Quantifying the Impact of Crude Oil Spills on the Mangrove Ecosystem in the Niger Delta Using AI and Earth Observation
Abstract
:1. Introduction
Study Region
2. Data
2.1. Sentinel-1
2.2. Sentinel-2
2.3. OpenStreetMaps and ESA/WorldCover
2.4. Oil Spill Data
3. Materials and Methods
3.1. Data Preparation
3.2. Landcover Classification
3.3. Hidden Markov Model
3.4. Developing a Pipeline Impact Indicator
4. Discussion of Results
4.1. Land Classification Model Evaluation
4.2. Regional Scale Analysis
4.2.1. Ecological Degradation Effects in Rivers State Region
4.2.2. Oil Spill Impacts in Rivers State Region
4.3. Pipeline Scale Analysis
Pipeline Impact Indicator
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ansah, C.E.; Abu, I.O.; Kleemann, J.; Mahmoud, M.I.; Thiel, M. Environmental Contamination of a Biodiversity Hotspot—Action Needed for Nature Conservation in the Niger Delta, Nigeria. Sustainability 2022, 14, 14256. [Google Scholar] [CrossRef]
- Hai Hoa, N.; Tri Son, H.; Thi Linh, N.; Ojeda de Vicent, D.; Ngoc Linh, N. Using planetscope data to estimate carbon sequestration of mangrove forests: A case study in Tien Yen district, Quang Ninh province. J. For. Sci. Technol. 2023, 8, 087–099. [Google Scholar] [CrossRef]
- UNDP. Human Development Report: Niger Delta Human Development Report. 2006. Available online: https://hdr.undp.org/content/human-development-report (accessed on 2 December 2024).
- Babatunde, A.O. Local perspectives on food security in Nigeria’s Niger delta. Extr. Ind. Soc. 2020, 7, 931–939. [Google Scholar] [CrossRef]
- Odioko, E.; Becer, Z.A. The economic analysis of the Nigerian fisheries sector: A Review. J. Anatol. Environ. Anim. Sci. 2022, 7, 216–226. [Google Scholar] [CrossRef]
- Babatunde, A.O. Oil exploitation and food insecurity in Nigeria’s Niger Delta. J. Mod. Afr. Stud. 2023, 61, 165–187. [Google Scholar] [CrossRef]
- Tuttle, M.L.; Charpentier, R.R.; Brownfield, M.E. The Niger Delta Petroleum System: Niger Delta Province, Nigeria, Cameroon, and Equatorial Guinea, Africa; US Department of the Interior: Washington, DC, USA; US Geological Survey: Reston, VA, USA, 1999. [Google Scholar]
- Mafiana, M.O.; Bashiru, M.D.; Erhunmwunsee, F.; Dirisu, C.G.; Li, S.W. An insight into the current oil spills and on-site bioremediation approaches to contaminated sites in Nigeria. Environ. Sci. Pollut. Res. 2021, 28, 4073–4094. [Google Scholar] [CrossRef]
- Ukhurebor, K.E.; Ngonso, B.F.; Egielewa, P.E.; Cirella, G.T.; Akinsehinde, B.O.; Balogune, V.A. Petroleum spills and the communicative response from petroleum agencies and companies: Impact assessment from the Niger Delta Region of Nigeria. Extr. Ind. Soc. 2023, 15, 101331. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP) Environmental Assessment of Ogoniland. 2011. Available online: https://www.unep.org/resources/report/environmental-assessment-ogoniland (accessed on 19 January 2025).
- Fentiman, A.; Zabbey, N. Environmental degradation and cultural erosion in Ogoniland: A case study of the oil spills in Bodo. Extr. Ind. Soc. 2015, 2, 615–624. [Google Scholar] [CrossRef]
- Nwaichi, E.O.; Osuoha, J.O. Has the National policy on environmental pollution control in Nigeria been neglected in the Niger Delta region? An update. Environ. Dev. Sustain. 2022, 24, 12494–12517. [Google Scholar] [CrossRef]
- Sam, K.; Pegg, S.; Oladejo, A.O. Mining from the pipeline: Artisanal oil refining as a consequence of failed CSR policies in the Niger Delta. J. Environ. Manag. 2024, 352, 120038. [Google Scholar] [CrossRef]
- NOSDRA. Nigerian Oil Spill Monitor. 2006. Available online: https://nosdra.oilspillmonitor.ng/index.html (accessed on 19 January 2025).
- Kostianoy, A.G.; Lavrova, O.Y.; Solovyov, D.M. Oil Pollution in Coastal Waters of Nigeria. In Remote Sensing of the African Seas; Springer: Dordrecht, The Netherlands, 2014; pp. 149–165. [Google Scholar] [CrossRef]
- Okafor-Yarwood, I. The effects of oil pollution on the marine environment in the Gulf of Guinea—The Bonga Oil Field example. Transnatl. Leg. Theory 2018, 9, 1–18. [Google Scholar] [CrossRef]
- Amnesty International. Bad Information: Oil Spill Investigations in the Niger Delta. 2013. Available online: https://www.amnesty.org/en/documents/afr44/028/2013/en/ (accessed on 2 December 2024).
- Obida, C.B.; Blackburn, G.A.; Whyatt, J.D.; Semple, K.T. Counting the cost of the Niger Delta’s largest oil spills: Satellite remote sensing reveals extensive environmental damage with >1million people in the impact zone. Sci. Total Environ. 2021, 775, 145854. [Google Scholar] [CrossRef]
- Ordinioha, B.; Brisibe, S. The human health implications of crude oil spills in the Niger delta, Nigeria: An interpretation of published studies. Niger. Med. J. J. Niger. Med. Assoc. 2013, 54, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, G.; Camara, G.; Killough, B.; Minchin, S. Earth Observation Open Science: Enhancing Reproducible Science Using Data Cubes. Data 2019, 4, 147. [Google Scholar] [CrossRef]
- Rostan, F.; Riegger, S.; Huchler, M.; Croci, R.; Torres, R. The Sentinel-1 C-SAR instrument. In Proceedings of the EUSAR 2012; 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 23–26 April 2012; pp. 166–169. [Google Scholar]
- OPEC Annual Statistical Bulletin. 2023. Available online: https://publications.opec.org/asb/chapter/show/123/2165/2175 (accessed on 19 January 2025).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- OpenStreetMap contributors, Planet dump retrieved from https://planet.osm.org. 2017. Available online: https://www.openstreetmap.org. (accessed on 19 January 2025).
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S.; et al. ESA WorldCover 10 m 2021 v200. 2022. Available online: https://esa-worldcover.org/en/data-access (accessed on 19 January 2025).
- Trimaille, E. QuickOSM. 2022. Available online: https://github.com/3liz/QuickOSM (accessed on 19 January 2025).
- Xu, R.; Liu, J.; Xu, J. Extraction of High-Precision Urban Impervious Surfaces from Sentinel-2 Multispectral Imagery via Modified Linear Spectral Mixture Analysis. Sensors 2018, 18, 2873. [Google Scholar] [CrossRef] [PubMed]
- Mullissa, A.; Vollrath, A.; Odongo-Braun, C.; Slagter, B.; Balling, J.; Gou, Y.; Gorelick, N.; Reiche, J. Sentinel-1 SAR Backscatter Analysis Ready Data Preparation in Google Earth Engine. Remote Sens. 2021, 13, 1954. [Google Scholar] [CrossRef]
- Kupidura, P. The Comparison of Different Methods of Texture Analysis for Their Efficacy for Land Use Classification in Satellite Imagery. Remote Sens. 2019, 11, 1233. [Google Scholar] [CrossRef]
- Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.; Ilyushchenko, S.; et al. Dynamic World, Near real-time global 10 m land use land cover mapping. Sci. Data 2022, 9, 251. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Krishnapuram, B., Shah, M., Smola, A.J., Aggarwal, C., Shen, D., Rastogi, R., Eds.; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Bogaert, P.; Lamarche, C.; Defourny, P. Hidden Markov Models for Annual Land Cover Mapping—Increasing Temporal Consistency and Completeness. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Ó Fionnagáin, D.; Geever, M.; O’Farrell, J.; Codyre, P.; Trearty, R.; Tessema, Y.; Reymondin, L.; Loboguerrero, A.M.; Spillane, C.; Golden, A. Assessing climate resilience in rice production: Measuring the impact of the Millennium Challenge Corporation’s IWRM scheme in the Senegal River Valley using remote sensing and machine learning. Environ. Res. Lett. 2024, 19, 074075. [Google Scholar] [CrossRef]
- Higginbottom, T.P.; Adhikari, R.; Foster, T. Rapid expansion of irrigated agriculture in the Senegal River Valley following the 2008 food price crisis. Environ. Res. Lett. 2023, 18, 014037. [Google Scholar] [CrossRef]
- Abercrombie, S.; Friedl, M. Improving the Consistency of Multitemporal Land Cover Maps Using a Hidden Markov Model. IEEE Trans. Geosci. Remote Sens. 2015, 54, 1–11. [Google Scholar] [CrossRef]
- Duke, N.; Burns, K. Fate and Effects of Oil and Dispersed Oil on Mangrove Ecosystems in Australia. 1999. Available online: https://www.researchgate.net/publication/37629636_Fate_and_Effects_of_oil_and_dispersed_oil_on_mangrove_ecosystems_in_Australia (accessed on 19 January 2025).
- Orimoogunje, O.; Ajibola-James, O. Mangrove Ecosystem Recovery and Restoration from Oil Spill in the Niger Delta: The GIS Perspective. Geoinfor Geostat: An Overview S1. Geoinform. Geostat. Overv. 2013, 5, 2. [Google Scholar]
- Getter, C.; Lewis, R. Spill Response that Benefits the Long-Term Recovery of Oiled Mangroves. Int. Oil Spill Conf. Proc. 2003, 2003, 539–550. [Google Scholar] [CrossRef]
- M’rabu, E.; Bosire, J.O.; Cannicci, S.; Koedam, N.; Dahdouh-Guebas, F. Mangrove die-back due to massive sedimentation and its impact on associated biodiversity. Kenya Aquat. J. 2012, 9, 45–59. [Google Scholar]
- Ohimain, E.I.; Andriesse, W.; van Mensvoort, M.E. Environmental impacts of abandoned dredged soils and sediments: Available options for their handling, restoration and rehabilitation. J. Soils Sediments 2004, 4, 59–65. [Google Scholar] [CrossRef]
- Awosika, L.; Folorunsho, R. Estuarine and Ocean Circulation Dynamics in the Niger Delta, Nigeria: Implications for Oil Spill and Pollution Management. In Environmental Management of Oil Spill in the Niger Delta; Springer: Berlin/Heidelberg, Germany, 2014; pp. 77–86. ISBN 978-3-319-06387-4. [Google Scholar] [CrossRef]
- Gordon, G.; Stavi, I.; Shavit, U.; Rosenzweig, R. Oil spill effects on soil hydrophobicity and related properties in a hyper-arid region. Geoderma 2018, 312, 114–120. [Google Scholar] [CrossRef]
- Watts, M.; Zalik, A. Consistently unreliable: Oil spill data and transparency discourse. Extr. Ind. Soc. 2020, 7, 790–795. [Google Scholar] [CrossRef] [PubMed]
- Ojiako, J.C.; Duru, U.U. Use of Remote Sensing Data to Detect Environmental Degradation in the Oil Rich Region of Southern Nigeria between 2003 and 2015. Int. J. Environ. Agric. Biotechnol. 2017, 2, 2503–2508. [Google Scholar] [CrossRef]
- Dutsenwai, H.S.; Ahmad, B.B.; Tanko, A.I.; Mijinyawa, A. Spatio-temporal analysis of vegetation and oil spill intensity in Ogoniland. Int. J. Adv. Appl. Sci. 2017, 4, 81–90. [Google Scholar] [CrossRef]
- Farhana Ahmad, S.S.; Hazrina Idris, N. Oil Spill Impacts on Mangrove Forest from Satellite Remote Sensing. In Proceedings of the 2021 7th International Conference on Space Science and Communication (IconSpace), Selangor, Malaysia, 23–24 November 2021; pp. 60–64. [Google Scholar] [CrossRef]
- Gundlach, E.R.; Bonte, M.; Story, N.I.; Iroakasi, O. Using high-resolution imagery from 2013 and 2020 to establish baseline vegetation in oil-damaged mangrove habitat prior to large-scale post-remediation planting in Bodo, Eastern Niger Delta, Nigeria. Remote Sens. Appl. Soc. Environ. 2022, 28, 100831. [Google Scholar] [CrossRef]
- Lassalle, G.; Scafutto, R.D.M.; Lourenço, R.A.; Mazzafera, P.; de Souza Filho, C.R. Remote sensing reveals unprecedented sublethal impacts of a 40-year-old oil spill on mangroves. Environ. Pollut. 2023, 331, 121859. [Google Scholar] [CrossRef] [PubMed]
- Bashir Adamu, K.T.; Ogutu, B. Using vegetation spectral indices to detect oil pollution in the Niger Delta. Remote Sens. Lett. 2015, 6, 145–154. [Google Scholar] [CrossRef]
- Pavanelli, D.D.; Loch, C. Mangrove spectra changes induced by oil spills monitored by image differencing of normalised indices: Tools to assist delimitation of impacted areas. Remote Sens. Appl. Soc. Environ. 2018, 12, 78–88. [Google Scholar] [CrossRef]
- Giri, C. Recent Advancement in Mangrove Forests Mapping and Monitoring of the World Using Earth Observation Satellite Data. Remote Sens. 2021, 13, 563. [Google Scholar] [CrossRef] [PubMed]
- Nababa, I.I.; Symeonakis, E.; Koukoulas, S.; Higginbottom, T.P.; Cavan, G.; Marsden, S. Land Cover Dynamics and Mangrove Degradation in the Niger Delta Region. Remote Sens. 2020, 12, 3619. [Google Scholar] [CrossRef]
- Ghorbanian, A.; Zaghian, S.; Asiyabi, R.M.; Amani, M.; Mohammadzadeh, A.; Jamali, S. Mangrove Ecosystem Mapping Using Sentinel-1 and Sentinel-2 Satellite Images and Random Forest Algorithm in Google Earth Engine. Remote Sens. 2021, 13, 2565. [Google Scholar] [CrossRef]
- Upakankaew, K.; Ninsawat, S.; Virdis, S.G.P.; Sasaki, N. Discrimination of Mangrove Stages Using Multitemporal Sentinel-1 C-Band Backscatter and Sentinel-2 Data—A Case Study in Samut Songkhram Province, Thailand. Forests 2022, 13, 1433. [Google Scholar] [CrossRef]
Data | Resolution | Revisit Time | Date Range | Source |
---|---|---|---|---|
Sentinel-1 Synthetic Aperture Radar Ground Range Detected | 10 m | 6 days | 2016–2024 | [23] |
Sentinel-2 MSI: MultiSpectral Instrument, Level-2A | 10 m | 5 days | 2018–2023 | [23] |
ESA WorldCover 10 m v200 | 10 m | - | 2021–2022 | [23] |
FAO GAUL: Global Unit Layers, Second-Level Administrative Units | - | - | 2015 | [23] |
OpenStreetMaps Vector Data | - | - | - | [24] |
NOSDRA Oil Spill Incident Data | - | - | 2006–2024 | [14] |
Class | Precision | Recall | F1-Score |
---|---|---|---|
Bare | 0.97 | 0.93 | 0.95 |
Standard mangroves | 0.92 | 0.88 | 0.90 |
Tall mangroves/mixed forest | 0.86 | 0.92 | 0.89 |
Segment Label | PII |
---|---|
Pipeline 1 | 0.18 |
Pipeline 2 | 0.78 |
Pipeline 3 | 0.99 |
Pipeline 4 | 0.21 |
Zone A | 0.06 |
Zone B | 0.84 |
Zone C | 0.54 |
Zone D | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Farrell, J.; O’Fionnagáin, D.; Babatunde, A.O.; Geever, M.; Codyre, P.; Murphy, P.C.; Spillane, C.; Golden, A. Quantifying the Impact of Crude Oil Spills on the Mangrove Ecosystem in the Niger Delta Using AI and Earth Observation. Remote Sens. 2025, 17, 358. https://doi.org/10.3390/rs17030358
O’Farrell J, O’Fionnagáin D, Babatunde AO, Geever M, Codyre P, Murphy PC, Spillane C, Golden A. Quantifying the Impact of Crude Oil Spills on the Mangrove Ecosystem in the Niger Delta Using AI and Earth Observation. Remote Sensing. 2025; 17(3):358. https://doi.org/10.3390/rs17030358
Chicago/Turabian StyleO’Farrell, Jemima, Dualta O’Fionnagáin, Abosede Omowumi Babatunde, Micheal Geever, Patricia Codyre, Pearse C. Murphy, Charles Spillane, and Aaron Golden. 2025. "Quantifying the Impact of Crude Oil Spills on the Mangrove Ecosystem in the Niger Delta Using AI and Earth Observation" Remote Sensing 17, no. 3: 358. https://doi.org/10.3390/rs17030358
APA StyleO’Farrell, J., O’Fionnagáin, D., Babatunde, A. O., Geever, M., Codyre, P., Murphy, P. C., Spillane, C., & Golden, A. (2025). Quantifying the Impact of Crude Oil Spills on the Mangrove Ecosystem in the Niger Delta Using AI and Earth Observation. Remote Sensing, 17(3), 358. https://doi.org/10.3390/rs17030358