Multi-Criteria Assessment of Urban Thermal Hotspots: A GIS-Based Remote Sensing Approach in a Mediterranean Climate City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Remote Sensing Predictive Model
2.1.1. Area of Study and Time Frame Selection
2.1.2. Land Use–Land Cover
2.1.3. City’s Land Surface Temperature
2.1.4. Residential Area Delimitation and LCZ Classification
2.1.5. Hotspots’ Detection and Multi-Criteria Assessment
- Building environment and pavements
- -
- Building surface fraction (BSF): a ratio that expresses the percentage of the total AOI surface that is occupied by the floor area of buildings.
- -
- Floor area ratio (FAR): buildings’ gross floor area to the size of the lot upon which they are built.
- -
- Mean building height (MBH): the weighted average height of all buildings in the AOI.
- -
- Pavement permeability fraction: ratio of pervious pavement to the total AOI paved area.
- Land surface temperature
- Green structures
- -
- Tree canopy fraction: ratio of tree-covered area to the total AOI area. Data are obtained from official local administration sources. However, it can also be supported by LIDAR maps.
- -
- NDVI: studies the quantity and health of the vegetation. Although it can be obtained directly from satellite images (Landsat 8–9 or Sentinel 2), in this case, Crop Monitoring [66], was used.
- SVF
2.2. Field of Application
2.3. Case Study for Methodology Application
3. Results and Discussion
3.1. Area of Study and Time Frame Selection for the Case Study
- Clear day without relevant episodes of pollution or atmospheric dust;
- Mean air temperature: 29 August: 30.3 °C _ Warm season: 30.0 °C;
- Mean global radiation: 29 August: 270 W/m2 _ Warm season: 295 W/m2;
- Wind speed: 29 August: 2.07 m/s _ Warm season: 2.78 m/s.
3.2. Land Use–Land Cover Results
3.3. City’s Land Surface Temperature Results
3.4. Residential Area Delimitation and LCZ Classification Results
- LCZ 2: Compact midrise;
- LCZ 3: Compact low-rise;
- LCZ 5: Open midrise;
- LCZ 6: Open low-rise.
3.5. Hotspots’ Detection and Multi-Criteria Assessment Results
- Z-01: Temperate area. Historic city centre zone, LCZ-3;
- Z-02: Hotspots. Northern neighbourhood zone, LCZ-5;
- Z-03: Temperate area. Modern city centre zone, LCZ-2;
- Z-04: Hotspot. Eastern neighbourhood zone, LCZ-5.
Zone | LCZ | Build. Env. & Pavemt. | Land Surf. Temperature | Green Structures | Sky View Factor | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BSF (%) | FAR | MBH (m) | Perv. Surf. (%) | Mean (°C) | Max. (°C) | Min. (°C) | Tree Cnp. (%) | NDVI Mean | NDVI Max. | Mean | Max. | ||
Z-01 | LCZ-3 | 70.3% | 2.3 | 9.8 | 0.1% | 43.4 | 44.5 | 42.3 | 1.3% | 0.09 | 0.88 | 0.34 | 0.82 |
Z-02 | LCZ-5 | 32.5% | 1.2 | 11.2 | 14.4% | 46.4 | 49.7 | 44.7 | 9.3% | 0.14 | 0.46 | 0.43 | 0.84 |
Z-03 | LCZ-2 | 42.0% | 2.0 | 14.7 | 8.5% | 43.0 | 44.5 | 41.6 | 5.3% | 0.22 | 0.81 | 0.38 | 0.81 |
Z-04 | LCZ-5 | 25.2% | 1.0 | 12.0 | 4.6% | 45.6 | 48.6 | 44.2 | 13.3% | 0.17 | 0.72 | 0.29 | 0.82 |
3.5.1. Building Environment and Pavements
- Building surface fraction (BSF): The large differences in the percentage of areas occupied by buildings can easily be seen on the maps, as reflected in the results (Table 3). The BSF percentage of Z-01, 70.3%, should be noted, as it corresponds to an extensive and dense historic city centre, while the typical range given in the literature for this LCZ is 40–70% [27]. This is followed by Z-03, with 42.0%, a low value, despite the LCZ source classification as dense fabric. The percentages for the other two zones—Z-02 and Z-04, hotspots, and open urban fabric areas, stand at 32.5% and 25.2%, respectively, while the given range for these types of fabric is 20–40%.
- Floor area ratio (FAR): Building height appears shaded in greyscale in the first column of Figure 9, while Table 3 shows the resulting ratio between the total built area and the total extension of the zone. Z-01 also has the highest FAR value as it is the most densely built zone, although it is lower in height than other zones. In contrast, Z-04 is the least dense zone and has the lowest floor area ratio.
- Pavement permeability fraction: This is shown in the form of green paths (first column in Figure 9, while Table 3 shows the calculated data). There is a large difference between the zones, with a minimum value of 0.1% in Z-01, corresponding only to areas with trees; to the maximum value of 14.4% in Z-02, where there are several open squares full of pervious terrains.
3.5.2. Land Surface Temperature
3.5.3. Green Structures
- Tree canopy fraction: An abstract representation of the tree canopy is shown in the first column in Figure 9 in the form of green circles; however, its presence and intensity are better represented in the third column, with the NDVI graph. Green canopy calculated data are in Table 3. The lowest values are obtained by Z-01, the densest area, with 1.29% of tree cover. In contrast, the highest values are those of Z-04, the least dense area, with 13.3% of green cover.
- NDVI: Heatmaps are shown in the third column in Figure 9, where major differences can be observed, as is the case in the calculated data of Table 3. Again, the most extreme situation corresponds to Z-01, where the mean NDVI is 0.09, an extremely denaturalized value. However, this zone displays the maximum NDVI value, attributed to the presence of a large healthy tree in the middle of the central square, even though there is hardly any vegetation in the rest of the area. Moreover, it is also worth noting the high NDVI value of Z-03 which, despite having a compact fabric, has a mean NDVI slightly higher than that of other open zones, while its maximum is even higher (0.81). This is due to the presence of a small urban garden in the middle of the zone. The graphics in Figure 9 show the clear dependency between the index and the vegetation plan in the first column.
3.5.4. SVF
3.6. Study Limitations and Further Research
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature and Abbreviations
AOI | Area of Interest | SDGs | Sustainable Development Goals |
AT | Air Temperature | SR | Spatial Resolution |
ESA | European Space Agency | SUHI | Surface Urban Heat Island |
GIS | Geographical Information System | SVF | Sky View Factor |
LCZ | Local Climate Zone | SVQ | Seville |
LST | Land Surface Temperature | TIRS | Thermal Infrared Sensor |
LULC | Land Use–Land Cover | UHI | Urban Heat Island |
NDVI | Normalized Difference Vegetation Index | UCI | Urban Cooling Island |
RH | Relative Humidity | UN | United Nations |
Appendix A
Appendix A.1. Seville’s Climate
Appendix A.2. Studied Day Recorded Climate
References
- IPCC. Fifth Assessment Report. In Climate Change 2014; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- Ritchie, H.; Rodés-Guirao, L.; Mathieu, E.; Gerber, M.; Ortiz-Ospina, E.; Hasell, J.; Roser, M. Population Growth. 2023. Available online: https://ourworldindata.org/population-growth#article-citation (accessed on 18 December 2023).
- The 17 Goals|Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 18 December 2023).
- Santamouris, M.; Paolini, R.; Haddad, S.; Synnefa, A.; Garshasbi, S.; Hatvani-Kovacs, G.; Gobakis, K.; Yenneti, K.; Vasilakopoulou, K.; Feng, J. Heat mitigation technologies can improve sustainability in cities. An holistic experimental and numerical impact assessment of urban overheating and related heat mitigation strategies on energy consumption, indoor comfort, vulnerability and heat-related mortality and morbidity in cities. Energy Build. 2020, 217, 110002. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; Petitti, D.; Vollaro, E.d.L.; Coppi, M.; Vollaro, A.d.L. Relating microclimate, human thermal comfort and health during heat waves: An analysis of heat island mitigation strategies through a case study in an urban outdoor environment. Sustain. Cities Soc. 2017, 30, 79–96. [Google Scholar] [CrossRef]
- Kandelan, S.N.; Yeganeh, M.; Peyman, S.; Panchabikesan, K.; Eicker, U. Environmental study on greenery planning scenarios to improve the air quality in urban canyons. Sustain. Cities Soc. 2022, 83, 103993. [Google Scholar] [CrossRef]
- Goldberg, V.; Kurbjuhn, C.; Bernhofer, C. How relevant is urban planning for the thermal comfort of pedestrians? Numerical case studies in two districts of the City of Dresden. Meteorol. Z. 2013, 22, 739–751. [Google Scholar] [CrossRef]
- Kim, S.W.; Brown, R.D. Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review. Sci. Total Environ. 2021, 779, 146389. [Google Scholar] [CrossRef]
- Stewart, I.D.; Krayenhoff, E.S.; Voogt, J.A.; Lachapelle, J.A.; Allen, M.A.; Broadbent, A.M. Time Evolution of the Surface Urban Heat Island. Earths Future 2021, 9, e2021EF002178. [Google Scholar] [CrossRef]
- García, D.H.; Díaz, J.A. Modeling of the Urban Heat Island on local climatic zones of a city using Sentinel 3 images: Urban determining factors. Urban Clim. 2021, 37, 100840. [Google Scholar] [CrossRef]
- Lizana, J.; Núñez-Peiró, M.; Khosla, R.; Mcculloch, M. Citizen Data for Global Mapping of Atmospheric Urban Heat Islands 2023. Available online: https://doi.org/10.21203/rs.3.rs-2924752/v1 (accessed on 22 December 2023).
- Núñez Peiró, M.; Sánchez-Guevara Sánchez, C.; Neila González, F.J. Update of the Urban Heat Island of Madrid and Its Influence on the Building’s Energy Simulation. In Sustainable Development and Renovation in Architecture, Urbanism and Engineering; Springer International Publishing: Cham, Switzerland, 2017; pp. 339–350. [Google Scholar] [CrossRef]
- Rodríguez, L.R.; Ramos, J.S.; de la Flor, F.J.S.; Domínguez, S. Analyzing the urban heat Island: Comprehensive methodology for data gathering and optimal design of mobile transects. Sustain. Cities Soc. 2020, 55, 102027. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates; Methuen: Methuen, MA, USA, 1978. [Google Scholar]
- Oke, T.R. The distinction between canopy and boundary-layer urban heat islands. Atmosphere 1976, 14, 268–277. [Google Scholar] [CrossRef]
- Martin, M.; Chong, A.; Biljecki, F.; Miller, C. Infrared thermography in the built environment: A multi-scale review. Renew. Sustain. Energy Rev. 2022, 165, 112540. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Env. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar] [CrossRef]
- Scolio, M.; Kremer, P.; Zhang, Y.; Shakya, K.M. Spatial-temporal modeling of the relationship between surface temperature and air temperature in metropolitan urban systems. Urban Clim. 2024, 55, 101921. [Google Scholar] [CrossRef]
- Mihăilă, D.; Bistricean, P.I.; Sfîcă, L.; Horodnic, V.D.; Prisăcariu, A.; Amihăesei, V.A. Summer Discrepancies Between 2 m Air Temperature and Landsat LST in Suceava City, Northeastern Romania. Remote Sens. 2024, 16, 2967. [Google Scholar] [CrossRef]
- Schaefer, M.; Salari, H.E.; Köckler, H.; Thinh, N.X. Assessing local heat stress and air quality with the use of remote sensing and pedestrian perception in urban microclimate simulations. Sci. Total Environ. 2021, 794, 148709. [Google Scholar] [CrossRef]
- Mushore, T.D.; Odindi, J.; Slotow, R.; Mutanga, O. Remote Sensing-Based Outdoor Thermal Comfort Assessment in Local Climate Zones in the Rural–Urban Continuum of eThekwini Municipality, South Africa. Remote Sens. 2023, 15, 5461. [Google Scholar] [CrossRef] [PubMed]
- U.S. Geological Survey. Landsat 9. Available online: https://www.usgs.gov/landsat-missions/landsat-9 (accessed on 30 November 2023).
- Wang, M.; Li, M.; Zhang, Z.; Hu, T.; He, G.; Zhang, Z.; Wang, G.; Li, H.; Tan, J.; Liu, X. Land Surface Temperature Retrieval from Landsat 9 TIRS-2 Data Using Radiance-Based Split-Window Algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2023, 16, 1100–1112. [Google Scholar] [CrossRef]
- Oke, T.R. Canyon geometry and the nocturnal urban heat island: Comparison of scale model and field observations. J. Climatol. 1981, 1, 237–254. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Fernandes, R.; Nascimento, V.; Freitas, M.; Ometto, J. Local Climate Zones to Identify Surface Urban Heat Islands: A Systematic Review. Remote Sens. 2023, 15, 884. [Google Scholar] [CrossRef]
- Badaro-Saliba, N.; Adjizian-Gerard, J.; Zaarour, R.; Najjar, G. LCZ scheme for assessing Urban Heat Island intensity in a complex urban area (Beirut, Lebanon). Urban Clim. 2021, 37, 100846. [Google Scholar] [CrossRef]
- Žgela, M.; Herceg-Bulić, I.; Lozuk, J.; Jureša, P. Linking land surface temperature and local climate zones in nine Croatian cities. Urban Clim. 2024, 54, 101842. [Google Scholar] [CrossRef]
- Li, N.; Wang, B.; Yao, Y.; Chen, L.; Zhang, Z. Thermal Contribution of the Local Climate Zone and Its Spatial Distribution Effect on Land Surface Temperature in Different Macroclimate Cities. Remote Sens. 2022, 14, 4029. [Google Scholar] [CrossRef]
- Hadavi, M.; Pasdarshahri, H. Investigating effects of urban configuration and density on urban climate and building systems energy consumption. J. Build. Eng. 2021, 44, 102710. [Google Scholar] [CrossRef]
- Maiullari, D.; Gherri, B.; Finizza, C.; Maretto, M.; Naboni, E. Climate change and indoor temperature variation in Venetian buildings: The role of density and urban form. J. Phys. Conf. Ser. 2021, 2042, 012060. [Google Scholar] [CrossRef]
- Rao, P.; Tassinari, P.; Torreggiani, D. Exploring the land-use urban heat island nexus under climate change conditions using machine learning approach: A spatio-temporal analysis of remotely sensed data. Heliyon 2023, 9, e18423. [Google Scholar] [CrossRef] [PubMed]
- He, B.-J.; Zhao, Z.-Q.; Shen, L.-D.; Wang, H.-B.; Li, L.-G. An approach to examining performances of cool/hot sources in mitigating/enhancing land surface temperature under different temperature backgrounds based on landsat 8 image. Sustain. Cities Soc. 2019, 44, 416–427. [Google Scholar] [CrossRef]
- Zhao, Z.-Q.; He, B.-J.; Li, L.-G.; Wang, H.-B.; Darko, A. Profile and concentric zonal analysis of relationships between land use/land cover and land surface temperature: Case study of Shenyang, China. Energy Build. 2017, 155, 282–295. [Google Scholar] [CrossRef]
- Copernicus Land Monitoring Service. CORINE Land Cover. Available online: https://land.copernicus.eu/en/products/corine-land-cover (accessed on 29 July 2024).
- Maiullari, D.; Esch, M.P.-V.; Van Timmeren, A. A Quantitative Morphological Method for Mapping Local Climate Types. Urban Plan. 2021, 6, 240–257. [Google Scholar] [CrossRef]
- Salvati, A.; Monti, P.; Roura, H.C.; Cecere, C. Climatic performance of urban textures: Analysis tools for a Mediterranean urban context. Energy Build. 2019, 185, 162–179. [Google Scholar] [CrossRef]
- Dirksen, M.; Ronda, R.J.; Theeuwes, N.E.; Pagani, G.A. Sky view factor calculations and its application in urban heat island studies. Urban Clim. 2019, 30, 100498. [Google Scholar] [CrossRef]
- Diz-Mellado, E.; López-Cabeza, V.P.; Roa-Fernández, J.; Rivera-Gómez, C.; Galán-Marín, C. Energy-saving and thermal comfort potential of vernacular urban block porosity shading. Sustain. Cities Soc. 2023, 89, 104325. [Google Scholar] [CrossRef]
- Chen, Q.; Cheng, Q.; Chen, Y.; Li, K.; Wang, D.; Cao, S. The Influence of Sky View Factor on Daytime and Nighttime Urban Land Surface Temperature in Different Spatial-Temporal Scales: A Case Study of Beijing. Remote Sens. 2021, 13, 4117. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS; NASA. Goddard Space Flight Center 3d ERTS-1 Symp.: Washington, DC, USA, 1974; Volume 1, Section A. [Google Scholar]
- Sola-Caraballo, J.; Lopez-Cabeza, V.P.; Roa-Fernández, J.; Rivera-Gomez, C.; Galan-Marin, C. Assessing and upgrading urban thermal resilience of a Spanish MoMo neighbourhood over the span of 1960–2080. Build. Environ. 2024, 256, 111485. [Google Scholar] [CrossRef]
- Marković, M.; Cheema, J.; Teofilović, A.; Čepić, S.; Popović, Z.; Tomićević-Dubljević, J.; Pause, M. Monitoring of Spatiotemporal Change of Green Spaces in Relation to the Land Surface Temperature: A Case Study of Belgrade, Serbia. Remote Sens. 2021, 13, 3846. [Google Scholar] [CrossRef]
- Serrano-Jiménez, A.; Díaz-López, C.; Ramírez-Juidias, E.; Barrios-Padura, Á. Multi-criteria assessment model on environmental ergonomics for decision-making in schoolyards based on remote-sensing and GIS resources. Sustain. Cities Soc. 2023, 92, 104481. [Google Scholar] [CrossRef]
- OSGeo. QGIS Project. Available online: https://qgis.org/en/site/index.html (accessed on 30 November 2023).
- Fabbri, K.; Zuppiroli, M.; Ambrogio, K. Heritage buildings and energy performance: Mapping with GIS tools. Energy Build. 2012, 48, 137–145. [Google Scholar] [CrossRef]
- Ahmed, S. Assessment of urban heat islands and impact of climate change on socioeconomic over Suez Governorate using remote sensing and GIS techniques. Egypt. J. Remote Sens. Space Sci. 2018, 21, 15–25. [Google Scholar] [CrossRef]
- Serrano-Jiménez, A.; Hiruelo-Pérez, J.; Ramírez-Juidias, E.; Barrios-Padura, Á. Identifying design shortcomings and heat-island effects in schools located in warm climates: An outdoor environmental assessment procedure based on remote sensing tools. J. Build. Eng. 2021, 43, 103209. [Google Scholar] [CrossRef]
- Sangiorgio, V.; Capolupo, A.; Tarantino, E.; Fiorito, F.; Santamouris, M. Evaluation of Absolute Maximum Urban Heat Island Intensity Based on a Simplified Remote Sensing Approach. Environ. Eng. Sci. 2022, 39, 296–307. [Google Scholar] [CrossRef]
- López-Moreno, H.; Núñez-Peiró, M.; Sánchez-Guevara, C.; Neila, J. On the identification of Homogeneous Urban Zones for the residential buildings’ energy evaluation. Build. Environ. 2022, 207, 108451. [Google Scholar] [CrossRef]
- Sola-Caraballo, J.; Serrano-Jiménez, A.; Rivera-Gomez, C.; Galan-Marin, C. GIS-Based Remote Sensing Approach for Urban Studies: Locating and Mapping Vulnerable Areas in Hot Climates. In Proceedings of the 37th PLEA Conference, Wrocław, Poland, 25–28 June 2024; Sustainable Architecture and Urban Design: Wroclaw, Poland, 2024; pp. 106–111. [Google Scholar]
- Ullah, W.; Ahmad, K.; Ullah, S.; Tahir, A.A.; Javed, M.F.; Nazir, A.; Abbasi, A.M.; Aziz, M.; Mohamed, A. Analysis of the relationship among land surface temperature (LST), land use land cover (LULC), and normalized difference vegetation index (NDVI) with topographic elements in the lower Himalayan region. Heliyon 2023, 9, e13322. [Google Scholar] [CrossRef] [PubMed]
- Coutts, A.M.; Harris, R.J.; Phan, T.; Livesley, S.J.; Williams, N.S.G.; Tapper, N.J. Thermal infrared remote sensing of urban heat: Hotspots, vegetation, and an assessment of techniques for use in urban planning. Remote Sens. Environ. 2016, 186, 637–651. [Google Scholar] [CrossRef]
- Guerri, G.; Crisci, A.; Messeri, A.; Congedo, L.; Munafò, M.; Morabito, M. Thermal Summer Diurnal Hot-Spot Analysis: The Role of Local Urban Features Layers. Remote Sens. 2021, 13, 538. [Google Scholar] [CrossRef]
- Brousse, O.; Martilli, A.; Foley, M.; Mills, G.; Bechtel, B. Wudapt, an efficient land use producing data tool for mesoscale models? Integration of urban LCZ in WRF over Madrid. Urban Clim. 2016, 17, 116–134. [Google Scholar] [CrossRef]
- Jumari, N.A.S.K.; Ahmed, A.N.; Huang, Y.F.; Ng, J.L.; Koo, C.H.; Chong, K.L.; Sherif, M.; Elshafie, A. Analysis of urban heat islands with landsat satellite images and GIS in Kuala Lumpur Metropolitan City. Heliyon 2023, 9, e18424. [Google Scholar] [CrossRef]
- Hidalgo-García, D.; Arco-Díaz, J. Modeling the Surface Urban Heat Island (SUHI) to study of its relationship with variations in the thermal field and with the indices of land use in the metropolitan area of Granada (Spain). Sustain. Cities Soc. 2022, 87, 104166. [Google Scholar] [CrossRef]
- Sharmin, T.; Steemers, K.; Matzarakis, A. Microclimatic modelling in assessing the impact of urban geometry on urban thermal environment. Sustain. Cities Soc. 2017, 34, 293–308. [Google Scholar] [CrossRef]
- OneBuilding. Available online: https://climate.onebuilding.org (accessed on 30 March 2024).
- de Meteorología, A.E. AEMet. Observación. Available online: https://www.aemet.es/es/eltiempo/observacion/ultimosdatos (accessed on 9 January 2024).
- U.S. Geological Survey. Landsat Acquisition|Landsat Missions. Available online: https://landsat.usgs.gov/landsat_acq (accessed on 30 November 2023).
- Sede Electrónica del Catastro—Difusión de Datos Catastrales. Available online: https://www.sedecatastro.gob.es/Accesos/SECAccDescargaDatos.aspx (accessed on 30 November 2023).
- EOS Data Analytics. Crop Monitoring: Farm Software For Agricultural Sector. Available online: https://eos.com/products/crop-monitoring/ (accessed on 15 December 2023).
- Köppen, W. Das Geographische System der Klimate. (Berlin, 1936). Available online: https://commons.wikimedia.org/wiki/File:Das_geographische_System_der_Klimate_(1936).pdf (accessed on 28 November 2023).
- Lee, T.W.; Lee, J.Y.; Wang, Z.H. Scaling of the urban heat island intensity using time-dependent energy balance. Urban Clim. 2012, 2, 16–24. [Google Scholar] [CrossRef]
- U.S. Geological Survey. EarthExplorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 30 November 2023).
- U.S. Geological Survey. Landsat 8-9 Collection 2 Level 2 Science Product Guide. Available online: https://www.usgs.gov/media/files/landsat-8-9-collection-2-level-2-science-product-guide (accessed on 30 November 2023).
- OpenStreetMap. Available online: https://www.openstreetmap.org/ (accessed on 15 December 2023).
- Takeda, H.; Farsiu, S.; Milanfar, P. Kernel regression for image processing and reconstruction. IEEE Trans. Image Process. 2007, 16, 349–366. [Google Scholar] [CrossRef] [PubMed]
- Barnsley, M.J.; Barr, S.L. Inferring urban land use from satellite sensor images using Kernel-based spatial reclassification. Photogramm. Eng. Remote Sens. 1996, 62, 949–958. [Google Scholar]
- Doulos, L.; Santamouris, M.; Livada, I. Passive cooling of outdoor urban spaces. The role of materials. Sol. Energy 2004, 77, 231–249. [Google Scholar] [CrossRef]
- Demuzere, M.; Kittner, J.; Bechtel, B. LCZ Generator: A Web Application to Create Local Climate Zone Maps. Front. Environ. Sci. 2021, 9, 637455. [Google Scholar] [CrossRef]
- Huang, F.; Jiang, S.; Zhan, W.; Bechtel, B.; Liu, Z.; Demuzere, M. Mapping local climate zones for cities: A large review. Remote Sens. Environ. 2023, 292, 113573. [Google Scholar] [CrossRef]
- Submitted LCZ Maps n.d. Available online: https://lcz-generator.rub.de/submissions (accessed on 22 December 2024).
- Stewart, I.; Oke, T. Classifying urban climate field sites by “local climate zones”: The case of Nagano, Japan. In Proceedings of the 7th International Conference on Urban Climate, Yokohama, Japan, 29 June–3 July 2009. [Google Scholar]
- Dogan, T.; Samaranayake, S.; Saraf, N. Urbano: A New Tool to Promote Mobility-Aware Urban Design, Active Transportation Modeling and Access Analysis for Amenities and Public Transport. In Proceedings of the Symposium on Simulation for Architecture and Urban Design, Delft, The Netherlands, 4–7 June 2018; pp. 1–8. Available online: https://www.simaud.org/ (accessed on 22 November 2023).
- Sadeghipour Roudsari, M.; Mackey, C. Ladybug Tools 2013. Available online: https://www.ladybug.tools/ (accessed on 22 November 2023).
- OECD. Urban Population by City Size (Indicator). OECD. 2023. Available online: https://www.oecd-ilibrary.org/urban-rural-and-regional-development/urban-population-by-city-size/indicator/english_b4332f92-en (accessed on 20 December 2023).
- Andrade, C.; Contente, J. Köppen’s climate classification projections for the Iberian Peninsula. Clim. Res. 2020, 81, 71–89. [Google Scholar] [CrossRef]
- ESA. ESA—Top 10 Earth Observation Stories of 2023. 2023. Available online: https://www.esa.int/Applications/Observing_the_Earth/Top_10_Earth_observation_stories_of_2023 (accessed on 22 November 2024).
- Google LLC. Google Earth n.d. Available online: https://earth.google.com/web/ (accessed on 18 November 2023).
- Santamouris, M.; Gaitani, N.; Spanou, A.; Saliari, M.; Giannopoulou, K.; Vasilakopoulou, K.; Kardomateas, T. Using cool paving materials to improve microclimate of urban areas—Design realization and results of the flisvos project. Build. Environ. 2012, 53, 128–136. [Google Scholar] [CrossRef]
- Namazi, Y.; Charlesworth, S.; Montazami, A.; Taleghani, M. The impact of local microclimates and Urban Greening Factor on schools’ thermal conditions during summer: A study in Coventry, UK. Build Environ. 2024, 262, 111793. [Google Scholar] [CrossRef]
- Parison, S.; Chaumont, M.; Kounkou-Arnaud, R.; Long, F.; Bernik, A.; Da Silva, M.; Hendel, M. The Effects of Greening a Parking Lot as a Heat Mitigation Strategy on Outdoor Thermal Stress Using Fixed and Mobile Measurements: Case-Study Project “Tertiary Forest”. Sustain. Cities Soc. 2023, 98, 104818. [Google Scholar] [CrossRef]
- Sola-Caraballo, J.; Lopez-Cabeza, V.P.; Roa-Fernandez, J.; Rivera-Gomez, C.; Palomares-Figueres, M.T.; Galan-Marin, C. Assessing the microclimatic adaptation of a Modern Movement 1960s neighbourhood through its urban evolution. In Proceedings of the 18th IBPSA International Conference, Shanghai, China, 4–6 September 2023. [Google Scholar] [CrossRef]
- Brozovsky, J.; Radivojevic, J.; Simonsen, A. Assessing the impact of urban microclimate on building energy demand by coupling CFD and building performance simulation. J. Build. Eng. 2022, 55, 104681. [Google Scholar] [CrossRef]
Data | Description | Date | Source |
---|---|---|---|
Local climate | Open access data of typical climate and official climate records for the studied frame | 2023 29 August 2023 | OneBuilding.org (epw) [62] Local weather station [63] |
Land cover | Open access vectorial Land cover maps to determine the type and use of urban fabric | 2018 (Last actl.) | Copernicus’ CORINE programme [37] |
Urban LST | Open access thermal image. Original SR of 100 × 100 m, provided resampled at 30 × 30 m | 29 August 2023 | USGS’s Landsat 9 [24,64] |
Buildings data | Open access cadastral GIS layers of built environment with age, area and height data | 2022 | Cadastre [65] |
LCZ | Classification according to the original source guidelines | Ago-2023 | Stewart and Oke [27] |
Tree plans | Open access GIS layers with position, species and size of urban trees, or true colour satellite image | Ago-2023 | Local databases, alternatively, NDVI |
NDVI | Processed image from an open-access satellite image band | 29 August 2023 | USGS’s Landsat 9 [24] or EOS’s CropMonitor [66] |
Zone/LCZ | Surf. (ha) | % | LST (°C) | ||
SVQ | 8088.8 | - | Mean | Max. | Min. |
SVQ Resident. Area only | 3097.7 | 38.3 | |||
LCZ 2 | 369.4 | 11.9 | 43.7 | 47.8 | 37.8 |
LCZ 3 | 1043.1 | 33.7 | 44.9 | 50.6 | 37.8 |
LCZ 5 | 1482.4 | 47.9 | 44.6 | 51.0 | 40.2 |
LCZ 6 | 202.8 | 6.5 | 43.6 | 49.0 | 40.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sola-Caraballo, J.; Serrano-Jiménez, A.; Rivera-Gomez, C.; Galan-Marin, C. Multi-Criteria Assessment of Urban Thermal Hotspots: A GIS-Based Remote Sensing Approach in a Mediterranean Climate City. Remote Sens. 2025, 17, 231. https://doi.org/10.3390/rs17020231
Sola-Caraballo J, Serrano-Jiménez A, Rivera-Gomez C, Galan-Marin C. Multi-Criteria Assessment of Urban Thermal Hotspots: A GIS-Based Remote Sensing Approach in a Mediterranean Climate City. Remote Sensing. 2025; 17(2):231. https://doi.org/10.3390/rs17020231
Chicago/Turabian StyleSola-Caraballo, Javier, Antonio Serrano-Jiménez, Carlos Rivera-Gomez, and Carmen Galan-Marin. 2025. "Multi-Criteria Assessment of Urban Thermal Hotspots: A GIS-Based Remote Sensing Approach in a Mediterranean Climate City" Remote Sensing 17, no. 2: 231. https://doi.org/10.3390/rs17020231
APA StyleSola-Caraballo, J., Serrano-Jiménez, A., Rivera-Gomez, C., & Galan-Marin, C. (2025). Multi-Criteria Assessment of Urban Thermal Hotspots: A GIS-Based Remote Sensing Approach in a Mediterranean Climate City. Remote Sensing, 17(2), 231. https://doi.org/10.3390/rs17020231