Reconstructing Geometric Models from the Point Clouds of Buildings Based on a Transformer Network
Abstract
:1. Introduction
- We propose a method for building model reconstruction by recovering the modeling sequence from input point clouds. In this approach, the building model is represented by its vectorized modeling sequence rather than a mesh. By representing the geometry through modeling commands, the reconstruction results can be directly imported into BIM software for further applications. Additionally, we develop a tool to convert the modeling sequence into file formats compatible with BIM software.
- We introduce an end-to-end network based on the transformer architecture that converts point clouds into vectorized modeling sequences. This network employs PointNet++ as the point tokenizer to extract point embeddings, after which a transformer network decodes the extracted features into corresponding command sequences.
- We conduct a comprehensive evaluation of the proposed building reconstruction method. The results show that our approach preserves more geometric details in the reconstruction while achieving competitive performance compared to existing methods.
2. Related Works
2.1. Building Model Reconstruction
2.2. CAD Model Reconstruction
3. The Modeling Sequence of Buildings
3.1. Sequence Hierarchy
3.2. Command Specification
4. Materials and Methods
4.1. Overview
4.2. Transformer Encoder for Implicit Space Conversion
4.3. Transformer Decoder
4.4. Loss Function
4.5. Importing into BIM Software
5. Results
5.1. Experiment Setup
5.2. Evaluation Metrics
5.3. Results on Public Modeling Sequence Dataset
5.4. Results on Building Dataset
6. Discussion
6.1. Robustness Analysis
6.2. Limitations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PC | Point cloud |
CD | Chamfer distance |
ECD | Edge chamfer distance |
NC | Normal consistency |
Param | Parameter |
Appendix A
Appendix B
References
- Carrasco, C.A.; Lombillo, I.; Sánchez-Espeso, J.M.; Blanco, H.; Boffill, Y. Methodology for 3D Management of University Faculties Using Integrated GIS and BIM Models: A Case Study. Buildings 2024, 14, 3547. [Google Scholar] [CrossRef]
- Mol, A.; Cabaleiro, M.; Sousa, H.S.; Branco, J.M. HBIM for storing life-cycle data regarding decay and damage in existing timber structures. Autom. Constr. 2020, 117, 103262. [Google Scholar] [CrossRef]
- Wang, Q.; Tan, Y.; Mei, Z. Computational Methods of Acquisition and Processing of 3D Point Cloud Data for Construction Applications. Arch. Comput. Methods Eng. 2020, 27, 479–499. [Google Scholar] [CrossRef]
- Andrianesi, D.E.; Dimopoulou, E. An Integrated BIM-GIS Platform for Representing and Visualizing 3D Cadastral Data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, VI-4/W1-2020, 3–11. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Y.; Oussama, R.; Xie, X.; Ye, N.; Yi, C.; Wei, M. Automatic Modeling of Urban Facades from Raw LiDAR Point Data. Comput. Graph. Forum 2016, 35, 269–278. [Google Scholar] [CrossRef]
- Bruno, S.; De Fino, M.; Fatiguso, F. Historic Building Information Modelling: Performance assessment for diagnosis-aided information modelling and management. Autom. Constr. 2018, 86, 256–276. [Google Scholar] [CrossRef]
- Zotkin, S.P.; Ignatova, E.V.; Zotkina, I.A. The organization of autodesk revit software interaction with applications for structural analysis. Procedia Eng. 2016, 153, 915–919. [Google Scholar] [CrossRef]
- Xia, S.; Chen, D.; Wang, R.; Li, J.; Zhang, X. Geometric Primitives in LiDAR Point Clouds: A Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 685–707. [Google Scholar] [CrossRef]
- Nath, D.; Ankit; Neog, D.R.; Gautam, S.S. Application of machine learning and deep learning in finite element analysis: A comprehensive review. In Archives of Computational Methods in Engineering; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1–40. [Google Scholar]
- Pavón, R.M.; Alberti, M.G.; Álvarez, A.A.A.; Cepa, J.J. Bim-based Digital Twin development for university Campus management. Case study ETSICCP. Expert Syst. Appl. 2025, 262, 125696. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA, 6–7 June 2019. [Google Scholar] [CrossRef]
- An, J.; Ding, W.; Lin, C. ChatGPT. Tack. Grow. Carbon Footpr. Gener. AI 2023, 615, 586. [Google Scholar]
- Liu, H.; Li, C.; Li, Y.; Lee, Y.J. Improved Baselines with Visual Instruction Tuning. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–22 June 2024; pp. 26286–26296. [Google Scholar] [CrossRef]
- Moyano, J.; León, J.; Nieto-Julián, J.E.; Bruno, S. Semantic interpretation of architectural and archaeological geometries: Point cloud segmentation for HBIM parameterisation. Autom. Constr. 2021, 130, 103856. [Google Scholar] [CrossRef]
- Müller, P.; Wonka, P.; Haegler, S.; Ulmer, A.; Van Gool, L. Procedural Modeling of Buildings. In Seminal Graphics Papers: Pushing the Boundaries, Volume 2, 1st ed.; Association for Computing Machinery: New York, NY, USA, 2023. [Google Scholar]
- Furukawa, Y.; Curless, B.; Seitz, S.M.; Szeliski, R. Reconstructing building interiors from images. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 80–87. [Google Scholar] [CrossRef]
- Friedman, S.; Stamos, I. Online facade reconstruction from dominant frequencies in structured point clouds. In Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, RI, USA, 16–21 June 2012; pp. 1–8. [Google Scholar] [CrossRef]
- Maas, H.G.; Vosselman, G. Two algorithms for extracting building models from raw laser altimetry data. ISPRS J. Photogramm. Remote Sens. 1999, 54, 153–163. [Google Scholar] [CrossRef]
- Vo, A.V.; Truong-Hong, L.; Laefer, D.F.; Bertolotto, M. Octree-based region growing for point cloud segmentation. ISPRS J. Photogramm. Remote Sens. 2015, 104, 88–100. [Google Scholar] [CrossRef]
- Wang, M.; Tseng, Y.H. Automatic segmentation of LiDAR data into coplanar point clusters using an octree-based split-and-merge algorithm. Photogramm. Eng. Remote Sens. 2010, 76, 407–420. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, W.; Ning, X.; Zhao, M.; Zhang, J.; Shi, Z.; Zhang, X. Automatic Segmentation of Urban Point Clouds Based on the Gaussian Map. Photogramm. Rec. 2013, 28, 342–361. [Google Scholar] [CrossRef]
- Ferraz, A.; Bretar, F.; Jacquemoud, S.; Gonçalves, G.; Pereira, L. 3D segmentation of forest structure using a mean-shift based algorithm. In Proceedings of the 2010 IEEE International Conference on Image Processing, Hong Kong, 26–29 September 2010; pp. 1413–1416. [Google Scholar] [CrossRef]
- Sampath, A.; Shan, J. Segmentation and Reconstruction of Polyhedral Building Roofs From Aerial Lidar Point Clouds. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1554–1567. [Google Scholar] [CrossRef]
- Biosca, J.M.; Lerma, J.L. Unsupervised robust planar segmentation of terrestrial laser scanner point clouds based on fuzzy clustering methods. ISPRS J. Photogramm. Remote Sens. 2008, 63, 84–98. [Google Scholar] [CrossRef]
- Gu, Y.; Cao, Z.; Dong, L. A hierarchical energy minimization method for building roof segmentation from airborne LiDAR data. Multimed. Tools Appl. 2017, 76, 4197–4210. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Schnabel, R.; Wahl, R.; Klein, R. Efficient RANSAC for Point-Cloud Shape Detection. Comput. Graph. Forum 2007, 26, 214–226. [Google Scholar] [CrossRef]
- Xu, B.; Jiang, W.; Shan, J.; Zhang, J.; Li, L. Investigation on the weighted ransac approaches for building roof plane segmentation from lidar point clouds. Remote Sens. 2015, 8, 5. [Google Scholar] [CrossRef]
- Dong, Z.; Yang, B.; Hu, P.; Scherer, S. An efficient global energy optimization approach for robust 3D plane segmentation of point clouds. ISPRS J. Photogramm. Remote Sens. 2018, 137, 112–133. [Google Scholar] [CrossRef]
- Zheng, Y.; Weng, Q. Model-Driven Reconstruction of 3-D Buildings Using LiDAR Data. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1541–1545. [Google Scholar] [CrossRef]
- Xiong, B.; Jancosek, M.; Oude Elberink, S.; Vosselman, G. Flexible building primitives for 3D building modeling. ISPRS J. Photogramm. Remote Sens. 2015, 101, 275–290. [Google Scholar] [CrossRef]
- Nan, L.; Wonka, P. Polyfit: Polygonal surface reconstruction from point clouds. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2353–2361. [Google Scholar]
- Huang, J.; Stoter, J.; Peters, R.; Nan, L. City3D: Large-Scale Building Reconstruction from Airborne LiDAR Point Clouds. Remote Sens. 2022, 14, 2254. [Google Scholar] [CrossRef]
- Huang, H.; Brenner, C.; Sester, M. A generative statistical approach to automatic 3D building roof reconstruction from laser scanning data. ISPRS J. Photogramm. Remote Sens. 2013, 79, 29–43. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, W.; Shan, J. Holistic Parametric Reconstruction of Building Models from Point Clouds. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2020, XLIII-B2-2020, 689–695. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Z.; Shan, J. Optimal Model Fitting for Building Reconstruction From Point Clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9636–9650. [Google Scholar] [CrossRef]
- Chen, Z.; Ledoux, H.; Khademi, S.; Nan, L. Reconstructing compact building models from point clouds using deep implicit fields. ISPRS J. Photogramm. Remote Sens. 2022, 194, 58–73. [Google Scholar] [CrossRef]
- Chen, Z.; Shi, Y.; Nan, L.; Xiong, Z.; Zhu, X.X. PolyGNN: Polyhedron-based graph neural network for 3D building reconstruction from point clouds. ISPRS J. Photogramm. Remote Sens. 2024, 218, 693–706. [Google Scholar] [CrossRef]
- Xu, Y.; Stilla, U. Toward Building and Civil Infrastructure Reconstruction From Point Clouds: A Review on Data and Key Techniques. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2857–2885. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, J.; Tan, G. Complex Roof Structure Reconstruction by 3D Primitive Fitting from Point Clouds. J. Geo-Inf. Sci. 2023, 25, 1531–1545. [Google Scholar] [CrossRef]
- Mallis, D.; Ali, S.A.; Dupont, E.; Cherenkova, K.; Karadeniz, A.S.; Khan, M.S.; Kacem, A.; Gusev, G.; Aouada, D. SHARP Challenge 2023: Solving CAD History and pArameters Recovery from Point clouds and 3D scans. Overview, Datasets, Metrics, and Baselines. arXiv 2023, arXiv:2308.15966. [Google Scholar]
- Li, Y.; Wu, X.; Chrysathou, Y.; Sharf, A.; Cohen-Or, D.; Mitra, N.J. GlobFit: Consistently fitting primitives by discovering global relations. In Proceedings of the SIGGRAPH ’11: Special Interest Group on Computer Graphics and Interactive Techniques Conference, Vancouver, BC, Canada, 7–11 August 2011. ACM SIGGRAPH 2011 papers. [Google Scholar] [CrossRef]
- Tran, T.T.; Cao, V.T.; Laurendeau, D. Extraction of Reliable Primitives from Unorganized Point Clouds. 3D Res. 2015, 6, 44. [Google Scholar] [CrossRef]
- Romanengo, C.; Raffo, A.; Biasotti, S.; Falcidieno, B. Recognising geometric primitives in 3D point clouds of mechanical CAD objects. Comput.-Aided Des. 2023, 157, 103479. [Google Scholar] [CrossRef]
- Li, L.; Sung, M.; Dubrovina, A.; Yi, L.; Guibas, L.J. Supervised Fitting of Geometric Primitives to 3D Point Clouds. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar] [CrossRef]
- Sharma, G.; Liu, D.; Maji, S.; Kalogerakis, E.; Chaudhuri, S.; Měch, R. ParSeNet: A Parametric Surface Fitting Network for 3D Point Clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2652–2660. [Google Scholar]
- Le, E.T.; Sung, M.; Ceylan, D.; Mech, R.; Boubekeur, T.; Mitra, N. CPFN: Cascaded Primitive Fitting Networks for High-Resolution Point Clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 7457–7466. [Google Scholar]
- Wu, R.; Xiao, C.; Zheng, C. DeepCAD: A Deep Generative Network for Computer-Aided Design Models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 6772–6782. [Google Scholar]
- Li, P.; Guo, J.; Zhang, X.; Yan, D.m. SECAD-Net: Self-Supervised CAD Reconstruction by Learning Sketch-Extrude Operations. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023. [Google Scholar]
- Ma, W.; Chen, S.; Lou, Y.; Li, X.; Zhou, X. Draw Step by Step: Reconstructing CAD Construction Sequences from Point Clouds via Multimodal Diffusion. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–22 June 2024; pp. 27144–27153. [Google Scholar] [CrossRef]
- Xu, X.; Jayaraman, P.K.; Lambourne, J.G.; Willis, K.D.D.; Furukawa, Y. Hierarchical Neural Coding for Controllable CAD Model Generation. arXiv 2023, arXiv:2307.00149. [Google Scholar]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object Detection with Transformers. In Proceedings of the Computer Vision—ECCV 2020, Glasgow, UK, 23–28 August 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 213–229. [Google Scholar]
- Yu, X.; Rao, Y.; Wang, Z.; Liu, Z.; Lu, J.; Zhou, J. Pointr: Diverse point cloud completion with geometry-aware transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 12498–12507. [Google Scholar]
- Willis, K.D.D.; Pu, Y.; Luo, J.; Chu, H.; Du, T.; Lambourne, J.G.; Solar-Lezama, A.; Matusik, W. Fusion 360 Gallery: A Dataset and Environment for Programmatic CAD Construction from Human Design Sequences. arXiv 2021, arXiv:2010.02392. [Google Scholar] [CrossRef]
- Paviot, T.; Feringa, J. pythonOCC–3D CAD for Python. October 2017. Available online: http://www.pythonocc.org (accessed on 1 January 2008).
- Qi, C.; Yi, L.; Su, H.; Guibas, L. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. arXiv 2017, arXiv:1706.02413. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2023, arXiv:1706.03762. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar] [CrossRef]
- Koch, S.; Matveev, A.; Jiang, Z.; Williams, F.; Artemov, A.; Burnaev, E.; Alexa, M.; Zorin, D.; Panozzo, D. ABC: A Big CAD Model Dataset For Geometric Deep Learning. arXiv 2019, arXiv:1812.06216. [Google Scholar]
- Guerrero, J.; Mantelli, L.; Naqvi, S.B. Cloud-based CAD parametrization for design space exploration and design optimization in numerical simulations. Fluids 2020, 5, 36. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: New York, NY, USA, 2019; Volume 32. [Google Scholar]
- Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. arXiv 2017, arXiv:1711.05101. [Google Scholar] [CrossRef]
- Seff, A.; Zhou, W.; Richardson, N.; Adams, R. Vitruvion: A Generative Model of Parametric CAD Sketches. arXiv 2021, arXiv:2109.14124. [Google Scholar]
- Chen, Z.; Zhang, H. Learning Implicit Fields for Generative Shape Modeling. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar] [CrossRef]
- Uy, M.A.; Chang, Y.Y.; Sung, M.; Goel, P.; Lambourne, J.; Birdal, T.; Guibas, L. Point2Cyl: Reverse Engineering 3D Objects from Point Clouds to Extrusion Cylinders. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 11840–11850. [Google Scholar] [CrossRef]
- Ren, D.; Zheng, J.; Cai, J.; Li, J.; Zhang, J. ExtrudeNet: Unsupervised Inverse Sketch-and-Extrude for Shape Parsing; Springer Nature: Cham, Switzerland, 2022. [Google Scholar]
Command | Parameters |
---|---|
∅ | |
L (Line) | x, y: line endpoint |
A (Arc) | x, y: arc endpoint |
, : arc midpoint | |
R (Circle) | x, y: circle center |
r: radius | |
E (Extrude) | : sketch plane orientation |
: sketch plane origin | |
: extrusion distances toward both sides | |
b: Boolean type | |
s: sketch scale | |
∅ |
Methods | ||||||
---|---|---|---|---|---|---|
Point2Cyl [65] | 31.98% | 27.94% | 0.518 | 1.065 | 0.791 | 27.96 |
ExtrudeNet [66] | 24.46% | 21.83% | 0.614 | 1.117 | 0.776 | 36.14 |
SECAD-Net [49] | 33.18% | 28.81% | 0.437 | 1.079 | 0.806 | 34.18 |
DeepCAD [48] | 79.49% | 70.19% | 0.898 | 1.883 | 0.708 | 7.16 |
HNC-CAD [51] | 81.27% | 73.41% | 0.827 | 1.064 | 0.711 | 6.56 |
Our Method | 93.27% | 83.97% | 0.410 | 0.607 | 0.819 | 4.97 |
Methods | Hausdorff Distance | Chamfer Distance |
---|---|---|
City3D [33] | 0.238 | 0.719 |
PolyFit [32] | 0.191 | 0.675 |
Point2Poly [37] | 0.160 | 0.516 |
PolyGNN [38] | 0.107 | 0.218 |
Ours | 0.096 | 0.213 |
Dropping Rate | Hausdorff Distance | Chamfer Distance |
---|---|---|
0% | 0.107 | 0.218 |
5% | 0.153 | 0.273 |
10% | 0.201 | 0.389 |
15% | 0.307 | 0.417 |
20% | 0.607 | 0.961 |
25% | 0.607 | 0.961 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Liu, H.; Deng, F. Reconstructing Geometric Models from the Point Clouds of Buildings Based on a Transformer Network. Remote Sens. 2025, 17, 359. https://doi.org/10.3390/rs17030359
Wang C, Liu H, Deng F. Reconstructing Geometric Models from the Point Clouds of Buildings Based on a Transformer Network. Remote Sensing. 2025; 17(3):359. https://doi.org/10.3390/rs17030359
Chicago/Turabian StyleWang, Cheng, Haibing Liu, and Fei Deng. 2025. "Reconstructing Geometric Models from the Point Clouds of Buildings Based on a Transformer Network" Remote Sensing 17, no. 3: 359. https://doi.org/10.3390/rs17030359
APA StyleWang, C., Liu, H., & Deng, F. (2025). Reconstructing Geometric Models from the Point Clouds of Buildings Based on a Transformer Network. Remote Sensing, 17(3), 359. https://doi.org/10.3390/rs17030359