (B) |
---|---|---|---|---|
Early season | 1 | 268 | 279 | 256 |
2 | 227 | 203 | 188 | |
3 | 198 | 177 | 158 | |
4 | 394 | 383 | 380 | |
5 | 293 | 262 | 222 | |
6 | 343 | 321 | 278 | |
7 | 249 | 242 | 228 | |
8 | 334 | 316 | 309 | |
9 | 416 | 418 | 393 | |
Late season | 10 | 148 | 125 | 136 |
11 | 158 | 108 | 139 | |
12 | 113 | 100 | 127 | |
13 | 158 | 107 | 145 | |
14 | 120 | 99 | 127 | |
15 | 170 | 109 | 145 | |
16 | 117 | 97 | 128 | |
17 | 132 | 86 | 140 |
RMSE_Method (A) (mm) | RMSE_Method (B) (mm) | |||
---|---|---|---|---|
Season | Early Season | Late Season | Early Season | Late Season |
Until day 45 | 20 | 33 | 20 | 17 |
Days 45 to 70 | 27 | 23 | 14 | 15 |
Days 70 to 100 | 37 | 20 | 61 | 28 |
Days 100 to 110 | 19 | 0 | 15 | 3 |
Days 110 to 120 | 22 | 0 | 13 | 1 |
Seasonal total | 18 | 40 | 39 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moujabber, G.; Abi Saab, M.T.; Roukoz, S.; D’Agostino, D.; Belfiore, O.R.; D’Urso, G. Comparative Analysis of Earth Observation Methodologies for Irrigation Water Accounting in the Bekaa Valley of Lebanon. Remote Sens. 2024, 16, 1598. https://doi.org/10.3390/rs16091598
Moujabber G, Abi Saab MT, Roukoz S, D’Agostino D, Belfiore OR, D’Urso G. Comparative Analysis of Earth Observation Methodologies for Irrigation Water Accounting in the Bekaa Valley of Lebanon. Remote Sensing. 2024; 16(9):1598. https://doi.org/10.3390/rs16091598
Chicago/Turabian StyleMoujabber, Gabriel, Marie Therese Abi Saab, Salim Roukoz, Daniela D’Agostino, Oscar Rosario Belfiore, and Guido D’Urso. 2024. "Comparative Analysis of Earth Observation Methodologies for Irrigation Water Accounting in the Bekaa Valley of Lebanon" Remote Sensing 16, no. 9: 1598. https://doi.org/10.3390/rs16091598
APA StyleMoujabber, G., Abi Saab, M. T., Roukoz, S., D’Agostino, D., Belfiore, O. R., & D’Urso, G. (2024). Comparative Analysis of Earth Observation Methodologies for Irrigation Water Accounting in the Bekaa Valley of Lebanon. Remote Sensing, 16(9), 1598. https://doi.org/10.3390/rs16091598