XCO2 Data Full-Coverage Mapping in China Based on Random Forest Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Data Preprocessing
2.1.1. Satellite Data
2.1.2. Auxiliary Data
2.2. Training and Evaluation of Machine Learning Models
2.2.1. Random Forest Model
2.2.2. Model Validation Metrics
2.2.3. Workflow
2.2.4. Hyperparameter Optimization
3. Results
3.1. Overall Model Performance and the Importance of Variables
3.2. Ground-Based Station Validation
3.3. Comparison of Fitting Results of Different Models
4. Discussion
4.1. Data Coverage Rate
4.2. Spatial Distribution Characteristics of Multi-Year Average XCO2
4.3. Temporal Variation Characteristics of XCO2
5. Conclusions
6. Proclamation of AI-Assisted Generative Writing and AI-Supported Technologies
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, C.; Ji, M.; Grieneisen, M.L.; Zhan, Y. A review of datasets and methods for deriving spatiotemporal distributions of atmospheric CO2. J. Environ. Manag. 2022, 322, 116101. [Google Scholar] [CrossRef]
- Hu, K.; Feng, X.; Zhang, Q.; Shao, P.; Liu, Z.; Xu, Y.; Wang, S.; Wang, Y.; Wang, H.; Di, L.; et al. Review of Satellite Remote Sensing of Carbon Dioxide Inversion and Assimilation. Remote Sens. 2024, 16, 3394. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, M.; Tao, M.; Zhou, W.; Lu, X.; Xiong, Y.; Li, F.; Wang, Q. The role of satellite remote sensing in mitigating and adapting to global climate change. Sci. Total Environ. 2023, 904, 166820. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Martínez, M.; Sardans, J.; Chevallier, F.; Ciais, P.; Obersteiner, M.; Vicca, S.; Canadell, J.G.; Bastos, A.; Friedlingstein, P.; Sitch, S.; et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Change 2019, 9, 73–81. [Google Scholar] [CrossRef]
- Jeong, K.; Hong, T.; Kim, J. Development of a CO2 emission benchmark for achieving the national CO2 emission reduction target by 2030. Energy Build. 2018, 158, 86–94. [Google Scholar] [CrossRef]
- Li, C.; Wang, X.; Ye, H.; Wu, S.; Shi, H.; An, Y.; Sun, E. Assessment of thermal power plant CO2 emissions quantification performance and uncertainty of measurements by ground-based remote sensing. Environ. Pollut. 2024, 361, 124886. [Google Scholar] [CrossRef]
- Xie, F.; Ren, T.; Zhao, C.; Wen, Y.; Gu, Y.; Zhou, M.; Wang, P.; Shiomi, K.; Morino, I. Fast retrieval of XCO2 over east Asia based on Orbiting Carbon Observatory-2 (OCO-2) spectral measurements. Atmos. Meas. Tech. 2024, 17, 3949–3967. [Google Scholar] [CrossRef]
- Crisp, D.; Pollock, H.R.; Rosenberg, R.; Chapsky, L.; Lee, R.A.; Oyafuso, F.A.; Frankenberg, C.; O’Dell, C.W.; Bruegge, C.J.; Doran, G.B.; et al. The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products. Atmos. Meas. Tech. 2017, 10, 59–81. [Google Scholar] [CrossRef]
- O’dell, C.W.; Eldering, A.; Wennberg, P.O.; Crisp, D.; Gunson, M.R.; Fisher, B.; Frankenberg, C.; Kiel, M.; Lindqvist, H.; Mandrake, L.; et al. Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm. Atmos. Meas. Tech. 2018, 11, 6539–6576. [Google Scholar] [CrossRef]
- Wang, J.; Feng, L.; Palmer, P.I.; Liu, Y.; Fang, S.; Bösch, H.; O’Dell, C.W.; Tang, X.; Yang, D.; Liu, L.; et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature 2020, 586, 720–732. [Google Scholar] [CrossRef]
- Wunch, D.; Wennberg, P.O.; Osterman, G.; Fisher, B.; Naylor, B.; Roehl, C.M.; O’Dell, C.; Mandrake, L.; Viatte, C.; Kiel, M.; et al. Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measurements with TCCON. Atmos. Meas. Tech. 2017, 10, 2209–2238. [Google Scholar] [CrossRef]
- Crisp, D. Measuring atmospheric carbon dioxide from space with the Orbiting Carbon Observatory-2 (OCO-2). Proc. SPIE Earth Obs. Syst. XX 2015, 9607, 960702. [Google Scholar]
- Schimel, D.S.; Carroll, D. Carbon Cycle-Climate Feedbacks in the Post-Paris World. Annu. Rev. Earth Planet. Sci. 2024, 52, 467–493. [Google Scholar] [CrossRef]
- Li, J.; Jia, K.; Wei, X.; Xia, M.; Chen, Z.; Yao, Y.; Zhang, X.; Jiang, H.; Yuan, B.; Tao, G.; et al. High-spatiotemporal resolution mapping of spatiotemporally continuous atmospheric CO2 concentrations over the global continent. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102743. [Google Scholar] [CrossRef]
- Sheng, M.; Lei, L.; Zeng, Z.C.; Rao, W.; Song, H.; Wu, C. Global land 1° mapping dataset of XCO2 from satellite observations of GOSAT and OCO-2 from 2009 to 2020. Big Earth Data 2023, 7, 180–200. [Google Scholar] [CrossRef]
- Grosz, B.; Horváth, L.; Gyöngyösi, A.Z.; Weidinger, T.; Pintér, K.; Nagy, Z.; André, K. Use of WRF result as meteorological input to DNDC model for greenhouse gas flux simulation. Atmos. Environ. 2015, 122, 230–235. [Google Scholar] [CrossRef]
- He, Z.; Lei, L.; Zhang, Y.; Sheng, M.; Wu, C.; Li, L.; Zeng, Z.C.; Welp, L.R. Spatio-Temporal Mapping of Multi-Satellite Observed Column Atmospheric CO2 Using Precision-Weighted Kriging Method. Remote Sens. 2020, 12, 576. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, G. Mapping contiguous XCO2 by machine learning and analyzing the spatio-temporal variation in China from 2003 to 2019. Sci. Total Environ. 2023, 858, 159588. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, Z.; He, G.; Wang, H.; Zhang, X.; Lin, J.; Qi, Y.; Liang, X. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 2022, 3, 141–155. [Google Scholar] [CrossRef]
- Shi, Q.; Zheng, B.; Zheng, Y.; Tong, D.; Liu, Y.; Ma, H.; Hong, C.; Geng, G.; Guan, D.; He, K.; et al. Co-benefits of CO2 emission reduction from China’s clean air actions between 2013–2020. Nat. Commun. 2022, 13, 5061. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Li, C.; Yin, H.; Zeng, M. Green innovation and China’s CO2 emissions—The moderating effect of institutional quality. J. Environ. Plan. Manag. 2022, 65, 877–906. [Google Scholar] [CrossRef]
- Zheng, X.; Lu, Y.; Yuan, J.; Baninla, Y.; Zhang, S.; Stenseth, N.C.; Hessen, D.O.; Tian, H.; Obersteiner, M.; Chen, D. Drivers of change in China’s energy-related CO2 emissions. Proc. Natl. Acad. Sci. USA 2020, 117, 29–36. [Google Scholar] [CrossRef]
- Cui, Y.; Zha, H.; Jiang, L.; Zhang, M.; Shi, K. Luojia 1-01 Data Outperform Suomi-NPP VIIRS Data in Estimating CO2 Emissions in the Service, Industrial, and Urban Residential Sectors. IEEE Geosci. Remote Sens. Lett. 2023, 20, 3000905. [Google Scholar] [CrossRef]
- Shi, K.; Shen, J.; Wu, Y.; Liu, S.; Li, L. Carbon dioxide (CO2) emissions from the service industry, traffic, and secondary industry as revealed by the remotely sensed nighttime light data. Int. J. Digit. Earth 2021, 14, 1514–1527. [Google Scholar] [CrossRef]
- Zhang, B.; Li, J.; Wang, M.; Duan, P. Mutual Correction of DMSP/OLS and NPP/VIIRS in Mainland China. Remote Sens. Inf. 2021, 36, 99–107. [Google Scholar]
- Talekar, B.; Agrawal, S. A Detailed Review on Decision Tree and Random Forest. Biosci. Biotechnol. Res. Commun. 2020, 13, 245–248. [Google Scholar] [CrossRef]
- Yu, R.; Zhao, G.; Chang, C.; Yuan, X.; Wang, Z. Random Forest Classifier in Remote Sensing Information Extraction: A Review of Applications and Future Development. Remote Sens. Inf. 2019, 34, 8–14. [Google Scholar]
- Wang, W.; Tian, Y.; Liu, C.; Sun, Y.; Liu, W.; Xie, P.; Liu, J.; Xu, J.; Morino, I.; Velazco, V.A.; et al. Investigating the performance of a greenhouse gas observatory in Hefei, China. Atmos. Meas. Tech. 2017, 10, 2627–2643. [Google Scholar] [CrossRef]
Satellite | SCIAMACHY | GOSAT | OCO-2 | GF-5B | OMI |
---|---|---|---|---|---|
Time Coverage | 2003.01–2012.03 | 2009.04–2016.12 | 2014.09–2023.12 | 2023.01–2023.12 | 2004.10–2023.12 |
Date Version | V02.01.02 | 9r | 11r | - | V3 (OMNO2d) |
Monitoring Indicators | CO2 | CO2 | CO2 | CO2 | NO2 |
Observation Time | 10:00 | 13:00 | 13:36 | 13:30 | 13:45 |
Width of Coverage | 960 km | 790 km | 10.6 km | 865 km | 2600 km |
Spatial Resolution | 30 × 60 km | 10.5 km | 2.25 × 1.5 km | 10.3 km | 13 × 24 km |
Data Precision | ~14 ppm | ~1 ppm | ~1 ppm | 1~4 ppm | - |
Type | Variable | Temporal Resolution | Space Resolution | Data Source |
---|---|---|---|---|
Light | Light Brightness | Monthly | 30 km × 60 km | DMSP/OLS |
Monthly | 0.74 km | NPP/VIIRS | ||
Vegetation | EVI, NDVI | 14 d | 0.05° × 0.05° | MODIS |
Meteorology | AP, AT, BLH, SP, TCW, TP, WEV, WN, WE | Monthly | 0.25° × 0.25° | ERA5 |
CT Model | CO2 profile | 3 h | 3° × 2° | Carbon Tracker |
Hyperparameter | Hyperparameter Search Space | Final Hyperparameter |
---|---|---|
n_estimators | [100, 200, 300, 500, 1000, 1500, 2000] | 1400 |
max_depth | [10, 20, 50, None] | 20 |
min_samples_split | [2, 5, 10] | 5 |
min_samples_leaf | [1, 2, 4] | 2 |
max_features | [‘auto’, ’sqrt’, ’log2’] | ‘sqrt’ |
Year | Size | Accuracy | ||
---|---|---|---|---|
N | RMSE | MAE | R2 | |
2004–2008 | 14,525 | 1.5778 | 1.2258 | 0.8466 |
2008–2013 | 15,392 | 1.5500 | 1.1996 | 0.8614 |
2014 | 8593 | 0.8983 | 0.4063 | 0.9174 |
2015 | 16,092 | 0.7353 | 0.4673 | 0.9291 |
2016 | 14,469 | 0.6885 | 0.4550 | 0.9393 |
2017 | 11,658 | 0.6805 | 0.4425 | 0.9284 |
2018 | 15,408 | 0.6748 | 0.4367 | 0.9462 |
2019 | 14,440 | 0.6828 | 0.4465 | 0.9395 |
2020 | 14,956 | 0.5003 | 0.3538 | 0.9665 |
2021 | 14,241 | 0.5712 | 0.4073 | 0.9571 |
2022 | 15,204 | 0.6521 | 0.4367 | 0.9477 |
2023 | 20,541 | 0.7941 | 0.4367 | 0.9324 |
All | 170,519 | 1.1231 | 0.7124 | 0.9844 |
Model | Overall Model Performance | Representative Regions Performance | ||||
---|---|---|---|---|---|---|
R2 | MAE (ppm) | RMSE (ppm) | R2 | MAE (ppm) | RMSE (ppm) | |
RF | 0.952 | 0.8424 | 1.0649 | 0.943 | 0.8414 | 1.2651 |
ERT | 0.929 | 1.0624 | 1.2341 | 0.891 | 1.2654 | 1.5213 |
XGBoost | 0.941 | 0.7366 | 1.2100 | 0.945 | 0.7996 | 1.1367 |
ANN | 0.912 | 1.0023 | 1.5214 | 0.902 | 1.3177 | 1.7246 |
Datasets | Data Coverage Year | Monthly Data Coverage Rate |
---|---|---|
SCIAMACHY | 2004–2012 | 2.8% |
GOSAT | 2019–2016 | 0.7% |
OCO-2 | 2015–2023 | 5.2% |
GF-5B | 2023 | 0.7% |
Multi-source carbon satellites raster dataset | 2004–2023 | 6.1% |
RF-model dataset | 2004–2020 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.; Wang, Z.; Zhou, C.; Zhang, R.; Xie, H.; Li, H. XCO2 Data Full-Coverage Mapping in China Based on Random Forest Models. Remote Sens. 2025, 17, 48. https://doi.org/10.3390/rs17010048
Chen R, Wang Z, Zhou C, Zhang R, Xie H, Li H. XCO2 Data Full-Coverage Mapping in China Based on Random Forest Models. Remote Sensing. 2025; 17(1):48. https://doi.org/10.3390/rs17010048
Chicago/Turabian StyleChen, Ruizhi, Zhongting Wang, Chunyan Zhou, Ruijie Zhang, Huizhen Xie, and Huayou Li. 2025. "XCO2 Data Full-Coverage Mapping in China Based on Random Forest Models" Remote Sensing 17, no. 1: 48. https://doi.org/10.3390/rs17010048
APA StyleChen, R., Wang, Z., Zhou, C., Zhang, R., Xie, H., & Li, H. (2025). XCO2 Data Full-Coverage Mapping in China Based on Random Forest Models. Remote Sensing, 17(1), 48. https://doi.org/10.3390/rs17010048