Integrating Drone Truthing and Functional Classification of Remote Sensing Time Series for Supervised Vegetation Mapping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Target Classes and Reference Data (Ground Truthing and Drone Truthing)
2.3. Vegetation Mapping by Supervised Functional Classification of Remote Sensing Time Series
2.3.1. Sentinel-2 Time Series and Functional Data Analysis (FDA)
2.3.2. Topographic Features
2.3.3. Supervised Classification and Accuracy Evaluation
3. Results
4. Discussion
4.1. Main Results
4.2. Benefits for Habitat Directive, Phytosociology, and Landscape Management
4.3. Limits and Future Works
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Label | Vegetation Types | Plant Associations |
---|---|---|
Woodland | ||
O | Black hornbeam wood | Scutellario columnae-Ostryetum carpinifoliae; Asparago acutifoliii-Ostryetum carpinifoliae; Anemono trifoliae-Ostryetum carpinifoliae |
Q | Downy-oak wood | Roso sempervirentis-Quercetum pubescentis; Cytiso sessilifolii-Quercetum pubescentis |
R | Pinus sp. plantations | Coniferous plantings (Pinus ssp., Cupressus ssp., Hesperocyparis ssp.) |
L | Holm-oak wood | Cyclamino hederifolii-Quercetum ilicis; Cephalanthero longifoliae-Quercetum ilicis |
F | Beech wood | Lathyro veneti-Fagetum sylvaticae |
SP | Black poplar riparian wood | Salici albae-Populetum nigrae |
SAL | White willow riparian wood | Rubo ulmifolii-Salicetum albae |
Shrublands | ||
GI | Spartium junceum shrub | Spartio juncei-Cytisetum sessilifolii var. a Spartium junceum |
JO | Juniperus oxycedrus shrub | Spartio juncei-Cytisetum sessilifolii var. a Juniperus oxycedrus |
JC | Juniperus communis shrub | Juniperetum oxycedri-communis |
AR | Salix eleagnos riparian shrub | Salicetum elaeagni |
Grasslands | ||
B | Bromus erectus grassland | Brizo mediae-Brometum erecti; Asperulo purpureae-Brometum erecti; Helianthemo apenninae-Festucetum circummediterraneae; |
Garrigues and chasmophytic vegetation | ||
GA | Artemisia alba and Satureja montana garrigues | Potentillo arenariae-Artemisietum albae; Cephalario leucanthae-Saturejetum montanae |
PA | Vegetation of rocky slopes | Moehringio papulosae-Potentilletum caulescentis; Saxifrago australis-Trisetetum bertolonii |
Other | ||
CO | Crop land and post-crop vegetation | Agricultural crops (sowings, alfalfa and production tree plantations) and post-harvest crops |
AV | Riverbed |
References
- Chytrý, M.; Schaminée, J.H.J.; Schwabe, A. Vegetation Survey: A New Focus for Applied Vegetation Science. Appl. Veg. Sci. 2011, 14, 435–439. [Google Scholar] [CrossRef]
- Mucina, L. Europe, Ecosystems of. In Encyclopedia of Biodiversity, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2013; pp. 333–346. ISBN 9780123847195. [Google Scholar]
- CEC. Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora. Off. J. Eur. Union 1992, 206, 7–50. [Google Scholar]
- Rodwell, J.S.; Evans, D.; Schaminée, J.H.J. Phytosociological Relationships in European Union Policy-Related Habitat Classifications. Rend. Lincei Sci. Fis. Nat. 2018, 29, 237–249. [Google Scholar] [CrossRef]
- Biondi, E. Phytosociology Today: Methodological and Conceptual Evolution. Plant Biosyst. 2011, 145, 19–29. [Google Scholar] [CrossRef]
- Biondi, E.; Burrascano, S.; Casavecchia, S.; Copiz, R.; Del Vico, E.; Galdenzi, D.; Gigante, D.; Lasen, C.; Spampinato, G.; Venanzoni, R.; et al. Diagnosis and Syntaxonomic Interpretation of Annex I Habitats (Dir. 92/43/EEC) in Italy at the Alliance Level. Plant Sociol. 2012, 49, 5–37. [Google Scholar] [CrossRef]
- Evans, D. The Habitats of the European Union Habitats Directive. Biol. Environ. Proc. R. Ir. Acad. 2006, 106B, 167–173. [Google Scholar] [CrossRef]
- Ichter, J.; Savio, L.; Evans, D.; Poncet, L. State-of-the-Art of Vegetation Mapping in Europe: Results of a European Survey and Contribution to the French Program CarHAB. Doc. Phytosociol. Série 3 2017, 6, 335–352. [Google Scholar]
- Rapinel, S.; Rozo, C.; Delbosc, P.; Bioret, F.; Bouzillé, J.B.; Hubert-Moy, L. Contribution of Free Satellite Time-Series Images to Mapping Plant Communities in the Mediterranean Natura 2000 Site: The Example of Biguglia Pond in Corse (France). Mediterr. Bot. 2020, 41, 181–191. [Google Scholar] [CrossRef]
- Gigante, D.; Attorre, F.; Venanzoni, R.; Acosta, A.T.R.; Agrillo, E.; Aleffi, M.; Alessi, N.; Allegrezza, M.; Angelini, P.; Angiolini, C.; et al. A Methodological Protocol for Annex i Habitats Monitoring: The Contribution of Vegetation Science. Plant Sociol. 2016, 53, 77–87. [Google Scholar] [CrossRef]
- Tarantino, C.; Forte, L.; Blonda, P.; Vicario, S.; Tomaselli, V.; Beierkuhnlein, C.; Adamo, M. Intra-Annual Sentinel-2 Time-Series Supporting Grassland Habitat Discrimination. Remote Sens. 2021, 13, 277. [Google Scholar] [CrossRef]
- Hubert-Moy, L.; Fabre, E.; Rapinel, S. Contribution of SPOT-7 Multi-Temporal Imagery for Mapping Wetland Vegetation. Eur. J. Remote Sens. 2020, 53, 201–210. [Google Scholar] [CrossRef]
- Feret, J.B.; Corbane, C.; Alleaume, S. Detecting the Phenology and Discriminating Mediterranean Natural Habitats with Multispectral Sensors-An Analysis Based on Multiseasonal Field Spectra. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2294–2305. [Google Scholar] [CrossRef]
- Marzialetti, F.; Giulio, S.; Malavasi, M.; Sperandii, M.G.; Acosta, A.T.R.; Carranza, M.L. Capturing Coastal Dune Natural Vegetation Types Using a Phenology-Based Mapping Approach: The Potential of Sentinel-2. Remote Sens. 2019, 11, 1506. [Google Scholar] [CrossRef]
- Rapinel, S.; Mony, C.; Lecoq, L.; Clément, B.; Thomas, A.; Hubert-Moy, L. Evaluation of Sentinel-2 Time-Series for Mapping Floodplain Grassland Plant Communities. Remote Sens. Environ. 2019, 223, 115–129. [Google Scholar] [CrossRef]
- Stendardi, L.; Karlsen, S.R.; Niedrist, G.; Gerdol, R.; Zebisch, M.; Rossi, M.; Notarnicola, C. Exploiting Time Series of Sentinel-1 and Sentinel-2 Imagery to Detect Meadow Phenology in Mountain Regions. Remote Sens. 2019, 11, 542. [Google Scholar] [CrossRef]
- Vrieling, A.; Meroni, M.; Darvishzadeh, R.; Skidmore, A.K.; Wang, T.; Zurita-Milla, R.; Oosterbeek, K.; O’Connor, B.; Paganini, M. Vegetation Phenology from Sentinel-2 and Field Cameras for a Dutch Barrier Island. Remote Sens. Environ. 2018, 215, 517–529. [Google Scholar] [CrossRef]
- Pesaresi, S.; Mancini, A.; Quattrini, G.; Casavecchia, S. Functional Analysis for Habitat Mapping in a Special Area of Conservation Using Sentinel-2 Time-Series Data. Remote Sens. 2022, 14, 1179. [Google Scholar] [CrossRef]
- Pesaresi, S.; Mancini, A.; Quattrini, G.; Casavecchia, S. Mapping Mediterranean Forest Plant Associations and Habitats with Functional Principal Component Analysis Using Landsat 8 NDVI Time Series. Remote Sens. 2020, 12, 1132. [Google Scholar] [CrossRef]
- Čahojová, L.; Ambroz, M.; Jarolímek, I.; Kollár, M.; Mikula, K.; Šibík, J.; Šibíková, M. Exploring Natura 2000 Habitats by Satellite Image Segmentation Combined with Phytosociological Data: A Case Study from the Čierny Balog Area (Central Slovakia). Sci. Rep. 2022, 12, 18375. [Google Scholar] [CrossRef]
- Pasquarella, V.J.; Holden, C.E.; Woodcock, C.E. Improved Mapping of Forest Type Using Spectral-Temporal Landsat Features. Remote Sens. Environ. 2018, 210, 193–207. [Google Scholar] [CrossRef]
- Schmidt, T.; Schuster, C.; Kleinschmit, B.; Förster, M. Evaluating an Intra-Annual Time Series for Grassland Classification—How Many Acquisitions and What Seasonal Origin Are Optimal? IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3428–3439. [Google Scholar] [CrossRef]
- Ivanova, N. Global Overview of the Application of the Braun-Blanquet Approach in Research. Forests 2024, 15, 937. [Google Scholar] [CrossRef]
- Yeo, S.; Lafon, V.; Alard, D.; Curti, C.; Dehouck, A.; Benot, M.L. Classification and Mapping of Saltmarsh Vegetation Combining Multispectral Images with Field Data. Estuar. Coast. Shelf Sci. 2020, 236, 106643. [Google Scholar] [CrossRef]
- Ichter, J.; Evans, D.; Richard, D. Terrestrial Habitat Mapping in Europe: An Overview; Poncet, L., Spyropoulou, R., Martins, I.P., Eds.; MNHN-EEA: Luxembourg, 2014; Volume 1, ISBN 978-92-9213-420-4. [Google Scholar]
- Waldner, F.; Hansen, M.C.; Potapov, P.V.; Löw, F.; Newby, T.; Ferreira, S.; Defourny, P. National-Scale Cropland Mapping Based on Spectral-Temporal Features and Outdated Land Cover Information. PLoS ONE 2017, 12, e0181911. [Google Scholar] [CrossRef] [PubMed]
- Oldeland, J.; Dorigo, W.; Lieckfeld, L.; Lucieer, A.; Jürgens, N. Combining Vegetation Indices, Constrained Ordination and Fuzzy Classification for Mapping Semi-Natural Vegetation Units from Hyperspectral Imagery. Remote Sens. Environ. 2010, 114, 1155–1166. [Google Scholar] [CrossRef]
- Chen, X.; Cao, X.; Chen, J.; Cui, X. Effect of Training Strategy on PUL-SVM Classification for Cropland Mapping by Landsat Imagery. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 417–420. [Google Scholar]
- Guo, Q.; Li, W.; Liu, D.; Chen, J. A Framework for Supervised Image Classification with Incomplete Training Samples. Photogramm. Eng. Remote Sens. 2012, 78, 595–604. [Google Scholar] [CrossRef]
- Foody, G.M.; Pal, M.; Rocchini, D.; Garzon-Lopez, C.X.; Bastin, L. The Sensitivity of Mapping Methods to Reference Data Quality: Training Supervised Image Classifications with Imperfect Reference Data. ISPRS Int. J. Geoinf. 2016, 5, 199. [Google Scholar] [CrossRef]
- Fu, Y.; Shen, R.; Song, C.; Dong, J.; Han, W.; Ye, T.; Yuan, W. Exploring the Effects of Training Samples on the Accuracy of Crop Mapping with Machine Learning Algorithm. Sci. Remote Sens. 2023, 7, 100081. [Google Scholar] [CrossRef]
- Guo, Y.; Jia, X.; Paull, D.; Zhang, J.; Farooq, A.; Chen, X.; Islam, M.N. A Drone-Based Sensing System to Support Satellite Image Analysis for Rice Farm Mapping. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Yokohama, Japan, 2 August 2019; pp. 9376–9379. [Google Scholar]
- Stehman, S.V.; Foody, G.M. Key Issues in Rigorous Accuracy Assessment of Land Cover Products. Remote Sens. Environ. 2019, 231, 111199. [Google Scholar] [CrossRef]
- Tuia, D.; Persello, C.; Bruzzone, L. Domain Adaptation for the Classification of Remote Sensing Data: An Overview of Recent Advances. IEEE Geosci. Remote Sens. Mag. 2016, 4, 41–57. [Google Scholar] [CrossRef]
- Banko, G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data and of Methods Including Remote Sensing Data in Forest Inventory. 1998. Available online: https://www.researchgate.net/publication/23738314_A_Review_of_Assessing_the_Accuracy_of_Classifications_of_Remotely_Sensed_Data_and_of_Methods_Including_Remote_Sensing_Data_in_Forest_Inventory (accessed on 5 January 2025).
- Vanden Borre, J.; Spanhove, T.; Haest, B. Towards a Mature Age of Remote Sensing for Natura 2000 Habitat Conservation: Poor Method Transferability as a Prime Obstacle. In The Roles of Remote Sensing in Nature Conservation; Díaz-Delgado, R., Lucas, R., Hurford, C., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 11–37. ISBN 978-3-319-64332-8. [Google Scholar]
- Piel, A.K.; Crunchant, A.; Knot, I.E.; Chalmers, C.; Fergus, P.; Mulero-Pázmány, M.; Wich, S.A. Non Invasive Technologies for Primate Conservation in the 21st Century. Int. J. Primatol. 2022, 43, 133–167. [Google Scholar] [CrossRef]
- Suir, G.M.; Saltus, C.L.; Sasser, C.E.; Harris, J.M.; Reif, M.K.; Diaz, R.; Giffin, G. Evaluating Drone Truthing as an Alternative to Ground Truthing: An Example with Wetland Plant Identification; ERDC/TN APCRP-MI-9; Engineer Research and Development Center: Vicksburg, MI, USA, 2021. [Google Scholar] [CrossRef]
- Szantoi, Z.; Smith, S.E.; Strona, G.; Koh, L.P.; Wich, S.A. Mapping Orangutan Habitat and Agricultural Areas Using Landsat OLI Imagery Augmented with Unmanned Aircraft System Aerial Photography. Int. J. Remote Sens. 2017, 38, 2231–2245. [Google Scholar] [CrossRef]
- Husson, E.; Hagner, O.; Ecke, F. Unmanned Aircraft Systems Help to Map Aquatic Vegetation. Appl. Veg. Sci. 2014, 17, 567–577. [Google Scholar] [CrossRef]
- Nyberg, B.; Bairos, C.; Brimhall, M.; Deans, S.M.; Hanser, S.; Heintzman, S.; Hillmann Kitalong, A.; Menezes de Sequeira, M.; Nobert, N.; Rønsted, N.; et al. The Conservation Impact of Botanical Drones: Documenting and Collecting Rare Plants from Vertical Cliffs and Other Hard-to-Reach Areas. Ecol. Solut. Evid. 2024, 5, 12318. [Google Scholar] [CrossRef]
- Jianya, G.; Haigang, S.; Guorui, M.; Qiming, Z. A Review of Multi-Temporal Remote Sensing Data Change Detection Algorithms. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2008, 37, 757–762. [Google Scholar]
- Rivas-Martínez, S.; Rivas Sáenz, S.; Penas, A.; Alcaraz, F.; Amigo, J.; Asensi, A.; Barbour, M.; Biondi, E.; Cantó, P.; Capelo, J.; et al. Worldwide Bioclimatic Classification System. Glob. Geobot. 2011, 1, 1–634. [Google Scholar]
- Pesaresi, S.; Biondi, E.; Casavecchia, S. Bioclimates of Italy. J. Maps 2017, 13, 955–960. [Google Scholar] [CrossRef]
- Braun-Blanquet, J.; Conard, H.S.; Fuller, G.D. Plant Sociology; the Study of Plant Communities, 1st ed.; Conard, H.S., Fuller, G.D., Eds.; McGraw-Hill Book Company, Inc.: New York, NY, USA; London, UK, 1932. [Google Scholar]
- Dumelle, M.; Kincaid, T.; Olsen, A.R.; Weber, M. Spsurvey: Spatial Sampling Design and Analysis in R. J. Stat. Softw. 2023, 105, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Google LLC. Google Earth Pro (Version 7.1). 2024. Available online: https://www.google.it/intl/it/earth/versions/ (accessed on 5 January 2025).
- Wood, S.N. Generalized Additive Models; Chapman and Hall/CRC: Boca Raton, FL, USA, 2017; ISBN 9781315370279. [Google Scholar]
- Balestra, M.; Pierdicca, R.; Cesaretti, L.; Quattrini, G.; Mancini, A.; Galli, A.; Malinverni, E.S.; Casavecchia, S.; Pesaresi, S. A Comparison of pre-processing approaches for remotely sensed time series classification based on functional analysis. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, X-1/W1-2023, 33–40. [Google Scholar] [CrossRef]
- Pesaresi, S.; Mancini, A.; Quattrini, G.; Casavecchia, S. Evaluation and Selection of Multi-Spectral Indices to Classify Vegetation Using Multivariate Functional Principal Component Analysis. Remote Sens. 2024, 16, 1224. [Google Scholar] [CrossRef]
- Younes, N.; Joyce, K.E.; Maier, S.W. All Models of Satellite-Derived Phenology Are Wrong, but Some Are Useful: A Case Study from Northern Australia. Int. J. Appl. Earth Obs. Geoinf. 2021, 97, 102285. [Google Scholar] [CrossRef]
- European Space Agency SENTINEL-2 User Handbook. Available online: https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook (accessed on 26 November 2024).
- Happ, C.; Greven, S. Multivariate Functional Principal Component Analysis for Data Observed on Different (Dimensional) Domains. J. Am. Stat. Assoc. 2018, 113, 649–659. [Google Scholar] [CrossRef]
- Ramsay, J.O.; Silverman, B.W. (Eds.) Functional Data Analysis; Springer: New York, NY, USA, 2005; ISBN 9780387400808. [Google Scholar]
- Levitin, D.J.; Nuzzo, R.L.; Vines, B.; Ramsay, J.O. Introduction to Functional Data Analysis. Can. Psychol. 2007, 48, 135–155. [Google Scholar] [CrossRef]
- Marcinkowska-Ochtyra, A.; Gryguc, K.; Ochtyra, A.; Kopeć, D.; Jarocińska, A.; Sławik, Ł. Multitemporal Hyperspectral Data Fusion with Topographic Indices—Improving Classification of Natura 2000 Grassland Habitats. Remote Sens. 2019, 11, 2264. [Google Scholar] [CrossRef]
- Tarquini, S.; Isola, I.; Favalli, M.; Mazzarini, F.; Bisson, M.; Pareschi, M.T.; Boschi, E. TINITALY/01: A New Triangular Irregular Network of Italy. Ann. Geophys. 2009, 50, 407–425. [Google Scholar] [CrossRef]
- Breiman, L. Random Forest. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Evans, J.S.; Cushman, S.A. Gradient Modeling of Conifer Species Using Random Forests. Landsc. Ecol. 2009, 24, 673–683. [Google Scholar] [CrossRef]
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Ranghetti, L.; Boschetti, M.; Nutini, F.; Busetto, L. “Sen2r”: An R Toolbox for Automatically Downloading and Preprocessing Sentinel-2 Satellite Data. Comput. Geosci. 2020, 139, 104473. [Google Scholar] [CrossRef]
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling. Available online: https://CRAN.R-project.org/package=raster (accessed on 4 December 2024).
- Hyndman, R.J.; Khandakar, Y. Automatic Time Series Forecasting: The Forecast Package for R. J. Stat. Softw. 2008, 26, 1–22. [Google Scholar] [CrossRef]
- Hyndman, R.; Athanasopoulos, G.; Bergmeir, C.; Caceres, G.; Chhay, L.; O’Hara-Wild, M.; Petropoulos, F.; Razbash, S.; Wang, E.; Yasmeen, F. Forecast: Forecasting Functions for Time Series and Linear Models. 2023. Available online: https://cran.r-project.org/web/packages/forecast/forecast.pdf (accessed on 5 January 2025).
- Kuhn, M. Caret: Classification and Regression Training. Available online: https://CRAN.R-project.org/package=caret (accessed on 5 January 2025).
- Vanden Borre, J.; Paelinckx, D.; Mücher, C.A.; Kooistra, L.; Haest, B.; De Blust, G.; Schmidt, A.M. Integrating Remote Sensing in Natura 2000 Habitat Monitoring: Prospects on the Way Forward. J. Nat. Conserv. 2011, 19, 116–125. [Google Scholar] [CrossRef]
- Simonson, W.D.; Allen, H.D.; Coomes, D.A. Remotely Sensed Indicators of Forest Conservation Status: Case Study from a Natura 2000 Site in Southern Portugal. Ecol. Indic. 2013, 24, 636–647. [Google Scholar] [CrossRef]
- Álvarez-Martínez, J.M.; Jiménez-Alfaro, B.; Barquín, J.; Ondiviela, B.; Recio, M.; Silió-Calzada, A.; Juanes, J.A. Modelling the Area of Occupancy of Habitat Types with Remote Sensing. Methods Ecol. Evol. 2018, 9, 580–593. [Google Scholar] [CrossRef]
- Zlinszky, A.; Schroiff, A.; Kania, A.; Deák, B.; Mücke, W.; Vári, Á.; Székely, B.; Pfeifer, N. Categorizing Grassland Vegetation with Full-Waveform Airborne Laser Scanning: A Feasibility Study for Detecting Natura 2000 Habitat Types. Remote Sens. 2014, 6, 8056–8087. [Google Scholar] [CrossRef]
- Questad, E.J.; Antill, M.; Liu, N.; Stavros, E.N.; Townsend, P.A.; Bonfield, S.; Schimel, D. A Camera-Based Method for Collecting Rapid Vegetation Data to Support Remote-Sensing Studies of Shrubland Biodiversity. Remote Sens. 2022, 14, 1933. [Google Scholar] [CrossRef]
- Reckling, W.; Mitasova, H.; Wegmann, K.; Kauffman, G.; Reid, R. Efficient Drone-Based Rare Plant Monitoring Using a Species Distribution Model and Ai-Based Object Detection. Drones 2021, 5, 110. [Google Scholar] [CrossRef]
- Swacha, G.; Botta-Dukát, Z.; Kącki, Z.; Pruchniewicz, D.; Żołnierz, L. A Performance Comparison of Sampling Methods in the Assessment of Species Composition Patterns and Environment–Vegetation Relationships in Species-Rich Grasslands. Acta Soc. Bot. Pol. 2017, 86. [Google Scholar] [CrossRef]
- Pasquarella, V.J.; Holden, C.E.; Kaufman, L.; Woodcock, C.E. From Imagery to Ecology: Leveraging Time Series of All Available Landsat Observations to Map and Monitor Ecosystem State and Dynamics. Remote Sens. Ecol. Conserv. 2016, 2, 152–170. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, D. Accurate Mapping of Forest Types Using Dense Seasonal Landsat Time-Series. ISPRS J. Photogramm. Remote Sens. 2014, 96, 1–11. [Google Scholar] [CrossRef]
- Barrett, B.; Raab, C.; Cawkwell, F.; Green, S. Upland Vegetation Mapping Using Random Forests with Optical and Radar Satellite Data. Remote Sens. Ecol. Conserv. 2016, 2, 212–231. [Google Scholar] [CrossRef] [PubMed]
- Cabello, J.; Mairota, P.; Alcaraz-Segura, D.; Arenas-Castro, S.; Escribano, P.; Leitão, P.J.; Martínez-López, J.; Regos, A.; Requena-Mullor, J.M. Satellite Remote Sensing of Ecosystem Functions: Opportunities and Challenges for Reporting Obligations of the EU Habitat Directive. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Athens, Greece, 31 October 2018; pp. 6604–6607. [Google Scholar]
- Corbane, C.; Lang, S.; Pipkins, K.; Alleaume, S.; Deshayes, M.; García Millán, V.E.; Strasser, T.; Vanden Borre, J.; Toon, S.; Michael, F. Remote Sensing for Mapping Natural Habitats and Their Conservation Status—New Opportunities and Challenges. Int. J. Appl. Earth Obs. Geoinf. 2015, 37, 7–16. [Google Scholar] [CrossRef]
- European Parliament and Council Regulation (EU) 2024/1991 of the European Parliament and of the Council of 24 June 2024 on Nature Restoration and Amending Regulation (EU) 2022/869. 2024. Available online: https://eur-lex.europa.eu/eli/reg/2024/1991/oj/eng (accessed on 5 January 2025).
- Bonanomi, G.; Caporaso, S.; Allegrezza, M. Effects of Nitrogen Enrichment, Plant Litter Removal and Cutting on a Species-rich Mediterranean Calcareous Grassland. Plant Biosyst. An. Int. J. Deal. All Asp. Plant Biol. 2009, 143, 443–455. [Google Scholar] [CrossRef]
- Bonanomi, G.; Caporaso, S.; Allegrezza, M. Short-Term Effects of Nitrogen Enrichment, Litter Removal and Cutting on a Mediterranean Grassland. Acta Oecologica 2006, 30, 419–425. [Google Scholar] [CrossRef]
- Catorci, A.; Cesaretti, S.; Gatti, R.; Ottaviani, G. Abiotic and Biotic Changes Due to Spread of Brachypodium Genuense (DC.) Roem. & Schult. in Sub-Mediterranean Meadows. Community Ecol. 2011, 12, 117–125. [Google Scholar] [CrossRef]
- De Simone, W.; Allegrezza, M.; Frattaroli, A.R.; Montecchiari, S.; Tesei, G.; Zuccarello, V.; Di Musciano, M. From Remote Sensing to Species Distribution Modelling: An Integrated Workflow to Monitor Spreading Species in Key Grassland Habitats. Remote Sens. 2021, 13, 1904. [Google Scholar] [CrossRef]
- Hurley, M.A.; Hebblewhite, M.; Gaillard, J.M.; Dray, S.; Taylor, K.A.; Smith, W.K.; Zager, P.; Bonenfant, C. Functional Analysis of Normalized Difference Vegetation Index Curves Reveals Overwinter Mule Deer Survival Is Driven by Both Spring and Autumn Phenology. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130196. [Google Scholar] [CrossRef] [PubMed]
- Pesaresi, S.; Mancini, A.; Casavecchia, S. Recognition and Characterization of Forest Plant Communities through Remote-Sensing NDVI Time Series. Diversity 2020, 12, 313. [Google Scholar] [CrossRef]
- Müllerová, J.; Gago, X.; Bučas, M.; Company, J.; Estrany, J.; Fortesa, J.; Manfreda, S.; Michez, A.; Mokroš, M.; Paulus, G.; et al. Characterizing Vegetation Complexity with Unmanned Aerial Systems (UAS)—A Framework and Synthesis. Ecol. Indic. 2021, 131, 108156. [Google Scholar] [CrossRef]
- Müllerová, J. UAS for Nature Conservation—Monitoring Invasive Species. In Applications of Small Unmanned Aircraft Systems; CRC Press: Boca Raton, FL, USA, 2019; pp. 157–178. [Google Scholar]
- Zhou, H.; Zhu, J.; Li, J.; Xu, Y.; Li, Q.; Yan, E.; Zhao, S.; Xiong, Y.; Mo, D. Opening a New Era of Investigating Unreachable Cliff Flora Using Smart UAVs. Remote Sens. Ecol. Conserv. 2021, 7, 638–648. [Google Scholar] [CrossRef]
- John, A.; Theobald, E.J.; Cristea, N.; Tan, A.; Hille Ris Lambers, J. Using Photographs and Deep Neural Networks to Understand Flowering Phenology and Diversity in Mountain Meadows. Remote Sens. Ecol. Conserv. 2024, 10, 480–499. [Google Scholar] [CrossRef]
- Joly, A.; Goëau, H.; Bonnet, P.; Bakić, V.; Barbe, J.; Selmi, S.; Yahiaoui, I.; Carré, J.; Mouysset, E.; Molino, J.-F.; et al. Interactive Plant Identification Based on Social Image Data. Ecol. Inform. 2014, 23, 22–34. [Google Scholar] [CrossRef]
- Kim, S.; Lee, C.W.; Park, H.J.; Lee, B.D.; Kim, N.Y.; Hwang, J.E.; Park, H.B.; An, J.; Baek, J.H. Piloting an Unmanned Aerial Vehicle to Explore the Floristic Variations of Inaccessible Cliffs along Island Coasts. Drones 2023, 7, 140. [Google Scholar] [CrossRef]
- Soltani, S.; Ferlian, O.; Eisenhauer, N.; Feilhauer, H.; Kattenborn, T. From Simple Labels to Semantic Image Segmentation: Leveraging Citizen Science Plant Photographs for Tree Species Mapping in Drone Imagery. Biogeosciences 2024, 21, 2909–2935. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, M.; Gao, X.; Shi, W. Advances and Challenges in Deep Learning-Based Change Detection for Remote Sensing Images: A Review through Various Learning Paradigms. Remote Sens. 2024, 16, 804. [Google Scholar] [CrossRef]
Label | Vegetation Types | Habitat Code | Plots |
---|---|---|---|
Woodland | |||
O | Black hornbeam wood | - | 278 |
Q | Downy-oak wood | 91AA * | 150 |
R | Pinus sp. plantations | - | 136 |
L | Holm-oak wood | 9340 | 94 |
F | Beech wood | 9210 * | 34 |
SP | Black poplar riparian wood | 92A0, [3270, 3280, 6430] | 35 |
SAL | White willow riparian wood | 92A0, [3270, 3280, 6430] | 15 |
Shrublands | |||
GI | Spartium junceum shrub | - | 60 |
JO | Juniperus oxycedrus shrub | - | 20 |
JC | Juniperus communis shrub | 5130 | 16 |
AR | Salix eleagnos riparian shrub | [3270, 3280, 6430, 92A0] | 26 |
Grasslands | |||
B | Bromus erectus grassland | 6210 *, [6110 *, 6220 *] | 71 |
Garrigues and chasmophytic vegetation | |||
GA | Artemisia alba and Satureja montana garrigues | [6110 *, 6220 *] | 57 |
PA | Vegetation of rocky slopes | [8210, 9340] | 25 |
Other | |||
CO | Crop land and post-crop vegetation | - | 77 |
AV | Riverbed | [3270, 3280] | 24 |
TOT | 1118 |
Reference Data | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AR | AV | B | CO | F | GA | GI | JC | JO | L | O | PA | Q | R | SAL | SP | UA | ||
Prediction | AR | 2.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 94.0 |
AV | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | |
B | 0.0 | 0.0 | 5.8 | 0.2 | 0.0 | 0.4 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 88.8 | |
CO | 0.0 | 0.0 | 0.1 | 6.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 98.3 | |
F | 0.0 | 0.0 | 0.0 | 0.0 | 2.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | |
GA | 0.0 | 0.0 | 0.3 | 0.2 | 0.0 | 4.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 89.3 | |
GI | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 4.8 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 91.5 | |
JC | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | |
JO | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 83.3 | |
L | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.9 | 0.1 | 0.1 | 0.0 | 0.2 | 0.0 | 0.0 | 95.6 | |
O | 0.1 | 0.0 | 0.0 | 0.2 | 0.2 | 0.0 | 0.1 | 0.0 | 0.0 | 0.4 | 24.2 | 0.0 | 1.3 | 0.1 | 0.1 | 0.1 | 90.4 | |
PA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.1 | 0.0 | 0.0 | 0.0 | 0.0 | 98.3 | |
Q | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.1 | 0.1 | 0.0 | 0.3 | 0.0 | 0.5 | 0.0 | 12.0 | 0.0 | 0.0 | 0.0 | 91.8 | |
R | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.3 | 0.2 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 11.6 | 0.1 | 0.0 | 93.5 | |
SAL | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 91.7 | |
SP | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 2.9 | 93.1 | |
PA | 96.2 | 93.3 | 91.3 | 90.4 | 94.1 | 87.7 | 89.3 | 75.0 | 85.0 | 93.4 | 97.3 | 93.6 | 89.5 | 95.1 | 73.3 | 92.6 | ||
OA | 92.59 (±2.21) | |||||||||||||||||
K | 0.91 (±0.02) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quattrini, G.; Pesaresi, S.; Hofmann, N.; Mancini, A.; Casavecchia, S. Integrating Drone Truthing and Functional Classification of Remote Sensing Time Series for Supervised Vegetation Mapping. Remote Sens. 2025, 17, 330. https://doi.org/10.3390/rs17020330
Quattrini G, Pesaresi S, Hofmann N, Mancini A, Casavecchia S. Integrating Drone Truthing and Functional Classification of Remote Sensing Time Series for Supervised Vegetation Mapping. Remote Sensing. 2025; 17(2):330. https://doi.org/10.3390/rs17020330
Chicago/Turabian StyleQuattrini, Giacomo, Simone Pesaresi, Nicole Hofmann, Adriano Mancini, and Simona Casavecchia. 2025. "Integrating Drone Truthing and Functional Classification of Remote Sensing Time Series for Supervised Vegetation Mapping" Remote Sensing 17, no. 2: 330. https://doi.org/10.3390/rs17020330
APA StyleQuattrini, G., Pesaresi, S., Hofmann, N., Mancini, A., & Casavecchia, S. (2025). Integrating Drone Truthing and Functional Classification of Remote Sensing Time Series for Supervised Vegetation Mapping. Remote Sensing, 17(2), 330. https://doi.org/10.3390/rs17020330