A Phenologically Simplified Two-Stage Clumping Index Product Derived from the 8-Day Global MODIS-CI Product Suite
Abstract
:1. Introduction
2. Datasets and Preprocess
2.1. MODIS CI Product
2.2. MODIS Land Surface Phenology Product
2.3. MODIS NDVI Product
2.4. Land Cover Products
2.5. Field-Measured CIs
3. Methods
3.1. Study on the Seasonal Variation Characteristics of CI
3.1.1. Typical Pixel Selection Rules
3.1.2. Discrete Fourier Transform
3.1.3. Improved Dynamic Threshold Method
3.2. Development of the MODIS Time-Share Two-Stage CI Product
3.2.1. Statistical Analysis of Phenological Stage Classification
3.2.2. MODIS Time-Share Two-Stage CI Product
4. Results
4.1. Estimation of Vegetation Phenology Parameters from CI and NDVI Time Series
4.2. Development of the Global MODIS Time-Share Two-Stage CI Product
4.2.1. Comparison of CIs for Different Phenological Stages
4.2.2. Comparison of Different Developed Algorithms
4.2.3. Accuracy Evaluation for the MODIS Time-Share Two-Stage CI Product
4.3. Spatial Distribution and Temporal Variation in the Global Time-Share Two-Stage CI
5. Discussion
5.1. Seasonal Variability in the Global CI
5.2. Uncertainty of the MODIS Time-Share Two-Stage CI Product
6. Conclusions
- (1)
- The study shows that the CI exhibits an approximately inverse trend of phenological variation compared with the NDVI. The optimal thresholds for estimating phenological parameters are not only related to phenological stages but also vary with vegetation indices and land cover types. Additionally, the optimal thresholds for the SOS generally range from 40% to 80%, whereas those for the EOS range from 80% to 90%, with errors remaining within acceptable limits.
- (2)
- The accuracy evaluation results of the MODIS time-share two-stage CIs using the field-measured CIs indicate that the time-share two-stage CI is highly accurate (RMSE = 0.06, bias = 0.01), although a slight overestimation is generally observed.
- (3)
- Globally, based on the MODIS time-share two-stage CI product, the CI generally shows distinct seasonal variations, with the CILOS being smaller than the CILFS across all land cover types. Needleleaf forests presented the smallest CI values, and the difference between the CILOS and CILFS was insignificant. Compared with needleleaf forests, broadleaf forests, with slightly higher CI values, present more pronounced seasonal variations. In addition, Osh presented the largest CI values, whereas CSh, GL, PWe, CL, UB, and CVM presented relatively high CI values. Broadleaf forests, MF, Wsa, and Sav had relatively low CI values.
- (4)
- Compared with the LFS stage, the quality of the MODIS time-share two-stage CI product is better in the LOS stage, where the QA values are basically 0 and 1, accounting for more than 90% of the total, which is significantly greater than that in the LFS stage (~60%).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
ID | Sites | Latitude | Longitude | IGBP | Year | Period | Field CI | MODIS CI |
1 | STEI, USA | −89.599 | 45.506 | 4 | 2015 | LOS | 0.73 ± 0.021 | 0.70 |
2 | STEI, USA | −89.599 | 45.506 | 4 | 2016 | LOS | 0.74 ± 0.068 | 0.71 |
3 | STEI, USA | −89.599 | 45.506 | 4 | 2017 | LOS | 0.76 ± 0.079 | 0.65 |
4 | STEI, USA | −89.599 | 45.506 | 4 | 2018 | LOS | 0.75 ± 0.059 | 0.68 |
5 | STEI, USA | −89.599 | 45.506 | 4 | 2019 | LOS | 0.75 ± 0.035 | 0.70 |
6 | STEI, USA | −89.599 | 45.506 | 4 | 2020 | LOS | 0.76 ± 0.008 | 0.70 |
7 | UNDE, USA | −89.554 | 46.240 | 5 | 2016 | LOS | 0.72 ± 0.043 | 0.68 |
8 | UNDE, USA | −89.554 | 46.240 | 5 | 2017 | LOS | 0.70 ± 0.040 | 0.70 |
9 | UNDE, USA | −89.554 | 46.240 | 5 | 2018 | LOS | 0.71 ± 0.043 | 0.70 |
10 | UNDE, USA | −89.554 | 46.240 | 5 | 2019 | LOS | 0.70 ± 0.050 | 0.73 |
11 | UNDE, USA | −89.554 | 46.240 | 5 | 2020 | LOS | 0.70 ± 0.036 | 0.76 |
12 | DELA, USA | −87.816 | 32.544 | 4 | 2016 | LOS | 0.71 ± 0.028 | 0.71 |
13 | DELA, USA | −87.816 | 32.544 | 4 | 2017 | LOS | 0.71 ± 0.010 | 0.80 |
14 | DELA, USA | −87.816 | 32.544 | 4 | 2018 | LOS | 0.71 ± 0.040 | 0.84 |
15 | DELA, USA | −87.816 | 32.544 | 4 | 2019 | LOS | 0.71 ± 0.022 | 0.83 |
16 | DELA, USA | −87.816 | 32.544 | 4 | 2020 | LOS | 0.73 ± 0.012 | 0.78 |
17 | DELA, USA | −87.812 | 32.540 | 4 | 2016 | LOS | 0.72 ± 0.022 | 0.75 |
18 | DELA, USA | −87.812 | 32.540 | 4 | 2017 | LOS | 0.75 ± 0.005 | 0.78 |
19 | DELA, USA | −87.812 | 32.540 | 4 | 2018 | LOS | 0.74 ± 0.031 | 0.81 |
20 | DELA, USA | −87.812 | 32.540 | 4 | 2019 | LOS | 0.73 ± 0.025 | 0.76 |
21 | TALL, USA | −87.404 | 32.956 | 5 | 2014 | LOS | 0.74 ± 0.011 | 0.69 |
22 | TALL, USA | −87.404 | 32.956 | 5 | 2015 | LOS | 0.75 ± 0.015 | 0.63 |
23 | TALL, USA | −87.404 | 32.956 | 5 | 2015 | LFS | 0.74 ± 0.012 | 0.74 |
24 | TALL, USA | −87.404 | 32.956 | 5 | 2016 | LOS | 0.73 ± 0.026 | 0.63 |
25 | TALL, USA | −87.404 | 32.956 | 5 | 2016 | LFS | 0.77 ± 0.018 | 0.79 |
26 | TALL, USA | −87.404 | 32.956 | 5 | 2017 | LOS | 0.73 ± 0.020 | 0.70 |
27 | TALL, USA | −87.404 | 32.956 | 5 | 2017 | LFS | 0.74 ± 0.010 | 0.81 |
28 | TALL, USA | −87.404 | 32.956 | 5 | 2018 | LOS | 0.72 ± 0.022 | 0.74 |
29 | TALL, USA | −87.404 | 32.956 | 5 | 2018 | LFS | 0.75 ± 0.011 | 0.74 |
30 | TALL, USA | −87.404 | 32.956 | 5 | 2019 | LOS | 0.72 ± 0.018 | 0.77 |
31 | TALL, USA | −87.404 | 32.956 | 5 | 2019 | LFS | 0.77 ± 0.021 | 0.83 |
32 | TALL, USA | −87.404 | 32.956 | 5 | 2020 | LOS | 0.75 ± 0.016 | 0.75 |
33 | JERC, USA | −84.476 | 31.202 | 8 | 2015 | LOS | 0.67 ± 0.042 | 0.69 |
34 | JERC, USA | −84.476 | 31.202 | 8 | 2016 | LOS | 0.67 ± 0.058 | 0.69 |
35 | JERC, USA | −84.476 | 31.202 | 8 | 2017 | LOS | 0.70 ± 0.032 | 0.69 |
36 | JERC, USA | −84.476 | 31.202 | 8 | 2018 | LOS | 0.69 ± 0.041 | 0.79 |
37 | JERC, USA | −84.476 | 31.202 | 8 | 2019 | LOS | 0.69 ± 0.031 | 0.72 |
38 | ORNL, USA | −84.294 | 35.973 | 4 | 2015 | LOS | 0.75 ± 0.029 | 0.66 |
39 | ORNL, USA | −84.294 | 35.973 | 4 | 2016 | LOS | 0.75 ± 0.029 | 0.73 |
40 | ORNL, USA | −84.294 | 35.973 | 4 | 2017 | LOS | 0.74 ± 0.028 | 0.71 |
41 | ORNL, USA | −84.294 | 35.973 | 4 | 2018 | LOS | 0.73 ± 0.025 | 0.73 |
42 | ORNL, USA | −84.294 | 35.973 | 4 | 2019 | LOS | 0.74 ± 0.014 | 0.73 |
43 | ORNL, USA | −84.294 | 35.973 | 4 | 2020 | LOS | 0.74 ± 0.005 | 0.73 |
44 | ORNL, USA | −84.290 | 35.969 | 9 | 2015 | LOS | 0.79 ± 0.017 | 0.83 |
45 | ORNL, USA | −84.290 | 35.969 | 9 | 2016 | LOS | 0.79 ± 0.018 | 0.74 |
46 | ORNL, USA | −84.290 | 35.969 | 9 | 2017 | LOS | 0.79 ± 0.015 | 0.79 |
47 | ORNL, USA | −84.290 | 35.969 | 9 | 2018 | LOS | 0.79 ± 0.019 | 0.72 |
48 | ORNL, USA | −84.290 | 35.969 | 9 | 2019 | LOS | 0.81 ± 0.017 | 0.76 |
49 | ORNL, USA | −84.290 | 35.969 | 9 | 2020 | LOS | 0.78 ± 0.021 | 0.80 |
50 | SCBI, USA | −78.151 | 38.902 | 4 | 2014 | LOS | 0.63 ± 0.024 | 0.62 |
51 | SCBI, USA | −78.151 | 38.902 | 4 | 2015 | LOS | 0.68 ± 0.054 | 0.69 |
52 | SCBI, USA | −78.151 | 38.902 | 4 | 2016 | LOS | 0.68 ± 0.071 | 0.64 |
53 | SCBI, USA | −78.151 | 38.902 | 4 | 2017 | LOS | 0.68 ± 0.059 | 0.66 |
54 | SCBI, USA | −78.151 | 38.902 | 4 | 2018 | LOS | 0.63 ± 0.013 | 0.73 |
55 | SCBI, USA | −78.151 | 38.902 | 4 | 2019 | LOS | 0.67 ± 0.060 | 0.67 |
56 | SCBI, USA | −78.151 | 38.902 | 4 | 2020 | LOS | 0.67 ± 0.029 | 0.67 |
57 | BLAN, USA | −78.084 | 39.064 | 9 | 2015 | LOS | 0.70 ± 0.033 | 0.79 |
58 | BLAN, USA | −78.084 | 39.064 | 9 | 2015 | LFS | 0.72 ± 0.026 | 0.84 |
59 | BLAN, USA | −78.084 | 39.064 | 9 | 2016 | LOS | 0.69 ± 0.079 | 0.76 |
60 | BLAN, USA | −78.084 | 39.064 | 9 | 2016 | LFS | 0.74 ± 0.015 | 0.80 |
61 | BLAN, USA | −78.084 | 39.064 | 9 | 2017 | LOS | 0.75 ± 0.057 | 0.79 |
62 | BLAN, USA | −78.084 | 39.064 | 9 | 2017 | LFS | 0.83 ± 0.012 | 0.89 |
63 | BLAN, USA | −78.084 | 39.064 | 9 | 2018 | LOS | 0.73 ± 0.059 | 0.85 |
64 | BLAN, USA | −78.084 | 39.064 | 9 | 2019 | LOS | 0.74 ± 0.065 | 0.80 |
65 | BLAN, USA | −78.084 | 39.064 | 9 | 2019 | LFS | 0.73 ± 0.016 | 0.87 |
66 | BLAN, USA | −78.084 | 39.064 | 9 | 2020 | LOS | 0.70 ± 0.065 | 0.81 |
67 | SERC, USA | −76.563 | 38.894 | 4 | 2015 | LOS | 0.73 ± 0.056 | 0.68 |
68 | SERC, USA | −76.563 | 38.894 | 4 | 2016 | LOS | 0.73 ± 0.047 | 0.63 |
69 | SERC, USA | −76.563 | 38.894 | 4 | 2017 | LOS | 0.74 ± 0.052 | 0.69 |
70 | SERC, USA | −76.563 | 38.894 | 4 | 2018 | LOS | 0.71 ± 0.030 | 0.72 |
71 | SERC, USA | −76.563 | 38.894 | 4 | 2019 | LOS | 0.73 ± 0.048 | 0.77 |
72 | HARV, USA | −72.189 | 42.540 | 4 | 2014 | LOS | 0.72 ± 0.050 | 0.66 |
73 | HARV, USA | −72.189 | 42.540 | 4 | 2015 | LOS | 0.74 ± 0.028 | 0.73 |
74 | HARV, USA | −72.189 | 42.540 | 4 | 2016 | LOS | 0.74 ± 0.038 | 0.69 |
75 | HARV, USA | −72.189 | 42.540 | 4 | 2017 | LOS | 0.75 ± 0.033 | 0.78 |
76 | HARV, USA | −72.189 | 42.540 | 4 | 2018 | LOS | 0.74 ± 0.032 | 0.77 |
77 | HARV, USA | −72.189 | 42.540 | 4 | 2019 | LOS | 0.73 ± 0.036 | 0.71 |
78 | HARV, USA | −72.189 | 42.540 | 4 | 2020 | LOS | 0.76 ± 0.035 | 0.71 |
79 | BART, USA | −71.297 | 44.069 | 4 | 2014 | LOS | 0.68 ± 0.048 | 0.68 |
80 | BART, USA | −71.297 | 44.069 | 4 | 2015 | LOS | 0.72 ± 0.013 | 0.67 |
81 | BART, USA | −71.297 | 44.069 | 4 | 2016 | LOS | 0.69 ± 0.043 | 0.69 |
82 | BART, USA | −71.297 | 44.069 | 4 | 2017 | LOS | 0.68 ± 0.037 | 0.74 |
83 | BART, USA | −71.297 | 44.069 | 4 | 2018 | LOS | 0.69 ± 0.042 | 0.77 |
84 | BART, USA | −71.297 | 44.069 | 4 | 2019 | LOS | 0.69 ± 0.045 | 0.74 |
85 | BART, USA | −71.297 | 44.069 | 4 | 2020 | LOS | 0.70 ± 0.019 | 0.74 |
86 | GUAN, PRI | −66.874 | 17.973 | 8 | 2015 | LOS | 0.74 ± 0.020 | 0.64 |
87 | GUAN, PRI | −66.874 | 17.973 | 8 | 2017 | LOS | 0.68 ± 0.029 | 0.70 |
88 | GUAN, PRI | −66.874 | 17.973 | 8 | 2017 | LFS | 0.66 ± 0.021 | 0.76 |
89 | GUAN, PRI | −66.874 | 17.973 | 8 | 2018 | LOS | 0.66 ± 0.019 | 0.59 |
90 | GUAN, PRI | −66.874 | 17.973 | 8 | 2018 | LFS | 0.71 ± 0.023 | 0.75 |
91 | GUAN, PRI | −66.874 | 17.973 | 8 | 2019 | LOS | 0.68 ± 0.024 | 0.62 |
92 | GUAN, PRI | −66.874 | 17.973 | 8 | 2020 | LOS | 0.67 ± 0.018 | 0.62 |
93 | HAIN, GER | 10.443 | 51.081 | 4 | 2019 | LOS | 0.75 ± 0.066 | 0.72 |
94 | HAIN, GER | 10.443 | 51.081 | 4 | 2020 | LOS | 0.74 ± 0.053 | 0.76 |
95 | TUMB, AUS | 148.143 | −35.652 | 1 | 2019 | LFS | 0.69 ± 0.059 | 0.58 |
References
- Li, D.; Zang, R. The research advances on the structure and function of forest canopy, as well as their temporal and spatial changes. World For. Res. 2004, 17, 12–16. [Google Scholar]
- Chen, J.M. Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agric. For. Meteorol. 1996, 80, 135–163. [Google Scholar] [CrossRef]
- Chen, J.M.; Black, T.A. Foliage area and architecture of plant canopies from sunfleck size distributions. Agric. For. Meteorol. 1992, 60, 249–266. [Google Scholar] [CrossRef]
- Nilson, T. A theoretical analysis of the frequency of gaps in plant stands. Agric. Meteorol. 1971, 8, 25–38. [Google Scholar] [CrossRef]
- Chen, J.M.; Black, T.A. Defining leaf area index for non-flat leaves. Plant Cell Environ. 1992, 15, 421–429. [Google Scholar] [CrossRef]
- Ma, Q.; Li, J.; Liu, Q.; Liu, Q. Mixed-pixel clumping index calculation and scale analysis. J. Remote Sens. 2012, 16, 895–908. [Google Scholar]
- Chen, J.M.; Liu, J.; Leblanc, S.G.; Lacaze, R.; Roujean, J.L. Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption. Remote Sens. Environ. 2003, 84, 516–525. [Google Scholar] [CrossRef]
- Chen, J.M.; Mo, G.; Pisek, J.; Liu, J.; Deng, F.; Ishizawa, M.; Chan, D. Effects of foliage clumping on the estimation of global terrestrial gross primary productivity. Glob. Biogeochem. Cycles 2012, 26, GB1019. [Google Scholar] [CrossRef]
- Palmroth, S.; Hari, P. Evaluation of the importance of acclimation of needle structure, photosynthesis, and respiration to available photosynthetically active radiation in a Scots pine canopy. Can. J. For. Res. 2001, 31, 1235–1243. [Google Scholar] [CrossRef]
- Chen, J.M.; Liu, J.; Cihlar, J.; Goulden, M.L. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecol. Model. 1999, 124, 99–119. [Google Scholar] [CrossRef]
- Lacaze, R.; Chen, J.M.; Roujean, J.; Leblanc, S.G. Retrieval of vegetation clumping index using hot spot signatures measured by POLDER instrument. Remote Sens. Environ. 2002, 79, 84–95. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.M.; Cihlar, J. Mapping evapotranspiration based on remote sensing; an application to Canada’s landmass. Water Resour. Res. 2003, 39, 1189. [Google Scholar] [CrossRef]
- Chen, B.; Liu, J.; Chen, J.M.; Croft, H.; Gonsamo, A.; He, L.; Luo, X. Assessment of foliage clumping effects on evapotranspiration estimates in forested ecosystems. Agric. For. Meteorol. 2016, 216, 82–92. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Kustas, W.P.; Li, F.; Prueger, J.H.; Mecikalski, J.R. Effects of Vegetation Clumping on Two–Source Model Estimates of Surface Energy Fluxes from an Agricultural Landscape during SMACEX. J. Hydrometeorol. 2005, 6, 892–909. [Google Scholar] [CrossRef]
- Chen, H.; Niu, Z.; Huang, W.; Feng, J. Predicting leaf area index in wheat using an improved empirical model. J. Appl. Remote Sens. 2013, 7, 73577. [Google Scholar] [CrossRef]
- Mo, X.; Chen, J.M.; Ju, W.; Black, T.A. Optimization of ecosystem model parameters through assimilating eddy covariance flux data with an ensemble Kalman filter. Ecol. Model. 2008, 217, 157–173. [Google Scholar] [CrossRef]
- Deering, D.W.; Eck, T.F.; Banerjee, B. Characterization of the Reflectance Anisotropy of Three Boreal Forest Canopies in Spring–Summer. Remote Sens. Environ. 1999, 67, 205–229. [Google Scholar] [CrossRef]
- Sandmeier, S.; Deering, D.W. Structure Analysis and Classification of Boreal Forests Using Airborne Hyperspectral BRDF Data from ASAS. Remote Sens. Environ. 1999, 69, 281–295. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, Y.; Myneni, R.B.; Knyazikhin, Y.; Woodcock, C.E. Assessing the information content of multiangle satellite data for mapping biomes: I. Statistical analysis. Remote Sens. Environ. 2002, 80, 418–434. [Google Scholar] [CrossRef]
- Chen, J.M.; Menges, C.H.; Leblanc, S.G. Global mapping of foliage clumping index using multi-angular satellite data. Remote Sens. Environ. 2005, 97, 447–457. [Google Scholar] [CrossRef]
- Pisek, J.; Chen, J.M.; Lacaze, R.; Sonnentag, O.; Alikas, K. Expanding global mapping of the foliage clumping index with multi-angular POLDER three measurements: Evaluation and topographic compensation. ISPRS J. Photogramm. Remote Sens. 2010, 65, 341–346. [Google Scholar] [CrossRef]
- Leblanc, S.G.; Chen, J.M.; White, H.P.; Latifovic, R.; Lacaze, R.; Roujean, J. Canada-wide foliage clumping index mapping from multiangular POLDER measurements. Can. J. Remote Sens. 2005, 31, 364–376. [Google Scholar] [CrossRef]
- He, L.; Chen, J.M.; Pisek, J.; Schaaf, C.B.; Strahler, A.H. Global clumping index map derived from the MODIS BRDF product. Remote Sens. Environ. 2012, 119, 118–130. [Google Scholar] [CrossRef]
- Zhu, G.; Ju, W.; Chen, J.M.; Gong, P.; Xing, B.; Zhu, J. Foliage Clumping Index Over China’s Landmass Retrieved From the MODIS BRDF Parameters Product. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2122–2137. [Google Scholar] [CrossRef]
- Hill, M.J.; Román, M.O.; Schaaf, C.B.; Hutley, L.; Brannstrom, C.; Etter, A.; Hanan, N.P. Characterizing vegetation cover in global savannas with an annual foliage clumping index derived from the MODIS BRDF product. Remote Sens. Environ. 2011, 115, 2008–2024. [Google Scholar] [CrossRef]
- Pisek, J.; Chen, J.M.; Nilson, T. Estimation of vegetation clumping index using MODIS BRDF data. Int. J. Remote Sens. 2010, 32, 2645–2657. [Google Scholar] [CrossRef]
- Wei, S.; Fang, H.; Schaaf, C.B.; He, L.; Chen, J.M. Global 500 m clumping index product derived from MODIS BRDF data (2001–2017). Remote Sens. Environ. 2019, 232, 111296. [Google Scholar] [CrossRef]
- Pisek, J.; Ryu, Y.; Sprintsin, M.; He, L.; Oliphant, A.J.; Korhonen, L.; Kuusk, J.; Kuusk, A.; Bergstrom, R.; Verrelst, J.; et al. Retrieving vegetation clumping index from Multi-angle Imaging SpectroRadiometer (MISR) data at 275 m resolution. Remote Sens. Environ. 2013, 138, 126–133. [Google Scholar] [CrossRef]
- Wei, S.; Fang, H. Estimation of canopy clumping index from MISR and MODIS sensors using the normalized difference hotspot and darkspot (NDHD) method: The influence of BRDF models and solar zenith angle. Remote Sens. Environ. 2016, 187, 476–491. [Google Scholar] [CrossRef]
- Jiao, Z.; Schaaf, C.B.; Dong, Y.; Román, M.; Hill, M.J.; Chen, J.M.; Wang, Z.; Zhang, H.; Saenz, E.; Poudyal, R.; et al. A method for improving hotspot directional signatures in BRDF models used for MODIS. Remote Sens. Environ. 2016, 186, 135–151. [Google Scholar] [CrossRef]
- Jiao, Z.; Dong, Y.; Schaaf, C.B.; Chen, J.M.; Román, M.; Wang, Z.; Zhang, H.; Ding, A.; Erb, A.; Hill, M.J.; et al. An algorithm for the retrieval of the clumping index (CI) from the MODIS BRDF product using an adjusted version of the kernel-driven BRDF model. Remote Sens. Environ. 2018, 209, 594–611. [Google Scholar] [CrossRef]
- Baldocchi, D.D.; Wilson, K.B.; Gu, L. How the environment, canopy structure and canopy physiological functioning influence carbon, water and energy fluxes of a temperate broad-leaved deciduous forest--an assessment with the biophysical model CANOAK. Tree Physiol. 2002, 22, 1065–1077. [Google Scholar] [CrossRef]
- Sampson, D.A.; Janssens, I.A.; Ceulemans, R. Under-story contributions to stand level GPP using the process model SECRETS. Agric. For. Meteorol. 2006, 139, 94–104. [Google Scholar] [CrossRef]
- Houborg, R.; Anderson, M.C.; Norman, J.M.; Wilson, T.; Meyers, T. Intercomparison of a ‘bottom-up’ and ‘top-down’ modeling paradigm for estimating carbon and energy fluxes over a variety of vegetative regimes across the U.S. Agric. For. Meteorol. 2009, 149, 1875–1895. [Google Scholar] [CrossRef]
- He, L.; Liu, J.; Chen, J.M.; Croft, H.; Wang, R.; Sprintsin, M.; Zheng, T.; Ryu, Y.; Pisek, J.; Gonsamo, A.; et al. Inter- and intra-annual variations of clumping index derived from the MODIS BRDF product. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 53–60. [Google Scholar] [CrossRef]
- Gao, G.; Jiao, Z.; Wang, C.; Yin, S.; Guo, J.; Tong, Y.; Li, Z.; Tan, Z.; Chen, S. Long-term temporal characteristics of vegetation clumping index remote sensing products at mid/high latitudes in the Northern Hemisphere—A case study. J. Beijing Norm. Univ. (Nat. Sci.) 2024, 60, 386–396. [Google Scholar]
- Croft, H.; Chen, J.M.; Zhang, Y. Temporal disparity in leaf chlorophyll content and leaf area index across a growing season in a temperate deciduous forest. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 312–320. [Google Scholar] [CrossRef]
- Li, J.; Lu, X.; Ju, W.; Li, J.; Zhu, S.; Zhou, Y. Seasonal changes of leaf chlorophyll content as a proxy of photosynthetic capacity in winter wheat and paddy rice. Ecol. Indic. 2022, 140, 109018. [Google Scholar] [CrossRef]
- Noe, S.M.; Kimmel, V.; Hüve, K.; Copolovici, L.; Portillo-Estrada, M.; Püttsepp, Ü.; Jõgiste, K.; Niinemets, Ü.; Hörtnagl, L.; Wohlfahrt, G. Ecosystem-scale biosphere–atmosphere interactions of a hemiboreal mixed forest stand at Järvselja, Estonia. For. Ecol. Manag. 2011, 262, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Sprintsin, M.; Cohen, S.; Maseyk, K.; Rotenberg, E.; Grünzweig, J.; Karnieli, A.; Berliner, P.; Yakir, D. Long term and seasonal courses of leaf area index in a semi-arid forest plantation. Agric. For. Meteorol. 2011, 151, 565–574. [Google Scholar] [CrossRef]
- Ryu, Y.; Nilson, T.; Kobayashi, H.; Sonnentag, O.; Law, B.E.; Baldocchi, D.D. On the correct estimation of effective leaf area index: Does it reveal information on clumping effects? Agric. For. Meteorol. 2010, 150, 463–472. [Google Scholar] [CrossRef]
- Baldocchi, D.D.; Xu, L.; Kiang, N. How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak–grass savanna and an annual grassland. Agric. For. Meteorol. 2004, 123, 13–39. [Google Scholar] [CrossRef]
- Fang, H.; Li, W.; Wei, S.; Jiang, C. Seasonal variation of leaf area index (LAI) over paddy rice fields in NE China: Intercomparison of destructive sampling, LAI-2200, digital hemispherical photography (DHP), and AccuPAR methods. Agric. For. Meteorol. 2014, 198–199, 126–141. [Google Scholar] [CrossRef]
- Fang, H.; Ye, Y.; Liu, W.; Wei, S.; Ma, L. Continuous estimation of canopy leaf area index (LAI) and clumping index over broadleaf crop fields: An investigation of the PASTIS-57 instrument and smartphone applications. Agric. For. Meteorol. 2018, 253–254, 48–61. [Google Scholar] [CrossRef]
- Zhu, G. Spatial-temporal characteristics of foliage clumping index in China during 2000–2013. Chin. Sci. Bull. 2016, 61, 1595–1603. [Google Scholar] [CrossRef]
- Hu, K.; Zhang, Z.; Fang, H.; Lu, Y.; Gu, Z.; Gao, M. Spatio-Temporal Characteristics and Driving Factors of the Foliage Clumping Index in the Sanjiang Plain from 2001 to 2015. Remote Sens. 2021, 13, 2797. [Google Scholar] [CrossRef]
- Yin, S.; Jiao, Z.; Dong, Y.; Zhang, X.; Cui, L.; Xie, R.; Guo, J.; Li, S.; Zhu, Z.; Tong, Y.; et al. Evaluation of the Consistency of the Vegetation Clumping Index Retrieved from Updated MODIS BRDF Data. Remote Sens. 2022, 14, 3997. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Xiao, W.; Sun, Z.; Wang, Q.; Yang, Y. Evaluating MODIS phenology product for rotating croplands through ground observations. J. Appl. Remote Sens. 2013, 7, 73562. [Google Scholar] [CrossRef]
- Vintrou, E.; Begue, A.; Baron, C.; Saad, A.; Seen, D.L.; Traore, S.B. A Comparative Study on Satellite- and Model-Based Crop Phenology in West Africa. Remote Sens. 2014, 6, 1367–1389. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, X.; Wu, C.; Huang, W.; Gonsamo, A.; Huete, A.R.; Didan, K.; Tan, B.; Liu, X.; Zhang, B. Intercomparison and evaluation of spring phenology products using National Phenology Network and AmeriFlux observations in the contiguous United States. Agric. For. Meteorol. 2017, 242, 33–46. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Eklundh, L.R. Noise estimation in NOAA AVHRR maximum-value composite NDVI images. Int. J. Remote Sens. 1995, 16, 2955–2962. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Chen, J.; Liao, A.; Chen, J.; Peng, S.; Chen, L.; Zhang, H. 30-meter global land cover data product-GlobeLand30. Geomat. World 2017, 24, 1–8. [Google Scholar]
- Bai, G.; Gobron, N.; Dash, J.; Brown, L.; Meier, C.; Lerebourg, C.; Ronco, E.; Lamquin, N.; Bruniquel, V.; Clerici, M. GBOV (Ground-Based Observation for Validation): A Copernicus Service for Validation of Vegetation Land Products. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 4592–4594. [Google Scholar]
- Burkart, A.; Hecht, V.L.; Kraska, T.; Rascher, U. Phenological analysis of unmanned aerial vehicle based time series of barley imagery with high temporal resolution. Precis. Agric. 2018, 19, 134–146. [Google Scholar] [CrossRef]
- Hassan, M.; Yang, M.; Rasheed, A.; Jin, X.; Xia, X.; Xiao, Y.; He, Z. Time-Series Multispectral Indices from Unmanned Aerial Vehicle Imagery Reveal Senescence Rate in Bread Wheat. Remote Sens. 2018, 10, 809. [Google Scholar] [CrossRef]
- Geerken, R.; Zaitchik, B.; Evans, J.P. Classifying rangeland vegetation type and coverage from NDVI time series using Fourier Filtered Cycle Similarity. Int. J. Remote Sens. 2005, 26, 5535–5554. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhuang, D. Fourier Analysis of Multi-Temporal AVHRR Data. J. Univ. Chin. Acad. Sci. 2003, 20, 62–68. [Google Scholar]
- Sellers, P.J.; Randall, D.A.; Collatz, G.J.; Berry, J.A.; Field, C.B.; Dazlich, D.A.; Zhang, C.; Collelo, G.D.; Bounoua, L. A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMs. Part I: Model Formulation. J. Clim. 1996, 9, 676–705. [Google Scholar] [CrossRef]
- Ma, C.; Guo, Z.; Zhang, X. A Reconstruction Method of Time Series NDVI Based on Discrete Fourier Analyses. J. Geomat. Sci. Technol. 2011, 28, 347–350+355. [Google Scholar]
- Wang, Z.; Peng, Y.; Quan, W.; He, H.; Li, D. Characteristic of plant phenology and its response to the hydrothermal conditions over Qinling Mountains. Arid Land Geogr. 2019, 42, 1048–1058. [Google Scholar]
- Jonsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Li, Z.; Jiao, Z.; Wang, C.; Yin, S.; Guo, J.; Tong, Y.; Gao, G.; Tan, Z.; Chen, S. Seasonal Effect of the Vegetation Clumping Index on Gross Primary Productivity Estimated by a Two-Leaf Light Use Efficiency Model. Remote Sens. 2023, 15, 5537. [Google Scholar] [CrossRef]
- Rui, X.; Ziti, J.; Yadong, D.; Lei, C.; Siyang, Y.; Xiaoning, Z.; Yaxuan, C.; Jing, G.; Abatzoglou, J. An improved method for estimating clumping index in mixed coniferous and broadleaved forests using BRDF shape of surface ecotype as constraints. Natl. Remote Sens. Bull. 2024, 28, 995–1009. [Google Scholar]
- He, L.; Chen, J.M.; Pan, Y.; Birdsey, R.; Kattge, J. Relationships between net primary productivity and forest stand age in U.S. forests. Glob. Biogeochem. Cycles 2012, 26, GB3009. [Google Scholar] [CrossRef]
- Jiao, Z.; Zhang, X.; Bréon, F.; Dong, Y.; Schaaf, C.B.; Román, M.; Wang, Z.; Cui, L.; Yin, S.; Ding, A.; et al. The influence of spatial resolution on the angular variation patterns of optical reflectance as retrieved from MODIS and POLDER measurements. Remote Sens. Environ. 2018, 215, 371–385. [Google Scholar] [CrossRef]
- Pisek, J.; Govind, A.; Arndt, S.K.; Hocking, D.; Wardlaw, T.J.; Fang, H.; Matteucci, G.; Longdoz, B. Intercomparison of clumping index estimates from POLDER, MODIS, and MISR satellite data over reference sites. ISPRS J. Photogramm. Remote Sens. 2015, 101, 47–56. [Google Scholar] [CrossRef]
- Dong, Y.; Jiao, Z.; Yin, S.; Zhang, H.; Zhang, X.; Cui, L.; He, D.; Ding, A.; Chang, Y.; Yang, S. Influence of Snow on the Magnitude and Seasonal Variation of the Clumping Index Retrieved from MODIS BRDF Products. Remote Sens. 2018, 10, 1194. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.O.; Bréon, F.M. Towards a generalized approach for correction of the BRDF effect in MODIS directional reflectances. IEEE Trans. Geosci. Remote Sens. 2009, 47, 898–908. [Google Scholar] [CrossRef]
- Claverie, M.; Vermote, E.; Franch, B.; He, T.; Hagolle, O.; Kadiri, M.; Masek, J. Evaluation of Medium Spatial Resolution BRDF-Adjustment Techniques Using Multi-Angular SPOT4 (Take5) Acquisitions. Remote Sens. 2015, 7, 12057–12075. [Google Scholar] [CrossRef]
- Wang, Z.; Schaaf, C.B.; Sun, Q.; Shuai, Y.; Roman, M.O. Capturing rapid land surface dynamics with Collection V006 MODIS BRDF/NBAR/Albedo (MCD43) products. Remote Sens. Environ. 2018, 207, 50–64. [Google Scholar] [CrossRef]
- Chakraborty, A.; Seshasai, M.V.R.; Reddy, C.S.; Dadhwal, V.K. Persistent negative changes in seasonal greenness over different forest types of India using MODIS time series NDVI data (2001–2014). Ecol. Indic. 2018, 85, 887–903. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Dai, J.H.; Ge, Q.S. Variation in vegetation greenness in spring across eastern China during 1982–2006. J. Geogr. Sci. 2013, 23, 45–56. [Google Scholar] [CrossRef]
- Li, F.; Song, G.; Liujun, Z.; Yanan, Z.; Di, L. Urban vegetation phenology analysis using high spatio-temporal NDVI time series. Urban For. Urban Green. 2017, 25, 43–57. [Google Scholar] [CrossRef]
- Bolton, D.K.; Gray, J.M.; Melaas, E.K.; Moon, M.; Eklundh, L.; Friedl, M.A.; Princeton University. Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery. Remote Sens. Environ. 2020, 240, 111685. [Google Scholar] [CrossRef]
- Xie, Q.; Cleverly, J.; Moore, C.E.; Ding, Y.; Hall, C.C.; Ma, X.; Brown, L.A.; Wang, C.; Beringer, J.; Prober, S.M.; et al. Land surface phenology retrievals for arid and semi-arid ecosystems. ISPRS J. Photogramm. Remote Sens. 2022, 185, 129–145. [Google Scholar] [CrossRef]
- Morton, S.R.; Stafford Smith, D.M.; Dickman, C.R.; Dunkerley, D.L.; Friedel, M.H.; McAllister, R.R.J.; Reid, J.R.W.; Roshier, D.A.; Smith, M.A.; Walsh, F.J.; et al. A fresh framework for the ecology of arid Australia. J. Arid Environ. 2011, 75, 313–329. [Google Scholar] [CrossRef]
Most Frequent QA in 8-Day CI | Output QA | Output CI | |
---|---|---|---|
The First Algorithm | The Second Algorithm | ||
0 | 0 | ||
1 | 1 | ||
2 | 2 | ||
3 | 3 | ||
32,765–32,767 (partial) | 4 | ||
32,765–32,767 (all) | 32,767 | 32,767 | 32,767 |
Band | Vegetation Cycle | Stage | Value | Range |
---|---|---|---|---|
1 | 1 | LOS | CI | 3300–10,000, 32,767 |
2 | LFS | CI | 3300–10,000, 32,767 | |
3 | 2 | LOS | CI | 3300–10,000, 32,767 |
4 | LFS | CI | 3300–10,000, 32,767 | |
5 | 1 | LOS | QA | 0–4, 32,767 |
6 | LFS | QA | 0–4, 32,767 | |
7 | 2 | LOS | QA | 0–4, 32,767 |
8 | LFS | QA | 0–4, 32,767 |
Vegetation | Estimation of CI | |||
---|---|---|---|---|
LFS | LOS | LGS | LSS | |
ENF *** | 0.549 ± 0.055 a | 0.539 ± 0.038 c | 0.534 ± 0.042 d | 0.546 ± 0.043 b |
EBF *** | 0.626 ± 0.109 c | 0.654 ± 0.107 b | 0.654 ± 0.119 b | 0.655 ± 0.104 a |
DNF *** | 0.604 ± 0.062 a | 0.572 ± 0.027 c | 0.566 ± 0.032 d | 0.583 ± 0.031 b |
DBF *** | 0.722 ± 0.073 b | 0.716 ± 0.064 c | 0.711 ± 0.075 d | 0.728 ± 0.069 a |
MF *** | 0.674 ± 0.078 d | 0.683 ± 0.067 b | 0.676 ± 0.078 c | 0.697 ± 0.075 a |
CSh *** | 0.833 ± 0.083 a | 0.801 ± 0.080 c | 0.790 ± 0.085 d | 0.819 ± 0.085 b |
OSh *** | 0.854 ± 0.044 a | 0.803 ± 0.061 c | 0.791 ± 0.073 d | 0.817 ± 0.065 b |
Wsa *** | 0.723 ± 0.071 b | 0.722 ± 0.073 c | 0.715 ± 0.084 d | 0.734 ± 0.077 a |
Sav *** | 0.765 ± 0.068 a | 0.754 ± 0.071 c | 0.749 ± 0.083 d | 0.762 ± 0.072 b |
GL *** | 0.810 ± 0.074 a | 0.789 ± 0.080 c | 0.783 ± 0.086 d | 0.797 ± 0.082 b |
PWe *** | 0.778 ± 0.065 b | 0.776 ± 0.077 c | 0.775 ± 0.085 d | 0.779 ± 0.080 a |
CL *** | 0.809 ± 0.063 a | 0.792 ± 0.059 c | 0.787 ± 0.069 d | 0.798 ± 0.064 b |
UB *** | 0.792 ± 0.070 ad | 0.787 ± 0.069 b | 0.784 ± 0.076 c | 0.792 ± 0.072 a |
CVM *** | 0.780 ± 0.079 b | 0.775 ± 0.072 c | 0.771 ± 0.081 d | 0.781 ± 0.074 a |
Year | Range | The First Vegetation Cycle | The Second Vegetation Cycle | ||||||
---|---|---|---|---|---|---|---|---|---|
The First Algorithm | The Second Algorithm | The First Algorithm | The Second Algorithm | ||||||
CILOS < CILFS | CILOS > CILFS | CILOS < CILFS | CILOS > CILFS | CILOS < CILFS | CILOS > CILFS | CILOS < CILFS | CILOS > CILFS | ||
2008 | NH | 66.08% | 33.92% | 68.57% | 37.43% | 50.34% | 49.66% | 51.69% | 48.31% |
Trop | 65.37% | 34.63% | 66.73% | 33.27% | 58.31% | 41.69% | 59.45% | 40.55% | |
SH | 73.76% | 26.24% | 74.15% | 25.85% | 56.93% | 43.07% | 57.16% | 42.84% | |
Global | 66.22% | 33.78% | 68.23% | 31.77% | 55.04% | 44.96% | 56.14% | 43.86% | |
2018 | NH | 58.16% | 41.84% | 60.11% | 39.89% | 46.83% | 53.17% | 47.32% | 52.68% |
Trop | 62.63% | 37.37% | 64.57% | 35.43% | 53.95% | 46.05% | 55.07% | 44.93% | |
SH | 68.26% | 31.74% | 68.66% | 31.34% | 66.87% | 33.13% | 67.35% | 32.65% | |
Global | 60.10% | 39.90% | 61.98% | 38.02% | 52.91% | 47.09% | 53.71% | 46.29% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, G.; Jiao, Z.; Li, Z.; Wang, C.; Guo, J.; Zhang, X.; Ding, A.; Tan, Z.; Chen, S.; Yang, F.; et al. A Phenologically Simplified Two-Stage Clumping Index Product Derived from the 8-Day Global MODIS-CI Product Suite. Remote Sens. 2025, 17, 233. https://doi.org/10.3390/rs17020233
Gao G, Jiao Z, Li Z, Wang C, Guo J, Zhang X, Ding A, Tan Z, Chen S, Yang F, et al. A Phenologically Simplified Two-Stage Clumping Index Product Derived from the 8-Day Global MODIS-CI Product Suite. Remote Sensing. 2025; 17(2):233. https://doi.org/10.3390/rs17020233
Chicago/Turabian StyleGao, Ge, Ziti Jiao, Zhilong Li, Chenxia Wang, Jing Guo, Xiaoning Zhang, Anxin Ding, Zheyou Tan, Sizhe Chen, Fangwen Yang, and et al. 2025. "A Phenologically Simplified Two-Stage Clumping Index Product Derived from the 8-Day Global MODIS-CI Product Suite" Remote Sensing 17, no. 2: 233. https://doi.org/10.3390/rs17020233
APA StyleGao, G., Jiao, Z., Li, Z., Wang, C., Guo, J., Zhang, X., Ding, A., Tan, Z., Chen, S., Yang, F., & Dong, X. (2025). A Phenologically Simplified Two-Stage Clumping Index Product Derived from the 8-Day Global MODIS-CI Product Suite. Remote Sensing, 17(2), 233. https://doi.org/10.3390/rs17020233