European Snow Cover Characteristics between 2000 and 2011 Derived from Improved MODIS Daily Snow Cover Products
Abstract
:1. Introduction
2. Base Data and Study Region
2.1. Satellite Data
2.2. Snow Depth Station Data
2.3. Study Region
3. Methods
3.1. Estimation of Snow Cover Status below Clouds and during Polar Darkness
3.2. Calculation of SCD, SCS, and SCM
3.3. Accuracy Assessment
4. Results and Discussion
4.1. Results of the Accuracy Assessment
4.2. SCD, SCS and SCM for Europe
5. Conclusions
Acknowledgments
References
- Zhang, Y.; Yan, S.; Lu, Y. Snow cover monitoring using MODIS data in Liaoning Province, Northeastern China. Remote Sens 2010, 2, 777–793. [Google Scholar]
- Klein, A.G.; Hall, D.K.; Nolin, A.W. Development of a Prototype Snow Albedo Algorithm for the NASA MODIS Instrument. Proceedings of 57th Eastern Snow Conference, Syracuse, NY, USA, 17–19 May 2000; pp. 143–158.
- Jain, S.K.; Goswami, A.; Saraf, A.K. Accuracy assessment of MODIS, NOAA and IRS data in snow cover mapping under Himalayan conditions. Int. J. Remote Sens 2008, 29, 5863–5878. [Google Scholar]
- Muntán, E.; Garcia, C.; Marti, G.; Gutiérrez, E. Reconstructing snow avalanches in the Southeastern Pyrenees. Nat. Hazard. Earth Sys 2009, 9, 1599–1612. [Google Scholar]
- Zhao, Q.; Liu, Z.; Ye, B.; Wei, Z.; Fang, S. A snowmelt runoff forecasting model coupling WRF and DHSVM. Hydrol. Earth Syst. Sci 2009, 13, 1897–1906. [Google Scholar]
- Cherry, J.; Cullen, H.; Visbeck, M.; Small, A.; Uvo, C. Impacts of the North Atlantic Oscillation on Scandinavian hydropower production and energy markets. Water Resour. Manag 2005, 19, 673–691. [Google Scholar]
- Vikhamar, D.; Solberg, R. Snow-cover mapping in forests by constrained linear spectral unmixing of MODIS data. Remote Sens. Environ 2003, 88, 309–323. [Google Scholar]
- Beniston, M. Variations of snow depth and duration in the Swiss Alps over the last 50 years: Links to changes in large-scale climatic forcings. Climatic Change 1997, 36, 281–300. [Google Scholar]
- Brown, R.D. Northern Hemisphere snow cover variability and change, 1915–97. J. Climate 2000, 13, 2339–2355. [Google Scholar]
- Brodzik, M.J.; Armstrong, R.L.; Weatherhead, E.C.; Savoie, M.H.; Knowles, K.; Robinson, D. Regional trend analysis of satellite-derived snow extent and global temperature anomalies. Eos Trans. AGU 2006, 87, U33A–0011. [Google Scholar]
- Foster, J.; Liston, G.; Koster, R.; Essery, R.; Behr, H.; Dumenil, L.; Verseghy, D.; Thompson, S.; Pollard, D.; Cohen, J. Snow cover and snow mass intercomparisons of general circulation models and remotely sensed datasets. J. Climate 1996, 9, 409–426. [Google Scholar]
- Groisman, P.Y.; Knight, R.W.; Razuvaev, V.N.; Bulygina, O.N.; Karl, T.R. State of the ground: Climatology and changes during the past 69 years over Northern Eurasia for a rarely used measure of snow cover and frozen land. J. Climate 2006, 19, 4933–4955. [Google Scholar]
- Lemke, P.; Ren, J.; Alley, R.; Allison, I.; Carrasco, J.; Flato, G.; Fujii, Y.; Kaser, G.; Mote, P.; Thomas, R.; Zhang, T. Chapter 4: Observations: Changes in Snow, Ice and Frozen Ground. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M.C., Averyt, K., Tignor, M., Miller, H.L., Eds.; Intergovernmental Panel on Climate Change: Cambridge, UK and New York, NY, USA, 2007. [Google Scholar]
- Barry, R.G.; Armstrong, R.; Callaghan, T.; Cherry, J.; Gearheard, S.; Nolin, A.; Russel, D.; Zaeckler, C. Snow. In Global Outlook for Ice and Snow; United Nations Environment Programme: Herfordshire, UK, 2007; pp. 39–62. [Google Scholar]
- Jylhä, K.; Fronzek, S.; Tuomenvirta, H.; Carter, T. R.; Ruosteenoja, K. Changes in frost and snow in Europe and Baltic sea ice by the end of the 21st century. Climatic Change 2007, 86, 441–462. [Google Scholar]
- Brown, R.; Mote, P. The response of Northern Hemisphere snow cover to a changing climate. J. Climate 2009, 22, 2124–2145. [Google Scholar]
- Venäläinen, A. Estimation of road salt use based on winter air temperature. Meteorol. Appl 2001, 8, 333–338. [Google Scholar]
- Räisänen, J.; Eklund, J. 21st Century changes in snow climate in Northern Europe: A high-resolution view from ENSEMBLES regional climate models. Clim. Dyn 2012, 38, 2575–2591. [Google Scholar]
- Jasper, K.; Calanca, P.; Gyalistras, D.; Fuhrer, J. Differential impacts of climate change on the hydrology of two alpine river basins. Clim. Res 2004, 26, 113–129. [Google Scholar]
- Dietz, A.J.; Kuenzer, C.; Gessner, U.; Dech, S. Remote sensing of snow—A review of available methods. Int. J. Remote Sens 2012, 33, 4094–4134. [Google Scholar]
- Groisman, P.Y.; Karl, T.R.; Knight, R.W. Changes of snow cover, temperature, and radiative heat balance over the Northern Hemisphere. J. Climate 1994, 7, 1633–1656. [Google Scholar]
- Foppa, N.; Seiz, G. Inter-annual variations of snow days over Switzerland from 2000–2010 derived from MODIS satellite data. The Cryosphere 2012, 6, 331–342. [Google Scholar]
- Falarz, M. Variability and trends in the duration and depth of snow cover in Poland in the 20th Century. Int. J. Climatol 2004, 24, 1713–1727. [Google Scholar]
- Schuler, D.V.; Beldring, S.; Forland, E.J.; Roald, L.A.; Skaugen, T.E. Snow Cover and Snow Water Equivalent in Norway: Current Conditions (1961–1990) and Scenarios for the Future (2071–2100); Met.No Report no. 01/2006; Norwegian Meteorological Institute: Oslo, Norway, 2006. [Google Scholar]
- Systematic Observation Requirements for Satellite-Based Data Products for Climate. Supplemental Details to the Satellite-Based Component of the Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC—2011 Update; WMO GCOS-154; WMO GCOS: Geneva, Switzerland, 2011; p. 127.
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ 1995, 54, 127–140. [Google Scholar]
- Hall, D.K.; Riggs, G.A. Accuracy assessment of the MODIS snow products. Hydrol. Process 2007, 21, 1534–1547. [Google Scholar]
- Klein, A.; Barnett, A.C. Validation of daily MODIS snow cover maps of the Upper Rio Grande River Basin for the 2000–2001 snow year. Remote Sens. Environ 2003, 86, 162–176. [Google Scholar]
- Maurer, E.P.; Rhoads, J.D.; Dubayah, R.O.; Lettenmaier, D.P. Evaluation of the snow-covered area data product from MODIS. Hydrol. Process 2003, 17, 59–71. [Google Scholar]
- Parajka, J.; Blöschl, G. Validation of MODIS snow cover images over Austria. Hydrol. Earth Syst. Sci 2006, 10, 679–689. [Google Scholar]
- Sorman, A.Ü.; Akyürek, Z.; Sensoy, A.; Sorman, A.A.; Tekeli, A.E. Commentary on comparison of MODIS snow cover albedo products with ground observations over the mountainous terrain in Turkey. Hydrol. Earth Syst. Sci 2007, 11, 1353–1360. [Google Scholar]
- Huang, X.; Liang, T.; Zhang, X.; Guo, Z. Validation of MODIS snow cover products using Landsat and ground measurements during the 2001–2005 snow seasons over Northern Xinjiang, China. Int. J. Remote Sens 2011, 32, 133–152. [Google Scholar]
- Simic, A.; Fernandes, R.; Brown, R.; Romanov, P.; Park, W. Validation of VEGETATION, MODIS, and GOES + SSM/I snow-cover products over Canada based on surface snow depth observations. Hydrol. Process 2004, 18, 1089–1104. [Google Scholar]
- Crane, R.G.; Anderson, M.R. Satellite discrimination of snow/cloud surfaces. Int. J. Remote Sens 1984, 5, 213–223. [Google Scholar]
- Riggs, G.A.; Hall, D.K. Snow Mapping with the MODIS Aqua Instrument. Proceedings of 61st Eastern Snow Conference, Portland, OR, USA, 9–11 May 2004.
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. MODIS/Terra Snow Cover Daily L3 Global 500m Grid V005, September 2000 to August 2011; National Snow and Ice Data Center: Boulder, CO, USA, 2000; Digital media. [Google Scholar]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. MODIS/Aqua Snow Cover Daily L3 Global 500m Grid V005, July 2002 to August 2011; National Snow and Ice Data Center: Boulder, CO, USA, 2003; Digital media. [Google Scholar]
- Metadata and Service Discovery Tool Reverb. Available online: http://reverb.echo.nasa.gov/reverb (accessed on 2 June 2012).
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. CGIAR-CSI SRTM 90m Database, Hole-filled SRTM for the globe Version 4;; 2008. Available online: http://srtm.csi.cgiar.org (accessed on 31 July 2012).
- European Climate Assessment & Dataset ECA&D. Available online: http://eca.knmi.nl (accessed on 14 June 2012).
- Klein Tank, A.M.G.; Wijngaard, J.B.; Können, G.P.; Böhm, R.; Demarée, G.; Gocheva, A.; Mileta, M.; Pashiardis, S.; Hejkrlik, L.; Kern-Hansen, C.; Heino, R.; Bessemoulin, P.; et al. Daily dataset of 20th-Century surface air temperature and precipitation series for the European climate assessment. Int. J. Climatol 2002, 22, 1441–1453. [Google Scholar]
- Kottek, P.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z 2006, 15, 259–263. [Google Scholar]
- Parajka, J.; Blöschl, G. Spatio-temporal combination of MODIS images—Potential for snow cover mapping. Water Resour. Res 2008, 44, 1–13. [Google Scholar]
- Wang, X.; Xie, H. New methods for studying the spatiotemporal variation of snow cover based on combination products of MODIS Terra and Aqua. J. Hydrol 2009, 371, 192–200. [Google Scholar]
- Wang, X.; Xie, H.; Liang, T. Development and assessment of combined Terra and Aqua MODIS snow cover products in Colorado Plateau, USA and Northern Xinjiang, China. J. Appl. Remote Sens 2009, 3, 1–15. [Google Scholar]
- Khalsa, S.J.S.; Aizen, V.B. Variability in Central Asian seasonal snow cover during the MODIS period of record. Proceedings of 2008 IEEE International Geoscience & Remote Sensing Symposium, Boston, MA, USA, 6–11 July 2008; 10, pp. 1–2.
- Gafurov, A.; Bárdossy, A. Cloud removal methodology from MODIS snow cover product. Hydrol. Earth Syst. Sci 2009, 13, 1361–1373. [Google Scholar]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; Digirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ 2002, 83, 181–194. [Google Scholar]
- Holzhauser, H.; Magny, M.; Zumbühl, H.J. Glacier and lake-level variations in west-central Europe over the last 3500 years. The Holocene 2005, 15, 789–801. [Google Scholar]
- Kelly, M.A.; Kubik, P.W.; Von Blanckenburg, F.; Schlüchter, C. Surface exposure dating of the Great Aletsch Glacier Egesen moraine system, western Swiss Alps, using the cosmogenic nuclide 10Be. J. Quaternary Sci 2004, 19, 431–441. [Google Scholar]
- World Glacier Monitoring Service (WGMS). Fluctuations of Glaciers 2000–2005; Haeberli, W., Zemp, M., Hoelzle, M., Eds.; ICSU(FAGS)/IUGG(IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, University of Zurich: Zunich, Switzerland, 2008; Volume IX. [Google Scholar]
- Paul, F.; Frey, H.; Le Bris, R. A new glacier inventory for the European Alps from Landsat TM scenes of 2003: challenges and results. Ann. Glaciol 2011, 52, 144–152. [Google Scholar] [Green Version]
- Croci-Maspoli, M.; Davies, H.C. Key Dynamical features of the 2005/2006 European winter. Mon. Weather Rev 2008, 137, 664–678. [Google Scholar]
- Pinto, J.G.; Brücher, T.; Fink, A.H.; Krüger, A. Extraordinary snow accumulations over parts of central Europe during the winter of 2005/06 and weather-related hazards. Weather 2007, 62, 16–21. [Google Scholar]
- ESA News: Satellites Monitor Icelandic Ash Plume. Available online: http://www.esa.int/esaCP/SEM3WUMSNNG_index_0.html (accessed on 11 June 2012).
- Flentje, H.; Claude, H.; Elste, T.; Gilge, S.; Köhler, U.; Pass-Dülmer, C.; Steinbrecht, W.; Thomas, W.; Werner, A.; Fricke, W. The Eyjafjallajökull eruption in April 2010—Detection of volcanic plume using in situ measurements, ozone sondes and lidar-ceilometer profiles. Atmos. Chem. Phys 2010, 10, 10085–10092. [Google Scholar]
- Bartnicki, J.; Hov, O.; Valdebenito, A.; Gauss, M. Eyjafjallajökull eruption—Calculating the movement of ash. Meta 2010, 2, 4–10. [Google Scholar]
- Gerland, S.; Aars, J.; Bracegirdle, T.; Carmack, E.; Hop, H.; Hovelsrud, G.K.; Kovacs, K.; Lydersen, C.; et al. Ice in the Sea. In Global Outlook for Ice and Snow; United Nations Environment Programme: Herfordshire, UK, 2007; pp. 39–62. [Google Scholar]
Year | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 |
MOD10A1 | 5 | 12 | 10 | 10 | 1 | 0 |
MYD10A1 | 16 | 1 | 0 | 0 | ||
Year | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 |
MOD10A1 | 1 | 0 | 5 | 2 | 0 | 0 |
MYD10A1 | 0 | 1 | 0 | 0 | 0 | 0 |
Share and Cite
Dietz, A.J.; Wohner, C.; Kuenzer, C. European Snow Cover Characteristics between 2000 and 2011 Derived from Improved MODIS Daily Snow Cover Products. Remote Sens. 2012, 4, 2432-2454. https://doi.org/10.3390/rs4082432
Dietz AJ, Wohner C, Kuenzer C. European Snow Cover Characteristics between 2000 and 2011 Derived from Improved MODIS Daily Snow Cover Products. Remote Sensing. 2012; 4(8):2432-2454. https://doi.org/10.3390/rs4082432
Chicago/Turabian StyleDietz, Andreas J., Christoph Wohner, and Claudia Kuenzer. 2012. "European Snow Cover Characteristics between 2000 and 2011 Derived from Improved MODIS Daily Snow Cover Products" Remote Sensing 4, no. 8: 2432-2454. https://doi.org/10.3390/rs4082432
APA StyleDietz, A. J., Wohner, C., & Kuenzer, C. (2012). European Snow Cover Characteristics between 2000 and 2011 Derived from Improved MODIS Daily Snow Cover Products. Remote Sensing, 4(8), 2432-2454. https://doi.org/10.3390/rs4082432