Assessment of the Ground Vulnerability in the Preveza Region (Greece) Using the European Ground Motion Service and Geospatial Data Concerning Critical Infrastructures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. European Ground Motion and Products
2.2.1. Baseline Products (L2a)
2.2.2. Calibrated Products (L2b)
2.2.3. Ortho Products (Level 3)
2.3. Data and Software
2.4. Process
3. Results
3.1. Kanallaki
3.2. Preveza
3.3. Bridges of Ionia Odos
3.4. Dam
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Infrastructure | Lat. | Long. | V. Displ. (mm/y) | E-W Displ. (mm/y) | Pid |
---|---|---|---|---|---|
Health Center | 39.2381597 | 20.5995932 | 6.9 | −4.5 | 10Mf5BYBTi |
School 1 | 39.2364503 | 20.5981019 | 7.1 | −3.2 | 10Mf0UswHd |
School 2 | 39.2366767 | 20.6028675 | 12 | −3.9 | 10Mf0UswHh |
School 3 | 39.2324173 | 20.6051721 | 11.7 | −4.1 | 10MehkDxVU |
School 4 | 39.2249225 | 20.6011731 | 11 | −4.6 | 10Me1YEkkr |
Infrastructure | Lat. | Long. | V. Displ. (mm/y) | E-W Displ. (mm/y) | Pid |
---|---|---|---|---|---|
Hospital | 38.9655006 | 20.7536955 | −0.2 | −2.3 | 10MJuVHZ2P |
Health Center | 38.9632509 | 20.7503009 | −0.1 | −2.3 | 10MJgRHpSA |
School 1 | 38.9586934 | 20.7532018 | −0.1 | −2.7 | 10MJNgcqfy |
School 2 | 38.9564813 | 20.7520079 | −0.4 | −2.5 | 10MJ9cd75l |
School 3 | 38.9533716 | 20.7508451 | −0.2 | −2.5 | 10MIvYdNVY |
School4 | 38.9667946 | 20.7456386 | −0.2 | −2.5 | 10MJzBwoEM |
School 5 | 38.9538455 | 20.7451430 | −0.3 | −2.7 | 10MIqry8JP |
School 6 | 38.9602587 | 20.7453070 | 0.1 | −2.5 | 10MJSNI5rv |
School 7 | 38.9790451 | 20.7727355 | −0.4 | −2.9 | 10MLCCajLj |
School 8 | 38.9791537 | 20.7443548 | 0 | −3.2 | 10MKy8azl9 |
School 9 | 38.9472789 | 20.7371700 | 0.3 | −2.7 | 10MIFMeAkn |
School 10 | 38.9581290 | 20.7393146 | 0.4 | −2.8 | 10MJEJIMHe |
School 11 | 38.9550177 | 20.7404788 | −0.2 | −2.8 | 10MIvYdNVP |
School 12 | 38.9690838 | 20.7513878 | −0.3 | −2.3 | 10MKDFwXoc |
School 13 | 39.0002839 | 20.7092027 | 0.2 | −3.8 | 10MMPDEeRq |
School 14 | 38.9762020 | 20.7437461 | 0.1 | −2.8 | 10MKk4bGAx |
School 15 | 38.9727127 | 20.7478706 | 0.2 | −2.7 | 10MKRJwHOl |
School 16 | 38.9539741 | 20.7507981 | −0.1 | −2.3 | 10MJ0FIchc |
School 17 | 38.9626656 | 20.7470600 | 0 | −2.3 | 10MJbkcaG3 |
Infrastructure | Lat. | Long. | V. Displ. (mm/y) | E-W Displ. (mm/y) | Pid |
---|---|---|---|---|---|
Bridge 1 | 39.3653666 | 20.9207942 | −1.3 | −5 | 10MscMd3NQ |
Bridge 2 | 39.3600797 | 20.9211537 | −3.4 | −8.5 | 10Ms5XyL0z |
Bridge 3 | 39.3275666 | 20.9109317 | −1.1 | −6.3 | 10MpMm1W0a |
Bridge 4 | 39.2922036 | 20.8976423 | −1.4 | −5.8 | 10MmLFPiDu |
Infrastructure | Lat. | Long. | V. Displ. (mm/y) | E-W Displ. (mm/y) | Pid |
---|---|---|---|---|---|
Dam | 39.2605736 | 20.8477167 | −1.5 | −7.4 | 10MjF28fEf |
Appendix B
Infrastructure | Lat. | Long. | V. Cumulative (mm) | E-W Cumulative (mm) | Pid |
---|---|---|---|---|---|
Health Center | 39.2381597 | 20.5995932 | 14.1 | −18.7 | 10Mf5BYBTi |
School 1 | 39.2364503 | 20.5981019 | 16.1 | −13.5 | 10Mf0UswHd |
School 2 | 39.2366767 | 20.6028675 | 33.6 | −15.1 | 10Mf0UswHh |
School 3 | 39.2324173 | 20.6051721 | 30.9 | −13.7 | 10MehkDxVU |
School 4 | 39.2249225 | 20.6011731 | 33 | −17.9 | 10Me1YEkkr |
Infrastructure | Lat. | Long. | V. Cumulative (mm) | E-W Cumulative. (mm) | Pid |
---|---|---|---|---|---|
Hospital | 38.9655006 | 20.7536955 | −2.1 | −5 | 10MJuVHZ2P |
Health Center | 38.9632509 | 20.7503009 | −1.3 | −5.5 | 10MJgRHpSA |
School 1 | 38.9586934 | 20.7532018 | −0.5 | −7.5 | 10MJNgcqfy |
School 2 | 38.9564813 | 20.7520079 | −1.6 | −6.4 | 10MJ9cd75l |
School 3 | 38.9533716 | 20.7508451 | −1.9 | −5.9 | 10MIvYdNVY |
School 4 | 38.9667946 | 20.7456386 | −2.8 | −6.8 | 10MJzBwoEM |
School 5 | 38.9538455 | 20.7451430 | −2.1 | −9.7 | 10MIqry8JP |
School 6 | 38.9602587 | 20.7453070 | −1.5 | −5.7 | 10MJSNI5rv |
School 7 | 38.9790451 | 20.7727355 | −5.9 | −9.7 | 10MLCCajLj |
School 8 | 38.9791537 | 20.7443548 | −3.7 | −8.4 | 10MKy8azl9 |
School 9 | 38.9472789 | 20.7371700 | 3.1 | −9.1 | 10MIFMeAkn |
School 10 | 38.9581290 | 20.7393146 | 2 | −8.8 | 10MJEJIMHe |
School 11 | 38.9550177 | 20.7404788 | −0.6 | −10.2 | 10MIvYdNVP |
School 12 | 38.9690838 | 20.7513878 | −4.1 | −5.3 | 10MKDFwXoc |
School 13 | 39.0002839 | 20.7092027 | 1.1 | −14.8 | 10MMPDEeRq |
School 14 | 38.9762020 | 20.7437461 | −2.7 | −6.2 | 10MKk4bGAx |
School 15 | 38.9727127 | 20.7478706 | −0.6 | −7.2 | 10MKRJwHOl |
School 16 | 38.9539741 | 20.7507981 | −1 | −4.1 | 10MJ0FIchc |
School 17 | 38.9626656 | 20.7470600 | −1.4 | −5.4 | 10MJbkcaG3 |
Infrastructure | Lat. | Long. | V. Cumulative (mm) | E-W Cumulative. (mm) | Pid |
---|---|---|---|---|---|
Bridge 1 | 39.3653666 | 20.9207942 | −10.8 | −23.9 | 10MscMd3NQ |
Bridge 2 | 39.3600797 | 20.9211537 | −18.8 | −38.8 | 10Ms5XyL0z |
Bridge 3 | 39.3275666 | 20.9109317 | −7.5 | −29.6 | 10MpMm1W0a |
Bridge 4 | 39.2922036 | 20.8976423 | −8.3 | −24.2 | 10MmLFPiDu |
Infrastructure | Lat. | Long. | V. Cumulative (mm) | E-W Cumulative (mm) | Pid |
---|---|---|---|---|---|
Dam | 39.2605736 | 20.8477167 | −11.2 | −25.7 | 10MjF28fEf |
References
- European Union. Available online: https://eur-lex.europa.eu (accessed on 20 June 2024).
- Gao, Q.; Crosetto, M.; Monserrat, O.; Palama, R.; Barra, A. Infrastructure Monitoring Using the Interferometric Synthetic Aperture Radar (INSAR) Technique. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 43, 271–276. [Google Scholar] [CrossRef]
- EGMS Task Force. 2017. Available online: https://land.copernicus.eu/user-corner/technical-library/egms-white-paper (accessed on 28 July 2024).
- Crosetto, M.; Solari, L.; Balasis-Levinsen, J.; Casagli, N.; Frei, M.; Oyen, A.; Moldestad, D.A. Ground deformation monitoring at continental scale: The European Ground Motion Service. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 293–298. [Google Scholar] [CrossRef]
- Costantini, M.; Minati, F.; Trillo, F.; Ferretti, A.; Novali, F.; Passera, E.; Dehls, J.; Larsen, Y.; Marinkovic, P.; Eineder, M.; et al. European Ground Motion Service. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 11–16 July 2021; pp. 3293–3296. [Google Scholar] [CrossRef]
- European Environment Agency. Available online: https://www.eea.europa.eu/en/datahub (accessed on 5 September 2024).
- Kotzerke, P.; Siegmund, R.; Langenwalter, J.; Andersen, H.S. End-to-End Implementation and Operation of the European Ground Motion Service (EGMS) Product User Manual EGMS SC1 ORIGINAL Consortium Product User Manual (D4-PUM) Document Control Information Settings Value Document Title: Product User Manual Project Title: EGMS-SC1; European Environment Agency: Copenhagen, Denmark, 2022. [Google Scholar]
- Upadhyay, P.; Czerkawski, M.; Davison, C.; Cardona, J.; Macdonald, M.; Andonovic, I.; Michie, C.; Atkinson, R.; Papadopoulou, N.; Nikas, K.; et al. A Flexible Multi-Temporal and Multi-Modal Framework for Sentinel-1 and Sentinel-2 Analysis Ready Data. Remote Sens. 2022, 14, 1120. [Google Scholar] [CrossRef]
- Dang, B. Comparison of Polarization Models in SAR technology for Water Body Extraction. KTH Royal Institute of Technology, 2024. Available online: https://kth.diva-portal.org/smash/get/diva2:1901548/FULLTEXT01.pdf (accessed on 10 November 2024).
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef]
- Bekaert, D.P.S.; Handwerger, A.L.; Agram, O.; Kirschbaum, D.B. InSAR-based detection method for mapping and monitoring slow-moving landslides in remote regions with steep and mountainous terrain: An application to Nepal. Remote Sens. Environ. 2020, 249, 111983. [Google Scholar] [CrossRef]
- Tizzani, P.; Fernández, J.; Vitale, A.; Escayo, J.; Barone, A.; Castaldo, R.; Pepe, S.; De Novellis, V.; Solaro, G.; Pepe, A.; et al. 4D imaging of the volcano feeding system beneath the urban area of the Campi Flegrei caldera. Remote Sens. Environ. 2024, 315, 114480. [Google Scholar] [CrossRef]
- Lekkas, Ε.; Meletlidis, S.; Kyriakopoulos, K.; Manousaki, M.; Mavroulis, S.; Kostaki, E.; Michailidis, A.; Gogou, M.; Mavrouli, M.; Castro-Melgar, I.; et al. The 2021 Cumbre Vieja volcano eruption in La Palma (Canary Islands). Newsl. Environ. Disaster Cris. Manag. Strateg. 2021, 26, 167. [Google Scholar] [CrossRef]
- Castro-Melgar, I.; Gatsios, T.; Prudencio, J.; Ibanez, J.M.; Lekkas, E.; Parcharidis, I. Volcano Monitoring: Using SAR Interferometry for the Pre-Unrest of La Palma and the Post-Unrest of Santorini. In Remote Sensing for Geophysicists, 1st ed.; Gupta, M., Ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2025; p. 526. ISBN 978-1-032-77892-1. [Google Scholar]
- Brozzetti, F.; Mondini, A.C.; Pauselli, C.; Mancinelli, P.; Cirillo, D.; Guzzetti, F.; Lavecchia, G. Mainshock Anticipated by Intra-Sequence Ground Deformations: Insights from Multiscale Field and SAR Interferometric Measurements. Geosciences 2020, 10, 186. [Google Scholar] [CrossRef]
- He, L.J.; Feng, G.C.; Xu, W.B.; Wang, Y.D.; Xiong, Z.Q.; Gao, H.; Liu, X.G. Coseismic Kinematics of the 2023 Kahramanmaras, Turkey Earthquake Sequence from InSAR and Optical Data. Geophys. Res. Lett. 2023, 50, e2023GL104693. [Google Scholar] [CrossRef]
- Yazbeck, J.; Rundle, J.B. A Fusion of Geothermal and InSAR Data with Machine Learning for Enhanced Deformation Forecasting at the Geysers. Land 2023, 12, 1977. [Google Scholar] [CrossRef]
- Ghorbani, Z.; Khosravi, A.; Maghsoudi, Y.; Mojtahedi, F.F.; Javadnia, E.; Nazari, A. Use of InSAR data for measuring land subsidence induced by groundwater withdrawal and climate change in Ardabil Plain. Iran. Sci. Rep. 2022, 12, 13998. [Google Scholar] [CrossRef] [PubMed]
- Biggs, J.; Wright, T.J. How satellite InSAR has grown from opportunistic science to routine monitoring over the last decade. Nat. Commun. 2020, 11, 3863. [Google Scholar] [CrossRef] [PubMed]
- Kalavrezou, I.-E.; Castro-Melgar, I.; Nika, D.; Gatsios, T.; Lalechos, S.; Parcharidis, I. Application of Time Series INSAR (SBAS) Method Using Sentinel-1 for Monitoring Ground Deformation of the Aegina Island (Western Edge of Hellenic Volcanic Arc). Land 2024, 13, 485. [Google Scholar] [CrossRef]
- Parcharidis, I.; Foumelis, Μ. On the assessment of Co-seismic InSAR images of different time span associated to Athens (Greece) 1999 Earthquake. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Seoul, Republic of Korea, 29 July 2005; pp. 5251–5254. [Google Scholar] [CrossRef]
- Crosetto, M.; Solari, L.; Balasis-Levinsen, J.; Bateson, L.; Casagli, N.; Comerci, V.; Frei, M.; Guerrieri, L.; Mroz, M.; Moldestad, D.A.; et al. Ground Motion Examples from the European Ground Motion Service. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 5109–5112. [Google Scholar] [CrossRef]
- Gatsios, T.; Cigna, F.; Tapete, D.; Sakkas, V.; Pavlou, K.; Parcharidis, I. Copernicus sentinel-1 MT-InSAR, GNSS and seismic monitoring of deformation patterns and trends at the Methana volcano, Greece. Appl. Sci. 2020, 10, 6445. [Google Scholar] [CrossRef]
- Rocca, F.; Rucci, A.; Ferretti, A.; Bohane, A. Advanced InSAR interferometry for reservoir monitoring. First Break. 2013, 31, 68075. [Google Scholar] [CrossRef]
- Ferretti, A.; Passera, E.; Capes, R.; Steen Andersen, H.; Solari, L. End-to-End Implementation and Operation of the European Ground Motion Service (EGMS): Algorithm Theoretical Basis Document; European Environment Agency: Copenhagen, Denmark, 2021. [Google Scholar]
- Citypopulation. Available online: https://www.citypopulation.de (accessed on 20 August 2024).
- King, G.C.P.; Tselentis, A.; Gomberg, J.; Molnar, P.; Roecker, S.W.; Sinvhal, H.; Soufleris, C.; Stock, J.M. Microearthquake seismicity and active tectonics of northwestern Greece. Earth Planet. Sci. Lett. 1983, 66, 279–288. [Google Scholar] [CrossRef]
- Ntokos, D. Formulation of the conceptual model for the tectonic geomorphological evolution of an area: Five main rivers of Greece as a case study. Catena 2018, 167, 60–77. [Google Scholar] [CrossRef]
- Ntokos, D. Neotectonic study of northwestern Greece. J. Maps. 2018, 14, 178–188. [Google Scholar] [CrossRef]
- Lekkas, E.; Mavroulis, S.; Carydis, P.; Skourtsos, E.; Kaviris, G.; Paschos, P.; Ganas, A.; Kazantzidou-Firtinidou, D.; Parcharidis, I.; Gatsios, T.; et al. The 21 March 2020 Mw 5.7 Epirus (Greece) Earthquake. Newsl. Environ. Disaster Cris. Manag. Strateg. 2020, 17, 75. [Google Scholar] [CrossRef]
- Valkaniotis, S.; Briole, P.; Ganas, A.; Elias, P.; Kapetanidis, V.; Tsironi, V.; Fokaefs, A.; Partheniou, H.; Paschos, P. The Mw = 5.6 Kanallaki Earthquake of 21 March 2020 in West Epirus, Greece: Reverse Fault Model from InSAR Data and Seismotectonic Implications for Apulia-Eurasia Collision. Geosciences 2020, 10, 454. [Google Scholar] [CrossRef]
- Papazachos, B.; Papazachou, C. The Earthquakes of Greece; Editions Ziti: Thessaloniki, Greece, 1997. [Google Scholar]
- Ganas, A.; Oikonomou, I.A.; Tsimi, C. NOA faults: A digital database for active faults in Greece. Bull. Geol. Soc. Greece 2013, 47, 518–530. [Google Scholar] [CrossRef]
- Tsapanos, T.M. Seismicity and Seismic Hazard Assessment in Greece. In Earthquake Monitoring and Seismic Hazard Mitigation in Balkan Countries; Springer: Dordrecht, The Netherlands, 2008; pp. 253–270. [Google Scholar] [CrossRef]
- Sotiriadis, D.; Margaris, B.; Klimis, N.; Dokas, I.M. Seismic Hazard in Greece: A Comparative Study for the Region of East Macedonia and Thrace. GeoHazards 2023, 4, 239–266. [Google Scholar] [CrossRef]
- Konti, C.; Vatalis, K.I. A Geospatial Assessment Framework of Seismic and Landslide Risk Using GIS. Int. J. Appl. Geosp. Res. 2022, 13, 22. [Google Scholar] [CrossRef]
- Eskandari, R.; Scaioni, M. European Ground Motion Service For Bridge Monitoring: Temporal And Thermal Deformation Cross-Check Using Cosmo-Skymed Insar. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 1235–1241. Available online: https://isprs-archives.copernicus.org/articles/XLVIII-1-W2-2023/1235/2023/isprs-archives-XLVIII-1-W2-2023-1235-2023.html (accessed on 20 December 2024). [CrossRef]
- Ferretti, A.; Passera, E.; Capes, R. End-to-End Implementation and Operation of the European Ground Motion Service (EGMS): Product Description and Format Specification; Technical Report EGMS-D3-PDF-SC1-2.0-007; European Environment Agency, Copernicus Land Monitoring Service: Copenhagen, Denmark, 2021. [Google Scholar]
- Crosetto, M.; Solari, L.; Mróz, M. Pan-European deformation monitoring: The European Ground Motion Service. In Proceedings of the 5th Joint International Symposium on Deformation Monitoring (JISDM), Valencia, Spain, 20–22 June 2022; pp. 383–388. [Google Scholar] [CrossRef]
- EGMS. Available online: https://egms.land.copernicus.eu (accessed on 15 June 2024).
- Shahbazi, S.; Barra, A.; Navarro, J.A.; Crosetto, M. From EGMS Data to a Differential Deformation Map for Buildings at Continent Level. Procedia Comput. Sci. 2024, 239, 2150–2157. [Google Scholar] [CrossRef]
- Hrysiewicz, A.; Khoshlahjeh Azar, M.; Holohan, E.P. EGMS-toolkit: A set of Python scripts for improved access to datasets from the European Ground Motion Service. Earth Sci. Inform. 2024, 17, 3825–3837. [Google Scholar] [CrossRef]
- Crosetto, M.; Cuevas, M.; Balasis-Levinsen, J. Document Control Information Document Title Guidelines for EGMS Product Analysis Project Title EGMS Advisory Board. Available online: https://egms.land.copernicus.eu (accessed on 18 September 2024).
- Google Earth. Available online: https://earth.google.com/web/ (accessed on 20 June 2024).
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, 33. [Google Scholar] [CrossRef]
- ESRI. Available online: https://pro.arcgis.com (accessed on 13 July 2024).
- Svigkas, N.; Kiratzi, A.; Antonioli, A.; Atzori, S.; Tolomei, C.; Salvi, S.; Polcari, M.; Bignami, C. Earthquake source investigation of the Κanallaki, March 2020 Sequence (north-western Greece) based on seismic and geodetic data. Remote Sens. 2021, 13, 1752. [Google Scholar] [CrossRef]
- Polcari, M.; Atzori, S.; Munafò, I. A new procedure for evaluating light-to-moderate earthquake location based on InSAR data and forward modeling tested on the Mediterranean area. Sci. Remote Sens. 2022, 5, 100057. [Google Scholar] [CrossRef]
- Cigna, F.; Osmanoǧlu, B.; Cabral-Cano, E.; Dixon, T.H.; Ávila-Olivera, J.A.; Garduño-Monroy, V.H.; DeMets, C.; Wdowinski, S. Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: A case study in Morelia, Mexico. Remote Sens. Environ. 2012, 117, 146–161. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Q.; Xu, Q.; Zhang, Y.; Yong, Q.; Liu, G. Coseismic surface deformation of the 2014 Napa earthquake mapped by Sentinel-1A SAR and accuracy assessment with COSMO-SkyMed and GPS data as cross validation. Int. J. Digit. Earth 2017, 10, 1197–1213. [Google Scholar] [CrossRef]
- Wassie, Y.; Gao, Q.; Monserrat, O.; Barra, A.; Crippa, B.; Crosetto, M. Differential Sar Interferometry for The Monitoring of Land Subsidence Along Railway Infrastructures. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2022, 43, 361–366. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basiou, E.; Castro-Melgar, I.; Kranis, H.; Karavias, A.; Lekkas, E.; Parcharidis, I. Assessment of the Ground Vulnerability in the Preveza Region (Greece) Using the European Ground Motion Service and Geospatial Data Concerning Critical Infrastructures. Remote Sens. 2025, 17, 327. https://doi.org/10.3390/rs17020327
Basiou E, Castro-Melgar I, Kranis H, Karavias A, Lekkas E, Parcharidis I. Assessment of the Ground Vulnerability in the Preveza Region (Greece) Using the European Ground Motion Service and Geospatial Data Concerning Critical Infrastructures. Remote Sensing. 2025; 17(2):327. https://doi.org/10.3390/rs17020327
Chicago/Turabian StyleBasiou, Eleftheria, Ignacio Castro-Melgar, Haralambos Kranis, Andreas Karavias, Efthymios Lekkas, and Issaak Parcharidis. 2025. "Assessment of the Ground Vulnerability in the Preveza Region (Greece) Using the European Ground Motion Service and Geospatial Data Concerning Critical Infrastructures" Remote Sensing 17, no. 2: 327. https://doi.org/10.3390/rs17020327
APA StyleBasiou, E., Castro-Melgar, I., Kranis, H., Karavias, A., Lekkas, E., & Parcharidis, I. (2025). Assessment of the Ground Vulnerability in the Preveza Region (Greece) Using the European Ground Motion Service and Geospatial Data Concerning Critical Infrastructures. Remote Sensing, 17(2), 327. https://doi.org/10.3390/rs17020327