Dynamic Hydrological Modeling in Drylands with TRMM Based Rainfall
Abstract
:1. Introduction: Motivation and Objectives
2. Background and Rationale
2.1. Description of the DryMOD Model: Spatial and Temporal Scales
2.2. Catchment-Based Modeling of Water Balance in Drylands with DryMOD
2.3. Pilot Study Regions
3. Data and Methods
3.1. Rainfall Forcing
3.2. Model Parameterization and Boundary Conditions
3.2.1. Soil Hydraulic Parameters
3.2.2. Potential Evapotranspiration
3.2.3. Actual Evapotranspiration
3.2.4. Soil Moisture
3.2.5. Infiltration and Groundwater Recharge
3.2.6. Runoff
3.3. DryMOD: Model Stabilization, Applications, and Sensitivity Analysis
3.3.1. Model Initialization and Stabilization
3.3.2. Model Applications to Pilot Study Regions
3.4. Sensitivity Analysis
4. Results and Discussion
4.1. Model Applications to the Pilot Study Regions
4.1.1. Sensitivity of Rainfall Simulations to TRMM-Based Input Datasets
4.1.2. Sensitivity of Runoff and Soil Moisture to Rainfall Forcing with TRMM-Based Input Datasets
Runoff Generating Areas
Soil Moisture Distribution
4.1.3. Runoff and Soil Moisture Dynamics over Selected Ground Weather Stations
4.1.4. Runoff Generating Rainfall Intensities
4.2. Sensitivity Analysis of Runoff and Soil Moisture to Soil Hydraulic Parameters
5. Conclusions
- Improved realism of rainfall simulation allows for realistic estimation of the runoff ratio and help to identify runoff-generating areas in both study regions, representing differing dryland conditions in the belts north and south of the Sahara. Analysis of the runoff response to rainfall shows seasonal variability and provides information potentially useful for planning of water harvesting activities in the study regions.
- The sensitivity analysis revealed that changes in porosity of the topsoil and subsoil exert the maximum changes in runoff and soil moisture. This highlights the importance of soil parameterization through better information on soil properties at the regional-scale where detailed maps of hydrological fluxes are important for optimal planning of agricultural activities.
Acknowledgments
Conflicts of Interest
References
- Cudennec, C.; Leduc, C.; Koutsoyiannis, D. Dryland hydrology in Mediterranean regions—A review. Hydrol. Sci. J 2007, 52, 1077–1087. [Google Scholar]
- Bolle, H.J.; Andre, J.C.; Arrue, J.L.; Barth, H.K.; Bessemoulin, P.; Brasa, A.; DeBruin, H.A.R.; Cruces, J.; Dugdale, G.; Engman. etc.. EFEDA: European field experiment in a desertification threatened area. Ann. Geophys 1993, 11, 173–189. [Google Scholar]
- Helldén, U. Case Studies of Desertification Monitoring: A Discussion of EU Initiatives. Proceedings of Local & Regional Desertification Indicators in a Global Perspective: AIDCCD-Active Exchange of Experience on Indicators and Development of Prespectives in the Context of UNCCD, Beijing, China, 16–18 May 2005.
- Leemans, R.; Kleidon, A. Regional and Global Assessment of the Dimensions of Desertification. In Global Desertification: Do Humans Cause Deserts; Reynolds, J.F., Stafford Smith, D.M., Eds.; Dahlem University Press: Berlin, Germany, 2002; pp. 215–232. [Google Scholar]
- Deus, D.; Gloaguen, R.; Krause, P. Water balance modeling in a semi-arid environment with limited in situ data using remote sensing in Lake Manyara, East African Rift, Tanzania. Remote Sens 2013, 5, 1651–1680. [Google Scholar]
- DeSurvey-IP. DeSurvey: A Surveillance System for Assessing and Monitoring Desertification. Available online: http://www.noveltis.com/desurvey (accessed on 3 December 2013).
- Tarnavsky, E.; Mulligan, M.; Husak, G. Spatial disaggregation and intensity correction of TRMM-based rainfall time series for hydrological applications in dryland catchments. Hydrol. Sci. J 2012, 57, 248–264. [Google Scholar]
- Blöschl, G.; Sivapalan, M. Scale Issues in Hydrological Modelling: A Review. In Scale Issues in Hydrological Modelling; Kalma, J.D., Sivapalan, M., Eds.; Wiley: Chichester, UK, 1995. [Google Scholar]
- Michaud, J.; Sorooshian, S. Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed. Water Resour. Res 1994, 30, 593–605. [Google Scholar]
- Wheater, H. Hydrological Processes in Arid and Semi Arid Areas. In Hydrology of Wadi Systems: IHP Regional Network on Wadi Hydrology in the Arab Region; Wheater, H., Al-Weshah, R.A., Eds.; UNESCO International Hydrological Programme: Paris, France, 2002. [Google Scholar]
- Al-Weshah, R.A. Rainfall-Runoff Analysis and Modelling in Wadi Systems. In Hydrology of Wadi Systems: IHP Regional Network on Wadi Hydrology in the Arab Region; Wheater, H., Al-Weshah, R.A., Eds.; UNESCO International Hydrological Programme: Paris, France, 2002. [Google Scholar]
- Wesseling, C.G.; van Deursen, W.P.A.; de Wit, M. Rhine Basin. In Third Joint European Conference Exhibition on Geographical Information; Hodgson, S., Rumor, M., Harts, J.J., Eds.; IOS Press: Amsterdam, The Netherlands, 1997; pp. 487–496. [Google Scholar]
- Mulligan, M. Global Gridded 1 km TRMM Rainfall Climatology and Derivatives. Version 1.0. Available online: http://geodata.policysupport.org/2b31climatology (accessed on 17 October 2013).
- Mulligan, M. Three-Hourly Rainfall Time Series (from TRMM 3B42). Available online: http://geodata.policysupport.org/rainfall-timeseries (accessed on 17 October 2013).
- Sharma, K.D.; Murthy, J.S.R. A practical approach to rainfall-runoff modelling in arid zone drainage basins. Hydrol. Sci. J 1998, 43, 331–348. [Google Scholar]
- CGIAR-CSI CGIAR-CSI SRTM 90m DEM Digital Elevation Database, Version 3.0. Available online: http://srtm.csi.cgiar.org (accessed on 17 October 2013).
- Hlaoui, Z. Les Fortes Pluies Journalieres. In Atlas de L’Eau en Tunisie; Henia, L., Ed.; Université de Tunis: Tunis, Tunisia, 2008. [Google Scholar]
- Ouessar, M. Watershed of Zeuss-Koutine in Médenine, Tunisia: Overview and Assessment Methodology. In International Workshop on “Combating Desertification: Sustainable Management of Marginal Drylands (SUMAMAD)”; UNU-UNSCO-ICARDA and Institut des Régions Arides (IRA): Shiraz, Islamic Republic of Iran, 2003; pp. 94–99. [Google Scholar]
- Sagna, P. Charactéristiques Climatiques. In Atlas du Sénégal; Yahmed, D.B., Ed.; Les Éditions J.A.: Paris, France, 2007. [Google Scholar]
- Kane, A.; Fall, A.N. Géologie et hydrogéologie. In Atlas du Sénégal; Yahmed, D.B., Ed.; Les Éditions J.A.: Paris, France, 2007. [Google Scholar]
- NASA-GSFC TRMM Product Level 2B Combined (PR, TMI) Rainfall Profile: TRMM 2B31. Available online: http://disc.sci.gsfc.nasa.gov/precipitation/documentation/TRMM_README/TRMM_2B31_readme.shtml (accessed on 17 October 2013).
- NASA-GSFC TRMM and Other Satellites Precipitation Product. Available online: http://disc.gsfc.nasa.gov/precipitation/documentation/TRMM_README/TRMM_3B42_readme.shtml (accessed on 17 October 2013).
- FAO/IIASA/ISRIC/ISS-CAS/JRC. Harmonized World Soil Database; FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2008; p. 37. [Google Scholar]
- Mulligan, M. Modelling the Hydrology of Vegetation Competition in a Degraded Semiarid Environment; King’s College London: London, UK, 1996. [Google Scholar]
- Tranter, G.; Minasny, B.; Mcbratney, a.B.; Murphy, B.; Mckenzie, N.J.; Grundy, M.; Brough, D. Building and testing conceptual and empirical models for predicting soil bulk density. Soil Use Manag 2007, 23, 437–443. [Google Scholar]
- Hansen, M.; Defries, R.; Townshend, J.R.G.; Sohlberg, R. Global land cover classification at 1 km resolution using a decision tree classifier. Int. J. Remote Sens 2000, 21, 1331–1365. [Google Scholar]
- Zeng, X. Global vegetation root distribution for land modeling. J. Hydrometeorol 2001, 2, 525–530. [Google Scholar]
- Campbell, G.S. Soil Physics with BASIC: Transport Models for Soil-Plant Systems; Elsevier: Amsterdam, The Netherlands, 1985. [Google Scholar]
- Thornthwaite, C.W. An approach toward a rational classication of climate. Geogr. Rev 1948, 38, 55–94. [Google Scholar]
- Palmer, W.C.; Havens, A.V. A graphical technique for determining evapotranspiration by the thornthwaite method. Mon. Wea. Rev 1958, 86, 123–128. [Google Scholar]
- Palmer, W.C. Meteorological Drought; US Weather Bureau: Washington, DC, USA, 1965; p. 58. [Google Scholar]
- Mather, J.R.; Ambroziak, R.A. A search for understanding potential evapotranspiration. Geogr. Rev 1986, 76, 355–370. [Google Scholar]
- Iqbal, M. Sun-Earth Astronomical Relationships: An Introduction to Solar Radiation; Academic Press: London, UK, 1983. [Google Scholar]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol 2005, 25, 1965–1978. [Google Scholar]
- Packer, R.W.; Sangal, B.P. The heat and water balance of southern Ontario according to the budyko method. Can. Geogr. 1971, XV, 262–286. [Google Scholar]
- Dyck, S. Overview on the Present Status of the Concepts of Water Balance Models. In New Approaches in Water Balance Computation; International Association of Hydrological Sciences (IAHS): Hamburg, Germany, 1983; pp. 3–19. [Google Scholar]
- Xu, C.; Singh, V.P. A review on monthly water balance models for water resources investigations. Water Resour. Manag 1998, 12, 31–50. [Google Scholar]
- Hendrickx, M.H.; Phillips, F.M.; Harrison, B.J. Water Flow Processes in Arid and Semi-Arid Zones. In Understanding Water in a Dry Environment; Simmers, I., Ed.; A.A. Balkema Publishers: Lisse, The Netherlands, 2003. [Google Scholar]
- Lange, J.; Leibundgut, C. Surface Runoff and Sediment Dynamics in Arid and Semi-Arid Regions. In Understanding Water in a Dry Environment; Simmers, I., Ed.; A.A. Balkema Publishers: Lisse, The Netherlands, 2003. [Google Scholar]
- Akan, O.A. Urban Stormwater Hydrology: A Guide to Engineering Calculations; Technomic Publishing: Lancaster, PA, USA, 1993; p. 268. [Google Scholar]
- Smith, R.E.; Goodrich, D.C. Rainfall Excess Overland Flow. In Encyclopedia of Hydrologocal Sciences; Anderson, M.G., Ed.; John Wiley & Sons, Ltd: London, UK, 2005. [Google Scholar]
- Warner, T.T. The Climates of the World Deserts. In Desert Meteorology; Cambridge University Press: Cambridge, UK, 2008; pp. 63–158. [Google Scholar]
- Veihe, A.; Quinton, J. Sensitivity analysis of EUROSEM using Monte Carlo simulation I: Hydrological, soil and vegetation parameters. Hydrol. Process 2000, 14, 915–926. [Google Scholar]
- Saltelli, A.; Tarantola, S.; Campolongo, F.; Ratto, M. Methods based on Decomposing the Variance of the Output. In Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models; John Wiley & Sons, Ltd: Chichester, UK, 2004; p. 216. [Google Scholar]
- Wainwright, J.; Mulligan, M.; Thornes, J. Plants and Water in Drylands. In Eco-Hydrology: Plants and Water in Terrestrial and Aquatic Environments; Baird, A.J., Wilby, R.L., Eds.; Routledge Physical Environment Series: London, UK, 1999; pp. 78–126. [Google Scholar]
- Tabor, J.A. Improving crop yields in the Sahel by means of water-harvesting. J. Arid Environ 1995, 30, 83–106. [Google Scholar]
- Noy-Meir, I. Desert ecosystems: Environment and producers. Annu. Rev. Ecol. Syst 1973, 4, 25–51. [Google Scholar]
- Ceballos, A.; Martines-Fernandes, J.; Santos, F.; Alonso, P. Soil-water behaviour of sandy soils under semi-arid conditions in the Duero Basin (Spain). J. Arid Environ 2002, 51, 501–519. [Google Scholar]
- Twomlow, S.J.; Bruneau, P.M.C. The influence of tillage on semi-arid soil-water regimes in Zimbabwe. Geoderma 2000, 95, 33–51. [Google Scholar]
- Balme, M.; Vischel, T.; Lebel, T.; Peugeot, C.; Galle, S. Assessing the water balance in the Sahel: Impact of small scale rainfall variability on runoff Part 1: Rainfall variability analysis. J. Hydrol 2006, 331, 336–348. [Google Scholar]
- Whittaker, J. Generating gamma and beta random variables with non-integral shape parameters. Appl. Stat 1974, 23, 210–214. [Google Scholar]
- Henia, L.; Benzarti, Z. Variabilite des Totaux Pluviometriques Annuels. In Atlas de L’Eau en Tunisie; Henia, L., Ed.; Université de Tunis: Tunis, Tunisia, 2008. [Google Scholar]
- Global Gridded Surfaces of Selected Soil Characteristics (IGBP-DIS). Available online: http://daac.ornl.gov/ (accessed on 17 October 2013).
Parameter (Units) | Nominal Value | −50% of Nominal Value | +50% of Nominal Value | Min | Max | Mean | Std. Dev. |
---|---|---|---|---|---|---|---|
(a) Tunisia | |||||||
X1: porosity topsoil (−) | 0.47 | 0.24 | 0.71 | 0.36 | 0.54 | 0.43 | 0.05 |
X2: porosity subsoil (−) | 0.28 | 0.14 | 0.43 | 0.12 | 0.34 | 0.20 | 0.08 |
X3: ksat_topsoil (kg·s·m−3) | 7.08 | 3.54 | 10.63 | 2.01 | 13.51 | 4.84 | 3.33 |
X4: ksat_subsoil (kg·s·m−3) | 4.10 | 2.05 | 6.16 | 1.57 | 6.15 | 2.86 | 1.20 |
X5: b-value (−) | 0.25 | 0.12 | 0.37 | 0.00 | 0.98 | 0.52 | 0.34 |
X6: root_depth (m) | 2.50 | 1.25 | 3.75 | 1.50 | 6.00 | 3.89 | 0.33 |
(b) Senegal | |||||||
X1: porosity topsoil (−) | 0.48 | 0.24 | 0.71 | 0.35 | 0.48 | 0.39 | 0.06 |
X2: porosity subsoil (−) | 0.32 | 0.16 | 0.48 | 0.13 | 0.99 | 0.19 | 0.08 |
X3: ksat_topsoil (kg·s·m−3) | 7.22 | 3.61 | 10.83 | 2.35 | 7.22 | 3.93 | 2.24 |
X4: ksat_subsoil (kg·s·m−3) | 3.14 | 1.57 | 4.71 | 1.46 | 4.10 | 2.15 | 0.89 |
X5: b-value (−) | 0.26 | 0.13 | 0.39 | 0.22 | 0.67 | 0.51 | 0.18 |
X6: root_depth (m) | 2.50 | 1.25 | 3.75 | 1.50 | 4.00 | 3.05 | 0.48 |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Tarnavsky, E.; Mulligan, M.; Ouessar, M.; Faye, A.; Black, E. Dynamic Hydrological Modeling in Drylands with TRMM Based Rainfall. Remote Sens. 2013, 5, 6691-6716. https://doi.org/10.3390/rs5126691
Tarnavsky E, Mulligan M, Ouessar M, Faye A, Black E. Dynamic Hydrological Modeling in Drylands with TRMM Based Rainfall. Remote Sensing. 2013; 5(12):6691-6716. https://doi.org/10.3390/rs5126691
Chicago/Turabian StyleTarnavsky, Elena, Mark Mulligan, Mohamed Ouessar, Abdoulaye Faye, and Emily Black. 2013. "Dynamic Hydrological Modeling in Drylands with TRMM Based Rainfall" Remote Sensing 5, no. 12: 6691-6716. https://doi.org/10.3390/rs5126691
APA StyleTarnavsky, E., Mulligan, M., Ouessar, M., Faye, A., & Black, E. (2013). Dynamic Hydrological Modeling in Drylands with TRMM Based Rainfall. Remote Sensing, 5(12), 6691-6716. https://doi.org/10.3390/rs5126691