Single and Multi-Date Landsat Classifications of Basalt to Support Soil Survey Efforts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data Collection
2.3. Image Acquisition and Preprocessing
2.4. Image Processing
2.4.1. RCM Classifications
2.4.2. RF Classifications
3. Results and Discussion
3.1. RCM Classifications
3.2. RF Classifications
3.3. Comparative Results
3.4. Limitations
3.5. Further Research
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Jarmer, T.; Hill, J.; Lavee, H.; Pariente, S. Mapping topsoil organic carbon in non-agricultural semi-arid and arid ecosystems of Israel. Photogramm. Eng. Remote Sens 2010, 76, 85–94. [Google Scholar]
- Leverington, D.W.; Moon, W.M. Landsat-TM-based discrimination of lithological units associated with Purtuniq Ophiolite, Quebec, Canada. Remote Sens 2012, 4, 1208–1231. [Google Scholar]
- Nield, S.J.; Boettinger, J.L.; Ramsey, R.D. Digitally mapping gypsic and natric soil areas using Landsat ETM data. Soil Sci. Soc. Am. J 2007, 71, 245–252. [Google Scholar]
- Mshiu, E.E. Landsat remote sensing data as an alternative approach for geological mapping in Tanzania: A case study in the Rungwe volcanic province, South-Western Tanzania. Tanz. J. Sci 2011, 37, 26–36. [Google Scholar]
- Frazier, B.E.; Cheng, Y. Remote sensing of soils in the eastern Palouse region with Landsat Thematic Mapper. Remote Sens. Environ 1989, 28, 317–325. [Google Scholar]
- Harris, J.R.; Grunsky, E.C.; He, J.; Gorodetzky, D.; Brown, N. A robust, cross-validation classification method (RCM) for improved mapping accuracy and confidence metrics. Can. J. Remote Sens 2012, 38, 69–90. [Google Scholar]
- Behnia, P.; Harris, J.R.; Rainbird, R.H.; Williamson, M.C.; Sheshpari, M. Remote predictive mapping of bedrock geology using image classification of Landsat and SPOT data, western Minto Inlier, Victoria Island, Northwester Territories, Canada. Int. J. Remote Sens 2012, 33, 6876–6903. [Google Scholar]
- Gaber, A.; Koch, M.; El-Baz, F. Textural and compositional characterization of Wadi Feiran deposits, Sinai Peninsula, Egypt, using Radarsat-1, PALSAR, SRTM and ETM+ data. Remote Sens 2010, 2, 52–75. [Google Scholar]
- Inzana, J.; Kusky, T.; Higgs, G.; Tucker, R. Supervised classifications of Landsat TM band ratio images and Landsat TM band ratio image with radar for geological interpretations of central Madagascar. J. Afr. Earth Sci 2003, 37, 59–72. [Google Scholar]
- Sellers, P.J. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens 1985, 6, 1335–1372. [Google Scholar]
- Loizzo, R.; Sylos Labini, G.; Pappalepore, M.; Pieri, P.; Pasquariello, G.; Antoninetti, M. Multitemporal and Multisensory Signatures Evaluation for Lithologic Classification. Proceedings of International Geoscience and Remote Sensing Symposium (IGARSS ’95), Quantitative Remote Sensing for Science and Applications, Firenze, Italy, 10–14 July 1995; 3, pp. 2509–2211.
- Idawo, C.; Laneve, G. Hyperspectral Analysis of Multispectral ETM+ Data: SMA Using Spectral Field Measurements in Mapping of Emergent Macrophytes. Proceedings of the IEEE Geoscience and Remote Sensing Symposium (IGARSS 2004), Anchorage, AK, USA, 20–24 September 2004; 1, p. 249.
- Van der Meer, F.; de Jong, S.M. Improving the results of spectral unmixing of Landsat Thematic Mapper imagery by enhancing the orthogonality of end-members. Int. J. Remote Sens 2000, 21, 2781–2797. [Google Scholar]
- Zhang, X.; Pazner, M.; Duke, N. Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California). ISPRS J. Photogramm. Remote Sens 2007, 62, 271–282. [Google Scholar]
- De Asis, A.M.; Omasa, K.; Oki, K.; Shimizu, Y. Accuracy and applicability of linear spectral unmixing in delineating potential erosion areas in tropical watersheds. Int. J. Remote Sens 2008, 29, 4151–4171. [Google Scholar]
- Gill, T.K.; Phinn, S.R. Improvements to ASTER-derived fractional estimates of bare ground in a Savanna Rangeland. IEEE Trans. Geosci. Remote Sens 2009, 47, 662–670. [Google Scholar]
- Leverington, D.W. Discrimination of sedimentary lithologies using Hyperion and Landsat Thematic Mapper data: A case study at Melville Island, Canadian High Arctic. Int. J. Remote Sens 2010, 31, 233–260. [Google Scholar]
- Moore, C.; Hoffman, G.; Glenn, N. Quantifying basalt rock outcrops in NRCS soil map units using Landsat 5 TM data. Soil Surv. Horizons 2007, 48, 59–62. [Google Scholar]
- Southworth, J. An assessment of Landsat TM band 6 thermal data for analysing land cover in tropical dry forest regions. Int. J. Remote Sens 2004, 25, 689–706. [Google Scholar]
- Knick, S.T.; Rotenberry, J.T.; Zarriello, T.J. Supervised classification of Landsat Thematic Mapper imagery in a semi-arid rangeland by nonparametric discriminant analysis. Photogramm. Eng. Remote Sens 1997, 63, 79–86. [Google Scholar]
- Martínez-Montoya, J.F.; Herrero, J.; Casterad, M.A. Mapping categories of gypseous lands in Mexico and Spain using Landsat imagery. J. Arid Environ 2010, 74, 978–986. [Google Scholar]
- Singh, N.; Glenn, N.F. Multitemporal spectral analysis for cheatgrass (Bromus tectorum) classification. Int. J. Remote Sens 2009, 30, 3441–3462. [Google Scholar]
- Key, T.; Warner, T.A.; McGraw, J.B.; Fajvan, M.A. A comparison of multispectral and multitemporal information in high spatial resolution imagery for classification of individual tree species in a temperate hardwood forest. Remote Sens. Environ 2001, 75, 100–112. [Google Scholar]
- Song, C.; Woodcock, C.E. Monitoring forest succession with multitemporal Landsat images: Factors of uncertainty. IEEE Trans. Geosci. Remote Sens 2003, 41, 2557–2567. [Google Scholar]
- Pal, M.; Mather, P.M. Support vector machines for classification in remote sensing. Int. J. Remote Sens 2005, 26, 1007–1011. [Google Scholar]
- Ham, C.; Chen, Y.; Crawford, M.M.; Ghosh, J. Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens 2005, 43, 492–501. [Google Scholar]
- Hughes, G.F. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 1968, 14, 55–63. [Google Scholar]
- Raudys, S.J.; Jain, A.K. Small sample size effects in statistical pattern recognition: Recommendations for practitioners. IEEE Trans. Pattern Anal. Mach. Intell 1991, 13, 252–264. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn 2001, 45, 5–32. [Google Scholar]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens 2005, 26, 217–222. [Google Scholar]
- Hudak, H.T.; Crookston, N.L.; Evans, J.S.; Hall, D.E.; Falkowski, M.J. Nearest neighbor imputation of species-level, plot scale forest structure attributes from LiDAR data. Remote Sens. Environ 2008, 112, 2232–2245. [Google Scholar]
- Digital Atlas of Idaho. Available online: http://imnh.isu.edu/digitalatlas/ (accessed on 10 January 2012).
- US Department of Agriculture, Natural Resources Conservation Service. National Soil Survey Handbook (NSSH); Natural Resources Conservation Service, National Soil Survey Center: Lincoln, NE, USA, 2006. [Google Scholar]
- Hawth’s Analysis Tools for ArcGIS. Available online: http://www.spatialecology.com/htools/tooldesc.php (accessed on 10 January 2012).
- US Department of Agriculture, Natural Resources Conservation Service. Field Book for Describing and Sampling Soils, ed. 2.0; Schoeneberger, P.J., Wysocki, D.A., Benham, E.C., Broderson, W.D., Eds.; Natural Resources Conservation Service, National Soil Survey Center: Lincoln, NE, USA, 2002. [Google Scholar]
- ITT Visual Information Solutions. Environment for Visualizing Images (ENVI) 4.8; ITT Visual Information Solutions: Boulder, CO, USA, 2007. [Google Scholar]
- Environmental Systems Research Institute (ESRI). ArcGIS 10.1; ESRI: Redlands, CA, USA, 2005. [Google Scholar]
- Adler-Golden, S.M.; Matthew, M.W.; Bernstein, L.S.; Levine, R.Y.; Berk, A.; Richtsmeier, S.C.; Acharya, P.K.; Anderson, G.P.; Felde, G.; Gardner, J.; et al. Atmospheric correction for short-wave spectral imagery based on MODTRAN4. Proc. SPIE 1999, 3753, 61–69. [Google Scholar]
- Coll, C.; Galve, J.M.; Sánchez, J.M.; Caselles, V. Validation of Landsat-7/ETM+ thermal-band calibration and atmospheric correction with ground-based measurements. IEEE Trans. Geosci. Remote Sens 2010, 48, 547–555. [Google Scholar]
- Crist, E.P.; Cicone, R.C. Application of the tasseled cap concept to simulated thematic mapper data. Photogramm. Eng. Remote Sens 1984, 50, 343–352. [Google Scholar]
- Richards, J.A.; Jia, X. Remote Sensing Digital Image Analysis; Springer-Verlag: Berlin, Germany, 2006. [Google Scholar]
- Liu, Q.J.; Takamura, T.; Takeuchi, N.; Shoa, G. Mapping of boreal vegetation of a temperate mountain in China by multi-temporal Landsat TM imagery. Int. J. Remote Sens 2002, 23, 3385–3405. [Google Scholar]
- Kuemmerle, T.; Roder, A.; Hill, J. Separating grassland shrub and vegetation by multidate pixel-adaptive spectral mixture analysis. Int. J. Remote Sens 2006, 27, 3251–3271. [Google Scholar]
- Wang, J.; Lang, P. Detection of cypress canopies in the florida panhandle using subpixel analysis and GIS. Remote Sens 2009, 1, 1028–1042. [Google Scholar]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Wadsworth, Inc: Pacific Grave, CA, USA, 1984. [Google Scholar]
- Cohen, W.B.; Spies, T.A. Estimating structural attributes of Douglas-Fir/Western Hemlock forest stands from Landsat and SPOT imagery. Remote Sens. Environ 1992, 41, 1–17. [Google Scholar]
- Todd, S.W.; Hoffer, R.M.; Milchunas, D.G. Biomass estimation on grazed and ungrazed rangelands using spectral indices. Int. J. Remote Sens 1998, 19, 427–438. [Google Scholar]
- Hepinstall-Cymerman, J.; Coe, S.; Alberti, M. Using urban landscape trajectories to develop a multi-temporal land cover database to support ecological modeling. Remote Sens 2009, 1, 1353–1379. [Google Scholar]
- Powell, R.L.; Roberts, D.A.; Dennison, P.E.; Hess, L.L. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil. Remote Sens. Environ 2007, 106, 253–267. [Google Scholar]
- Van der Veen, C.J.; Csatho, B.M. Spectral characteristics of Greenland lichens. Geographie Physique et Quaternaire 2005, 59, 63–73. [Google Scholar]
- Karnieli, A.; Gabai, A.; Ichoku, C.; Zaady, E.; Shachak, M. Temporal dynamics of soil and vegetation spectral responses in a semi-arid environment. Int. J. Remote Sens 1996, 23, 4073–4078. [Google Scholar]
- Mitchell, J.; Glenn, N. Subpixel abundance estimates in mixture-tuned matched filtering classifications of leafy spurge (Euphorbia esula L.). Int. J. Remote Sens 2009, 30, 6099–6119. [Google Scholar]
- Huemmrich, K.F.; Gamon, J.A.; Tweedie, C.E.; Campbell, P.K.E.; Landis, D.R.; Middleton, E.M. Arctic tundra vegetation functional types based on photosynthetic physiology and optical properties. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2013, 6, 265–275. [Google Scholar]
Basalt Average (User’s|Producer’s) | Non-Basalt Average (User’s|Producer’s) | Avg. Overall Average Accuracy | Average Kappa Coefficient | |
---|---|---|---|---|
15 May 2007 (13 bands) | 66.77%|63.50% | 44.97%|48.31% | 57.70% | 0.12 |
2 July 2007 (13 bands) | 66.01%|58.82% | 45.45%|51.38% | 55.98% | 0.10 |
18 July 2007 (13 bands) | 66.28%|68.65% | 49.32%|51.03% | 60.45% | 0.12 |
3 August 2007 (13 bands) | 62.40%|57.03% | 39.55%|44.72% | 52.32% | 0.02 |
20 September 2007 (13 bands) | 59.08%|53.87% | 34.89%|59.02% | 48.58% | −0.06 |
Multitemporal Stack (65 bands) | 66.12%|67.80% | 46.74%|43.89% | 58.67% | 0.12 |
Landsat Data | No. of Bands | Average Log Likelihood | ROC (Area Under Curve) | Non-Basalt Prediction (OOB) Success | Basalt Prediction (OOB) Success | Classification Rate (Overall) | Best Variables |
---|---|---|---|---|---|---|---|
5 time series (5/15/2007 to 9/20/2007) | 65 | 0.57 | 0.79 | 82.93% | 61.76% | 72.35% | Greenness (7/2/2007) Band 4 (0.83 μm 7/18/2007) Greenness (9/20/2007) NDVI |
15 May 2007 | 13 | 0.76 | 0.63 | 75.61% | 50.00% | 62.81% | Greenness Brightness Band 7 (2.215 μm) |
2 July 2007 | 13 | 0.65 | 0.73 | 85.37% | 55.88% | 70.63% | Greenness Band 4 (0.83 μm) Wetness NDVI |
18 July 2007 | 13 | 0.66 | 0.72 | 80.49% | 61.76% | 71.13% | Band 4 (0.83 μm) Greenness Band 1 (0.485 μm) |
3 August 2007 | 13 | 0.69 | 0.66 | 73.17% | 41.18% | 57.18% | Wetness Band 4 (0.83 μm) Greenness Band Ratio 4:7 (0.83 μm: 2.215 μm) |
20 September 2007 | 13 | 0.74 | 0.64 | 70.73% | 54.41% | 62.57% | Greenness Band 4 (0.83 μm) Band Ratio 4:7 (0.83 μm: 2.215 μm) |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Mitchell, J.J.; Shrestha, R.; Moore-Ellison, C.A.; Glenn, N.F. Single and Multi-Date Landsat Classifications of Basalt to Support Soil Survey Efforts. Remote Sens. 2013, 5, 4857-4876. https://doi.org/10.3390/rs5104857
Mitchell JJ, Shrestha R, Moore-Ellison CA, Glenn NF. Single and Multi-Date Landsat Classifications of Basalt to Support Soil Survey Efforts. Remote Sensing. 2013; 5(10):4857-4876. https://doi.org/10.3390/rs5104857
Chicago/Turabian StyleMitchell, Jessica J., Rupesh Shrestha, Carol A. Moore-Ellison, and Nancy F. Glenn. 2013. "Single and Multi-Date Landsat Classifications of Basalt to Support Soil Survey Efforts" Remote Sensing 5, no. 10: 4857-4876. https://doi.org/10.3390/rs5104857
APA StyleMitchell, J. J., Shrestha, R., Moore-Ellison, C. A., & Glenn, N. F. (2013). Single and Multi-Date Landsat Classifications of Basalt to Support Soil Survey Efforts. Remote Sensing, 5(10), 4857-4876. https://doi.org/10.3390/rs5104857