remotesensing-logo

Journal Browser

Journal Browser

Multiplatform Remote Sensing Techniques for Active Tectonics, Seismotectonics, and Volcanic Hazard Assessment

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Remote Sensing in Geology, Geomorphology and Hydrology".

Deadline for manuscript submissions: 15 July 2025 | Viewed by 12582

Special Issue Editors


E-Mail Website1 Website2
Guest Editor
1. Laboratory of Structural Geology, 3D Digital Cartography and Geomatics, University of Chieti-Pescara, 66100 Chieti, Italy
2. CRUST Centro InteR, Universitario per L’analisi Sismotettonica Tridimensionale, 66100 Chieti, Italy
Interests: 3D geological model building; seismotectonics; seismic hazard; earthquake geology; active tectonics, structural geology, remote sensing; UAV photogrammetry in RTK/PPK; GNSS data analyses; field digital-geological mapping; GIS-data processing, Sedimentary Geology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website1 Website2
Guest Editor
1. Associate Professor, Laboratory of Structural Geology, 3D Digital Cartography and Geomatics, University of Chieti-Pescara, 66100 Chieti, Italy
2. CRUST Centro InteRUniversitario per L’analisi Sismotettonica Tridimensionale, 66100 Chieti, Italy
Interests: earthquake rupture process; tectonic geomorphology; structural geological analysis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The development of remote sensing technologies and the possibility of reconstructing high-resolution ground models enable researchers to understand and monitor, with unprecedented precision, active deformations, seismogenic faults, and local- and regional-scale tectonic and volcanic processes, with obvious repercussions on the assessment of natural risks of endogenous origin.

The aim of this Special Issue is to collect cutting-edge research that uses the most advanced techniques of remote sensing, such as GNSS, InSAR, LiDAR, GPR, DEM, and UAV DEMs, integrated by GIS and geomatic approaches, for expanding knowledge on active deformations, seismotectonics and present volcanic processes. The goals of this Special Issue include the following:

  • Explore several remote sensing techniques to monitor crustal deformations caused by tectonic activities;
  • Collect case studies demonstrating the effectiveness of remote sensing in seismic hazard assessment and prediction;
  • Examine challenges and prospectives of integrating remote sensing into seismic monitoring systems and emergency management;
  • Investigate how the application of GNSS, InSAR, LiDAR, GPR, magnetometry, and other remote sensing techniques contribute to the identification and characterization of active and seismogenic faults and volcano-related deformation;
  • Explore the integration of GIS and geomatic tools with remote sensing for seismic hazard and tectonic process mapping;
  • Provide insights into ground deformation modeling and 3D modeling techniques for geophysical applications.

This Special Issue will showcase the work of researchers, geologists, volcanologists, geophysicists, seismologists, and remote sensing experts interested in the application of advanced technologies in active tectonics, seismotectonics and volcanism-related deformation.

Prof. Dr. Daniele Cirillo
Dr. Pietro Tizzani
Dr. Francesco Brozzetti
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • tectonic processes
  • earthquakes
  • seismogenic faults and seismic source
  • ground deformation modelling
  • geophysical application
  • seismic hazard
  • volcanic hazard
  • volcano deformation
  • optical IR volcano analysis
  • 3D modelling
  • GNSS
  • InSAR
  • GIS and geomatic approaches
  • DEM
  • UAV DEMs
  • LiDAR
  • GPR
  • geological survey
  • digital field survey

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

34 pages, 30142 KiB  
Article
Assessment of the Ground Vulnerability in the Preveza Region (Greece) Using the European Ground Motion Service and Geospatial Data Concerning Critical Infrastructures
by Eleftheria Basiou, Ignacio Castro-Melgar, Haralambos Kranis, Andreas Karavias, Efthymios Lekkas and Issaak Parcharidis
Remote Sens. 2025, 17(2), 327; https://doi.org/10.3390/rs17020327 - 18 Jan 2025
Viewed by 806
Abstract
The European Ground Motion Service (EGMS) and geospatial data are integrated in this paper to evaluate ground deformation and its effects on critical infrastructures in the Preveza Regional Unit. The EGMS, a new service of the Copernicus Land Monitoring Service, employs information from [...] Read more.
The European Ground Motion Service (EGMS) and geospatial data are integrated in this paper to evaluate ground deformation and its effects on critical infrastructures in the Preveza Regional Unit. The EGMS, a new service of the Copernicus Land Monitoring Service, employs information from the C-band Synthetic Aperture Radar (SAR)-equipped Sentinel-1A and Sentinel-1B satellites. This allows for the millimeter-scale measurement of ground motion, which is essential for assessing anthropogenic and natural hazards. The study examines ground displacement from 2018 to 2022 using multi-temporal Synthetic Aperture Radar Interferometry (MTInSAR). The Regional Unit of Preveza was selected for study area. According to the investigation, the area’s East–West Mean Velocity Displacement varies between 22.5 mm/y and −37.7 mm/y, while the Vertical Mean Velocity Displacement ranges from 16 mm/y to −39.3 mm/y. Persistent Scatterers (PSs) and Distributed Scatterers are the sources of these measurements. This research focuses on assessing the impact of ground deformation on 21 school units, 2 health centers, 1 hospital, 4 bridges and 1 dam. The findings provide valuable insights for local authorities and other stakeholders, who will greatly benefit from the information gathered from this study, which will lay the groundwork for wise decision-making and the creation of practical plans to strengthen the resistance of critical infrastructures to ground motion. Full article
Show Figures

Figure 1

26 pages, 46995 KiB  
Article
New Evidence of Holocene Faulting Activity and Strike-Slip Rate of the Eastern Segment of the Sunan–Qilian Fault from UAV-Based Photogrammetry and Radiocarbon Dating, NE Tibetan Plateau
by Pengfei Niu, Zhujun Han, Peng Guo, Siyuan Ma and Haowen Ma
Remote Sens. 2024, 16(24), 4704; https://doi.org/10.3390/rs16244704 - 17 Dec 2024
Viewed by 620
Abstract
The eastern segment of the Sunan-Qilian Fault (ES-SQF) is located within the seismic gap between the 1927 M8.0 Gulang earthquake and the 1932 M7.6 Changma earthquake in China. It also aligns with the extension direction of the largest surface rupture zone associated with [...] Read more.
The eastern segment of the Sunan-Qilian Fault (ES-SQF) is located within the seismic gap between the 1927 M8.0 Gulang earthquake and the 1932 M7.6 Changma earthquake in China. It also aligns with the extension direction of the largest surface rupture zone associated with the 2022 Mw6.7 Menyuan earthquake. Understanding the activity parameters of this fault is essential for interpreting strain distribution patterns in the central–western segment of the Qilian–Haiyuan fault zone, located along the northeastern margin of the Tibetan Plateau, and for evaluating the seismic hazards in the region. High-resolution Google Earth satellite imagery and UAV (Unmanned Aerial Vehicle)-based photogrammetry provide favorable conditions for detailed mapping and the study of typical landforms along the ES-SQF. Combined with field geological surveys, the ES-SQF is identified as a continuous, singular-fault structure extending approximately 68 km in length. The fault trends in the WNW direction and along its trace, distinctive features, such as ridges, gullies, and terraces, show clear evidence of synchronous left lateral displacement. This study investigates the Qingsha River and the Dongzhong River. High-resolution digital elevation models (DEMs) derived from UAV imagery were used to conduct a detailed mapping of faulted landforms. An analysis of stripping trench profiles and radiocarbon dating of collected samples indicates that the most recent surface-rupturing seismic event in the area occurred between 3500 and 2328 y BP, pointing to the existence of an active fault from the Holocene epoch. Using the LaDiCaoz program to restore and measure displaced terraces at the study site, combined with geomorphological sample collection and testing, we estimated the fault’s slip rate since the Holocene to be approximately 2.0 ± 0.3 mm/y. Therefore, the ES-SQF plays a critical role in strain distribution across the central–western segment of the Qilian–Haiyuan fault zone. Together with the Tuolaishan fault, it accommodates and dissipates the left lateral shear deformation in this region. Based on the slip rate and the elapsed time since the last event, it is estimated that a seismic moment equivalent to Mw 7.5 has been accumulated on the ES-SQF. Additionally, with the significant Coulomb stress loading on the ES-SQF caused by the 2016 Mw 5.9 and 2022 Mw 6.7 Menyuan earthquakes, there is a potential for large earthquakes to occur in the future. Our results also indicate that high-resolution remote sensing imagery can facilitate detailed studies of active tectonics. Full article
Show Figures

Figure 1

20 pages, 4121 KiB  
Article
Thermal Patterns at the Campi Flegrei Caldera Inferred from Satellite Data and Independent Component Analysis
by Francesco Mercogliano, Andrea Barone, Luca D’Auria, Raffaele Castaldo, Malvina Silvestri, Eliana Bellucci Sessa, Teresa Caputo, Daniela Stroppiana, Stefano Caliro, Carmine Minopoli, Rosario Avino and Pietro Tizzani
Remote Sens. 2024, 16(23), 4615; https://doi.org/10.3390/rs16234615 - 9 Dec 2024
Viewed by 766
Abstract
In volcanic regions, the analysis of Thermal InfraRed (TIR) satellite imagery for Land Surface Temperature (LST) retrieval is a valid technique to detect ground thermal anomalies. This allows us to achieve rapid characterization of the shallow thermal field, supporting ground surveillance networks in [...] Read more.
In volcanic regions, the analysis of Thermal InfraRed (TIR) satellite imagery for Land Surface Temperature (LST) retrieval is a valid technique to detect ground thermal anomalies. This allows us to achieve rapid characterization of the shallow thermal field, supporting ground surveillance networks in monitoring volcanic activity. However, surface temperature can be influenced by processes of different natures, which interact and mutually interfere, making it challenging to interpret the spatio-temporal variations in the LST parameter. In this paper, we use a workflow to detect the main thermal patterns in active volcanic areas by analyzing the Independent Component Analysis (ICA) results applied to satellite nighttime TIR imagery time series. We employed the proposed approach to study the surface temperature distribution at the Campi Flegrei caldera volcanic site (Southern Italy, Naples) during the 2013–2022 time interval. The results revealed the contribution of four main distinctive thermal patterns, which reflect the endogenous processes occurring at the Solfatara crater, the environmental processes affecting the Agnano plain, the unique microclimate of the Astroni crater, and the morphoclimatic aspects of the entire volcanic area. Full article
Show Figures

Figure 1

22 pages, 10747 KiB  
Article
Cross-Gradient Joint Inversion of DC Resistivity and Gravity Gradient Data: A Multi-Disciplinary Approach for Geoscience, Heritage, and the Built Environment
by Hosseinali Ghari, Saeed Parnow, Ramin Varfinezhad, Maurizio Milano, Francois Daniel Fourie and Fabio Tosti
Remote Sens. 2024, 16(23), 4468; https://doi.org/10.3390/rs16234468 - 28 Nov 2024
Viewed by 1050
Abstract
Accurate subsurface imaging is crucial for understanding complex geological structures. Traditional approaches often involve separate inversion of different geophysical datasets, which may not fully capture the structural similarities between the models. Joint inversion, integrating multiple datasets, offers a more comprehensive view by enhancing [...] Read more.
Accurate subsurface imaging is crucial for understanding complex geological structures. Traditional approaches often involve separate inversion of different geophysical datasets, which may not fully capture the structural similarities between the models. Joint inversion, integrating multiple datasets, offers a more comprehensive view by enhancing the resolution and the accuracy of subsurface models. In this study, we propose a joint inversion technique for DC resistivity and vertical gravity gradient data, leveraging the cross-gradient constraint to enforce structural similarities between the resulting models. This method is applied to both synthetic and real datasets, including case studies involving qanats in Iran and a dolerite dyke in South Africa. The results demonstrate that joint inversion significantly improves the accuracy of resistivity and density models compared to independent inversion, particularly in resolving intricate geological features. This approach has proven effective in enhancing subsurface mapping for multi-disciplinary purposes, including resource exploration, heritage conservation, and risk mitigation for the built environment. Full article
Show Figures

Figure 1

17 pages, 11354 KiB  
Article
Complex Discontinuity Structure Beneath the Changbaishan-Tianchi Volcano Revealed by the P-Wave Coda Autocorrelation Method Based on Dense Seismic Array
by Hao Wen, You Tian, Cai Liu and Hongli Li
Remote Sens. 2024, 16(19), 3615; https://doi.org/10.3390/rs16193615 - 27 Sep 2024
Viewed by 790
Abstract
The Changbai volcano, a globally recognized hotspot of volcanic activity, has garnered significant attention due to its persistent seismicity and ongoing magma activity. The volcano’s discontinuities and magma dynamics have raised concerns about the likelihood of future eruptions, which would likely result in [...] Read more.
The Changbai volcano, a globally recognized hotspot of volcanic activity, has garnered significant attention due to its persistent seismicity and ongoing magma activity. The volcano’s discontinuities and magma dynamics have raised concerns about the likelihood of future eruptions, which would likely result in substantial ecological, climatic, and economic impacts. Consequently, a comprehensive understanding of the Changbai volcanic system is essential for mitigating the risks associated with volcanic activity. In recent years, the P-wave coda autocorrelation method has gained popularity in lithosphere exploration as a reliable technique for detecting reflection coefficients. Additionally, the Common Reflection Point stacking approach has been employed to superimpose reflection signals in a spatial grid, enabling continuous observation of reflection coefficients in the study area. However, the accuracy of this approach is heavily reliant on better spatial data coverage. To better understand the internal dynamics of the Changbai volcano, we applied this approach to a densely packed short-period seismic array with an average station spacing of less than 1 km. Our results were constrained using waveform data of reflection coefficients and Moho dip angles. Our findings revealed a discontinuity in the Moho, which may indicate a conduit for mantle magma entering the crust. Furthermore, we identified two low-velocity anomalies within the crust, likely representing a magma chamber comprising molten and crystallized magma. Notably, our results also provided a clear definition of the lithosphere–asthenosphere boundary. Full article
Show Figures

Figure 1

32 pages, 54495 KiB  
Article
Revealing Subtle Active Tectonic Deformation: Integrating Lidar, Photogrammetry, Field Mapping, and Geophysical Surveys to Assess the Late Quaternary Activity of the Sava Fault (Southern Alps, Slovenia)
by Petra Jamšek Rupnik, Jure Atanackov, Barbara Horn, Branko Mušič, Marjana Zajc, Christoph Grützner, Kamil Ustaszewski, Sumiko Tsukamoto, Matevž Novak, Blaž Milanič, Anže Markelj, Kristina Ivančič, Ana Novak, Jernej Jež, Manja Žebre, Miloš Bavec and Marko Vrabec
Remote Sens. 2024, 16(9), 1490; https://doi.org/10.3390/rs16091490 - 23 Apr 2024
Viewed by 2436
Abstract
We applied an interdisciplinary approach to analyze the late Quaternary activity of the Sava Fault in the Slovenian Southern Alps. The Sava Fault is an active strike-slip fault, and part of the Periadriatic Fault System that accommodated the convergence of Adria and Europe. [...] Read more.
We applied an interdisciplinary approach to analyze the late Quaternary activity of the Sava Fault in the Slovenian Southern Alps. The Sava Fault is an active strike-slip fault, and part of the Periadriatic Fault System that accommodated the convergence of Adria and Europe. It is one of the longest faults in the Southern Alps. Using high-resolution digital elevation models from lidar and photogrammetric surveys, we were able to overcome the challenges of assessing fault activity in a region with intense surface processes, dense vegetation, and relatively low fault slip rates. By integrating remote sensing analysis, geomorphological mapping, structural geological investigations, and near-surface geophysics (electrical resistivity tomography and ground penetrating radar), we were able to find subtle geomorphological indicators, detect near-surface deformation, and show distributed surface deformation and a complex fault pattern. Using optically stimulated luminescence dating, we tentatively estimated a slip rate of 1.8 ± 0.4 mm/a for the last 27 ka, which exceeds previous estimates and suggests temporal variability in fault behavior. Our study highlights the importance of modern high-resolution remote sensing techniques and interdisciplinary approaches in detecting tectonic deformation in relatively low-strain rate environments with intense surface processes. We show that slip rates can vary significantly depending on the studied time window. This is a critical piece of information since slip rates are a key input parameter for seismic hazard studies. Full article
Show Figures

Figure 1

18 pages, 13144 KiB  
Article
CO Emissions Associated with Three Major Earthquakes Occurring in Diverse Tectonic Environments
by Yueju Cui, Jianan Huang, Zhaojun Zeng and Zhenyu Zou
Remote Sens. 2024, 16(3), 480; https://doi.org/10.3390/rs16030480 - 26 Jan 2024
Cited by 2 | Viewed by 1504
Abstract
Significant amounts of gases are emitted from the earth’s crust into the atmosphere before, during, and after major earthquakes. To understand the relationship between gas emissions, earthquakes, and tectonics, we conducted a thorough investigation using satellite data from AQUA AIRS. We focused on [...] Read more.
Significant amounts of gases are emitted from the earth’s crust into the atmosphere before, during, and after major earthquakes. To understand the relationship between gas emissions, earthquakes, and tectonics, we conducted a thorough investigation using satellite data from AQUA AIRS. We focused on three major earthquakes: the 12 May 2008 Wenchuan MW 7.9 earthquake in China’s intra-continental plate, the 26 December 2004 Sumatra-Andaman MW 9.1 earthquake in Indonesia Island, and the 4 April 2010 Baja California MW 7.2 earthquake in Mexico’s active plate margin. Anomalies in the total column (TotCO) and multiple layers (CO VMR) of carbon monoxide were observed along fault zones, with peak values at the epicenter areas. Furthermore, temporal anomalies of TotCO and CO VMR appeared in the month of the Wenchuan earthquake in the intra-continent, three months prior to the Sumatra-Andaman earthquake and one month before the Baja California earthquake in the active plate margins, respectively. Notably, the duration of CO anomalies before earthquakes in active plate margins was longer than that in the intra-continental region, and the intensity of the CO anomaly in active plate margins was higher than that in the intra-continental region. The results show a profound correlation with both seismic and tectonic activities, which was particularly evident in the earthquake’s magnitude, rupture length, and the tectonic settings surrounding the epicenter. Furthermore, the type of the fault at which the earthquake occurred also played an important role in these CO anomaly variations. These findings support the identification of earthquake precursors and may help improve our understanding of earthquake forecasting and tectonics. Full article
Show Figures

Graphical abstract

20 pages, 17881 KiB  
Article
Implementing the European Space Agency’s SentiNel Application Platform’s Open-Source Python Module for Differential Synthetic Aperture Radar Interferometry Coseismic Ground Deformation from Sentinel-1 Data
by Martina Occhipinti, Filippo Carboni, Shaila Amorini, Nicola Paltriccia, Carlos López-Martínez and Massimiliano Porreca
Remote Sens. 2024, 16(1), 48; https://doi.org/10.3390/rs16010048 - 21 Dec 2023
Cited by 1 | Viewed by 2591
Abstract
Differential SAR Interferometry is a largely exploited technique to study ground deformations. A key application is the detection of the effects promoted by earthquakes, including detailed variations in ground deformations at different scales. In this work, an implemented Python script (Snap2DQuake) based on [...] Read more.
Differential SAR Interferometry is a largely exploited technique to study ground deformations. A key application is the detection of the effects promoted by earthquakes, including detailed variations in ground deformations at different scales. In this work, an implemented Python script (Snap2DQuake) based on the “snappy” module by SNAP software 9.0.8 (ESA) for the processing of satellite imagery is proposed. Snap2DQuake is aimed at producing detailed coseismic deformation maps using Sentinel-1 C-band data by the DInSAR technique. With this alternative approach, the processing is simplified, and several issues that may occur using the software are solved. The proposed tool has been tested on two case studies: the Mw 6.4 Petrinja earthquake (Croatia, December 2020) and the Mw 5.7 to Mw 6.3 earthquakes, which occurred near Tyrnavós (Greece, March 2021). The earthquakes, which occurred in two different tectonic contexts, are used to test and verify the validity of Snap2DQuake. Snap2DQuake allows us to provide detailed deformation maps along the vertical and E-W directions in perfect agreement with observations reported in previous works. These maps offer new insights into the deformation pattern linked to earthquakes, demonstrating the reliability of Snap2DQuake as an alternative tool for users working on different applications, even with basic coding skills. Full article
Show Figures

Figure 1

Back to TopTop