Illuminating the Capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band
Abstract
:1. Introduction
2. VIIRS Day/Night Band Sensor Description
3. Expanding our Sphere of Knowledge
3.1. The Cryosphere
3.1.1. Mid-Latitude Snow Fields
3.1.2. Sea Ice Edge and Extent
3.2. The Hydrosphere
3.2.1. Sea Surface Roughness Properties via Moon Glint
3.2.2. Coastal Waters Turbidity
3.3. The Lithosphere
3.3.1. Soil Moisture
3.3.2. Volcanoes—Ash Plumes and Pyroclastic Flows
3.3.3. Wind-Lofted Dust
3.4. The Atmosphere
3.4.1. Cloud Optical Properties
3.4.2. Lightning
3.4.3. Tropical Cyclones—Exposed Low-Level Circulation
3.5. The Biosphere
3.5.1. City Lights and Power Outages
3.5.2. Ship Lights
3.5.3. Marine Bioluminescence
3.5.4. Biomass Burning
3.6. Atmospheric Light Sources
3.6.1. Aurora
3.6.2. Nightglow
4. The Research and Operational Potential
4.1. Climate Research
4.2. Operational Stakeholders
5. The Merits of a Geostationary Capability
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Lewis, J.M.; Martin, D.W.; Rabin, R.M.; Moosmüller, H. Suomi: Pragmatic visionary. Bull. Am. Meteorol. Soc 2010, 91, 559–577. [Google Scholar]
- Lee, T.F.; Miller, S.D.; Turk, F.J.; Schueler, C.; Julian, R.; Deyo, S.; Dills, P.; Wang, S. The NPOESS/VIIRS day/night visible sensor. Bull. Am. Meteorol. Soc 2006, 8, 191–199. [Google Scholar]
- Wark, D.Q.; Popham, R.W. TIROS I observations of sea ice in the Gulf of St. Lawrence. Mon. Wea. Rev 1960, 88, 182. [Google Scholar]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping of city lights using DMSP operational linescan system data. Photogramm. Eng. Remote Sens 1997, 63, 727–734. [Google Scholar]
- Elvidge, C.D.; Safran, J.; Nelson, I.L.; Tuttle, B.T.; Hobson, V.R.; Baugh, K.E.; Dietz, J.B.; Erwin, E.H. Area and Position Accuracy of DMSP Nighttime Lights Data. In Remote Sensing and GIS Accuracy Assessment; Lunetta, R.S., Lyon, J.G., Eds.; CRC Press: Florida, FL, USA, 2004; pp. 281–292. [Google Scholar]
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.-C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia-Pacific Adv. Netw 2013, 35, 62–69. [Google Scholar]
- Schueler, C.; Lee, T.F.; Miller, S.D. VIIRS constant spatial-resolution advantages. Int. J. Remote Sens 2013, 34, 5761–5777. [Google Scholar]
- Liao, L.B.; Weiss, S.; Mills, S.; Hauss, B. Suomi NPP VIIRS Day and Night Band (DNB) on-orbit performance. J. Geophys. Res 2013. [Google Scholar] [CrossRef]
- Mills, S.; Jacobson, E.; Jaron, J.; McCarthy, J.; Ohnuki, T.; Plonski, M.; Searcy, D.; Weiss, S. Calibration of the VIIRS Day/Night Band (DNB). Proceedings of American Meteorological Society 6th Annual Symposium on Future National Operational Environmental Satellite Systems-NPOESS and GOES-R, Boston, MA, USA, 4 September 2010.
- Jacobson, E; Ibara, A.; Lucas, M.; Menzel, R.; Murphey, H.; Yin, F; Yokoyama, K. Operation and Characterization of the Day/Night Band (DNB) for the NPP Visible/Infrared Imager Radiometer Suite (VIIRS). Proceedings of American Meteorological Society 6th Annual Symposium on Future National Operational Environmental Satellite Systems-NPOESS and GOES-R, Boston, MA, USA; 2010; p. 349. [Google Scholar]
- Kieffer, H.H.; Stone, T.C. The spectral irradiance of the Moon. Astron. J 2005, 129, 2887–12901. [Google Scholar]
- Miller, S.D.; Turner, R.E. A dynamic lunar spectral irradiance dataset for NPOESS/VIIRS Day/Night Band nighttime environmental applications. IEEE Trans. Geosci. Remote Sens 2009, 47, 2316–2329. [Google Scholar]
- Mueller, R.; Trentmann, J.; Träger-Chatterjee, C.; Posselt, R.; Stöckli, R. The role of the effective cloud albedo for climate monitoring and analysis. Remote Sens 2011, 3, 2305–2320. [Google Scholar]
- Baker, N. JPSS VIIRS Imagery Products Algorithm Theoretical Basis Document (ATBD); Goddard Space Flight Center: Greenbelt, MD, USA, 2011. [Google Scholar]
- Key, J.; Drinkwater, M.; Ukita, J. Integrated Global Observing Strategy Cryosphere; Theme Report WMO/TD-No. 1405; World Meteorological Organization: Geneva, Switzerland, 2007; p. 100. [Google Scholar]
- Allen, R.C.; Durkee, P.A.; Walsh, C.H. Snow/cloud discrimination with multispectral satellite measurements. J. Appl. Meteorol 1990, 29, 994–1004. [Google Scholar]
- Miller, S.D.; Lee, T.F.; Fennimore, R. Satellite-based daytime imagery techniques for snow cover and cloud delineation. J. Appl. Meteorol 2005, 44, 987–997. [Google Scholar]
- Zhang, Y.; Yan, S.; Lu, Y. Snow cover monitoring using MODIS data in Liaoning Province, Northeastern China. Remote Sens 2010, 2, 777–793. [Google Scholar]
- Chokmani, K.; Bernier, M.; Royer, A. A merging algorithm for regional snow mapping over eastern Canada from AVHRR and SSM/I data. Remote Sens 2013, 5, 5463–5487. [Google Scholar]
- Notarnicola, C.; Duguay, M.; Moelg, N.; Schellenberger, T.; Tetzlaff, A.; Monsorno, R.; Costa, A.; Steurer, C.; Zebisch, M. Snow cover maps from MODIS images at 250 m resolution, Part 1: Algorithm description. Remote Sens 2013, 5, 110–126. [Google Scholar]
- Notarnicola, C.; Duguay, M.; Moelg, N.; Schellenberger, T.; Tetzlaff, A.; Monsorno, R.; Costa, A.; Steurer, C.; Zebisch, M. Snow cover maps from MODIS images at 250 m resolution, Part 2: Validation. Remote Sens 2013, 5, 1568–1587. [Google Scholar]
- Tardif, R.; Rasmussen, R.F. Process-oriented analysis of environmental conditions associated with precipitation fog events in the New York City region. J. Appl. Meteorol 2008, 47, 1681–1703. [Google Scholar]
- Foster, J.L.; Hall, D.K. Observations of snow and ice features during the polar winter using moonlight as a source of illumination. Remote Sens. Environ 1991, 37, 77–88. [Google Scholar]
- Miller, S.D.; Lee, T.F.; Turk, F.J.; Kuciauskas, A.P.; Hawkins, J.D. Shedding new light on nocturnal monitoring of the environment with the VIIRS day/night band. Proc. SPIE 2005, 5890. [Google Scholar] [CrossRef]
- Miller, S.D.; Schmidt, C.; Schmit, T.; Hillger, D. A case for natural colour imagery from geostationary satellites, and an approximation for the GOES-R ABI. Int. J. Remote Sens 2012, 33, 3999–4028. [Google Scholar]
- Gleason, S. Towards sea ice remote sensing with space detected GPS signals: Demonstration of technical feasibility and initial consistency check using low resolution sea ice information. Remote Sens 2010, 2, 2017–2039. [Google Scholar]
- Chen, C.; Lakhankar, T.; Romanov, P.; Helfrich, S.; Powell, A.; Khanbilvardi, R. Validation of NOAA-interactive multisensor snow and ice mapping system (IMS) by comparison with ground-based measurements over continental United States. Remote Sens 2012, 4, 1134–1145. [Google Scholar]
- Maykut, G.A. Energy exchange over young sea ice in the central Arctic. J. Geophys. Res 1978, 83, 3646–3658. [Google Scholar]
- Hu, Y.X.; Stamnes, K. An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J. Clim 1993, 6, 728–742. [Google Scholar]
- Fett, R.W.; Mitchell, W.F. Techniques and Applications of Image Analysis; Naval Research Laboratory Applications Rep. 77–03; Naval Research Laboratory: Monterey, CA, USA, 1977; pp. 1–110. [Google Scholar]
- Cox, C.; Munk, W. Measurement of the roughness of the sea surface from photographs of the Sun’s glitter. J. Opt. Soc. Amer 1954, 44, 838–850. [Google Scholar]
- Zhang, Z.; Liu, L.; Liu, C.; Cai, W. Studies on the sea surface microlayer: II. The layer of sudden change of physical and chemical properties. J. Colloid Interface Sci 2003, 264, 148–159. [Google Scholar]
- Stanton, T.P.; Ostrovsky, L.A. Observations of highly nonlinear internal solitons over the continental shelf. Geophys. Res. Lett 1998, 25, 2695–2698. [Google Scholar]
- Fett, R.; Rabe, K. Satellite observation of internal wave refraction in the South China Sea. Geophys. Res. Lett 1977, 4, 189–191. [Google Scholar]
- Li, X.; Jackson, C.R.; Pichel, W. Internal solitary wave refraction at Dongsha Atoll, South China Sea. Geophys. Res. Lett 2013, 40, 1–5. [Google Scholar]
- McClain, C.R.; Feldman, G.C.; Hooker, S.B. An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series. Deep-Sea Res. Part. II 2004, 51, 5–42. [Google Scholar]
- Bailey, S.W.; Werdell, P.J. A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sens. Environ 2006, 102, 12–23. [Google Scholar]
- Wang, M.; Shi, W. Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies. Geophys. Res. Lett 2005, 32, L13606. [Google Scholar]
- Wang, M.; Tang, J.; Shi, W. MODIS-derived ocean color products along the China east coastal region. Geophys. Res. Lett 2007, 34, L06611. [Google Scholar]
- Sokoletsky, L.G.; Lunetta, R.S.; Wetz, M.S.; Paerl, H.W. MERIS retrieval of water quality components in the turbid albemarle-pamlico sound estuary, USA. Remote Sens 2011, 3, 684–707. [Google Scholar]
- Milliman, J.D.; Farnsworth, K.L. Runoff, erosion and delivery to the coastal ocean. In River Discharge to the Coastal Ocean; Cambridge University Press: Cambridge, UK, 2011; p. 384. [Google Scholar]
- Jackson, T.J. Measuring surface soil moisture using passive microwave remote sensing. Hydrol. Process 1993, 7, 139–152. [Google Scholar]
- Idso, S.B.; Jackson, R.D.; Reginato, R.J.; Kimball, B.A.; Nakayama, F.S. The dependence of bare soil Albedo on soil water content. J. Appl. Meteorol 1975, 14, 109–113. [Google Scholar]
- Chen, S.; Gourley, J.J.; Hong, Y.; Kirstetter, P.E.; Zhang, J.; Howard, K.; Flamig, Z.L.; Hu, J.; Qi, Y. Evaluation and uncertainty estimation of NOAA/NSSL next-generation national mosaic QPE (Q2) over the continental United States. J. Hydrometeorol 2013, 14, 1308–1322. [Google Scholar]
- Siebert, L.; Simkin, T.; Kimberly, P. Volcanoes of the World, 3rd ed; Smithsonian Institution, University of California Press: Washington, DC, USA, 2011; p. 568. [Google Scholar]
- Miller, T.P.; Casadevall, T.J. Volcanic Ash Hazards to Aviation. In Encyclopedia of Volcanoes; Sigurdsson, H., Diego, S., Eds.; Academic Press Inc: San Diego, CA, USA, 2000; pp. 915–930. [Google Scholar]
- Casadevall, T. The 1989–1990 eruption of Redoubt Volcano, Alaska—Impacts on aircraft operations. J. Volcanol. Geotherm. Res 1994, 62, 301–316. [Google Scholar]
- Pavolonis, M.J.; Heidinger, A.K.; Sieglaff, J. Automated retrievals of volcanic ash and dust cloud properties from upwelling infrared measurements. J. Geophys. Res 2013, 118, 1436–1458. [Google Scholar]
- Carter, A.; Ramsey, M. Long-term volcanic activity at Shiveluch Volcano: Nine years of ASTER spaceborne thermal infrared observations. Remote Sens 2010, 2, 2571–2583. [Google Scholar]
- Edwards, B.; Belousov, A.; Belousova, M.; Volynets, A.; Melnikov, D.; Chirkov, S.; Senyukov, S.; Gordeev, E.; Muraviev, Y.; Izbekov, P.; et al. Another “Great Tolbachik” eruption? Eos Trans. AGU 2013, 94, 189–191. [Google Scholar]
- Prospero, J.M. Long-term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality. J. Geophys. Res 1999, 104, 15917–15927. [Google Scholar]
- Zhao, T.X.-P.; Ackerman, S.; Guo, W. Dust and smoke detection for multi-channel imagers. Remote Sens 2010, 2, 2347–2368. [Google Scholar]
- Zhang, J.; Reid, J.S.; Miller, S.D.; Turk, F.J. Strategy for studying nocturnal aerosol optical depth using artificial lights. Int. J. Remote Sens 2008, 29, 4599–4613. [Google Scholar]
- Johnson, R.S.; Zhang, J.; Hyer, E.J.; Miller, S.D.; Reid, J.S. Preliminary investigations toward 3 night time aerosol optical depth retrievals from the VIIRS Day/Night band. Atmos. Meas. Tech 2013, 6, 1245–1255. [Google Scholar]
- Trigo-Rodríguez, J.M.; Martín-Torres, F.J. Implication of Impacts in the Young Earth Sun Paradox and the Evolution of Earth’s Atmosphere. In The Early Evolution of the Atmospheres of Terrestrial Planets, Astrophysics and Space Science Proceedings; Springer: New York, NY, USA, 2013; pp. 85–97. [Google Scholar]
- Stevens, B.; Lenschow, D.H.; Faloona, I.; Blomquist, B.; Vali, G.; Bandy, A.; Campos, T.; Gerber, H.; Haimov, S.; Morley, B.; et al. On entrainment rates in nocturnal marine stratocumulus. Q. J. R. Meteorol. Soc 2003, 129, 3469–3493. [Google Scholar]
- Jacob, C. Cloud cover in the ECMWF reanalysis. J. Clim 1999, 12, 947–959. [Google Scholar]
- Klein, S.A.; Hartmann, D.L. The seasonal cycle of stratiform clouds. J. Clim 1993, 6, 1587–1606. [Google Scholar]
- Chlond, A.; Müller, F.; Sednev, I. Numerical simulation of the diurnal cycle of marine stratocumulus during FIRE—An LES and SCM modelling study. Q. J. R. Meteorol. Soc 2004, 130, 3298–3321. [Google Scholar]
- Walther, A.; Heidinger, A.K. Implementation of the daytime cloud optical and microphysical properties algorithm (DCOMP) in PATMOS-x. J. Appl. Meteorol. Climatol 2012, 51, 1371–1390. [Google Scholar]
- Walther, A.; Heidinger, A.K.; Miller, S.D. The expected performance of cloud optical and microphysical properties derived from S-NPP VIIRS DNB lunar reflectances. J. Geophys. Res 2013. In Press. [Google Scholar]
- Minnis, P.; Szedun, S.-M.; Young, D.F.; Heck, P.W.; Garber, D.P.; Chen, Y.; Spangenberg, D.A.; Arduini, R.F.; Trepte, Q.Z.; Smith, W.L.; et al. CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data, Part I: Algorithms. IEEE Trans. Geosci. Remote Sens 2011, 49, 4374–4400. [Google Scholar]
- Albrecht, B.A.; Randall, D.A.; Nicholls, S. Observations of marine stratocumulus clouds during FIRE. Bull. Am. Meteorol. Soc 1988, 69, 618–626. [Google Scholar]
- Boccippio, D.J.; Cummins, K.L.; Christian, H.J.; Goodman, S.J. Combined satellite- and surface-based estimation of the intracloud–cloud-to-ground lightning ratio over the continental United States. Mon. Wea. Rev 2001, 129, 108–122. [Google Scholar]
- Kasemir, H.W. Lightning Hazard to Rockets during Launch II. ESSA Technical. Report; Atmospheric Physics and Chemistry Laboratory: Athens, Greece, 1969. [Google Scholar]
- Darden, C.B.; Nadler, D.J.; Carcione, B.C.; Blakeslee, R.J.; Stano, G.T.; Buechler, D.E. Utilizing total lightning information to diagnose convective trends. Bull. Am. Meteorol. Soc 2010, 91, 167–175. [Google Scholar]
- Pessi, A.T.; Businger, S. The impact of lightning data assimilation on a winter storm simulation over the North Pacific Ocean. Mon. Wea. Rev 2009, 137, 3177–3195. [Google Scholar]
- Fierro, A.O.; Mansell, E.R.; Ziegler, C.L.; MacGorman, D.R. Application of a lightning data assimilation technique in the WRF-ARW model at cloud-resolving scales for the tornado outbreak of 24 May 2011. Mon. Wea. Rev 2012, 140, 2609–2627. [Google Scholar]
- Norinder, H. Duration of lightning strokes and occurrence of multiple strokes. Tellus 1950, 2, 24–34. [Google Scholar]
- Bankert, R.L.; Solbrig, J.E.; Lee, T.F.; Miller, S.D. Automated lightning flash detection in nighttime visible satellite data. Wea. Forecast 2011, 26, 399–408. [Google Scholar]
- Kummerow, C.K.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Ocean. Tech 1998, 15, 809–817. [Google Scholar]
- Ruff, C.S.; Gleason, S.; Jelenak, Z.; Katzberg, S.; Ridley, A.; Rose, R.; Scherre, J.; Zavorotny, V. The CYGNSS Nanosatellite Constellation Hurricane Mission. Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, FL, USA, 22–27 July 2012; pp. 214–216.
- Molthan, A.; Jedlovec, G. Satellite observations monitor outages from Superstorm Sandy. Eos Trans. AGU 2013, 94, 53–54. [Google Scholar]
- Hawkins, J.D.; Lee, T.F.; Turk, J.; Sampson, C.; Kent, J.; Richardson, K. Real-time internet distribution of satellite products for tropical cyclone reconnaissance. Bull. Am. Meteorol. Soc 2001, 82, 567–578. [Google Scholar]
- Pan, Y.; Liu, A.K.; He, S.; Yang, J.; He, M.-X. Comparison of typhoon locations over ocean surface observed by various satellite sensors. Remote Sens 2013, 5, 3172–3189. [Google Scholar]
- Bielski, C; Gentilini, S.; Pappalardo, M. Post-disaster image processing for damage analysis using GENESI-DR, WPS and grid computing. Remote Sens 2011, 3, 1234–1250. [Google Scholar]
- Croft, T.A. Burning waste gas in oil fields. Nature 1973, 245, 375–376. [Google Scholar]
- Elvidge, C.D.; Zhizhin, M.; Hsu, F.-C.; Baugh, K.E. VIIRS Nightfire: Satellite pyrometry at night. Remote Sens 2013, 5, 4423–4449. [Google Scholar]
- Oda, T.; Maksyutov, S.; Elvidge, C.D. Disaggregation of national fossil fuel CO2 emissions using a global power plant database and DMSP nightlight data. Proc. Asia-Pacific Adv. Netw 2010, 30, 220–229. [Google Scholar]
- Waluda, C.M.; Yamashiro, C.; Elvidge, C.D.; Hobson, V.R.; Rodhouse, P.G. Quantifying light-fishing for Dosidicus. gigas in the eastern Pacific using satellite remote sensing. Remote Sens. Environ 2004, 91, 129–133. [Google Scholar]
- Coakley, J.A.; Bernstein, R.L.; Durkee, P.A. Effect of ship stack effluents on cloud reflectivity. Science 1987, 237, 1020–1022. [Google Scholar]
- Herring, P.J.; Watson, M. Milky seas: A bioluminescent puzzle. Mar. Obs 1993, 63, 22–30. [Google Scholar]
- Miller, S.D.; Haddock, S.H.D.; Elvidge, C.; Lee, T.F. Detection of a bioluminescent milky sea from space. Proc. Natl. Acad. Sci. USA 2005, 102, 14181–14184. [Google Scholar]
- Hosseini, S.; Li, Q.; Cocker, D.; Weise, D.; Miller, A; Shrivastava, M.; Miller, J.W.; Mahalingam, S.; Princevac, M.; Jung, H. Particle size distributions from laboratory-scale biomass fires using fast response instruments. Atmos. Chem. Phys 2010, 10, 8065–8076. [Google Scholar] [Green Version]
- Odenwald, S.F.; Green, J.L. Bracing for a solar superstorm. Sci. Am 2008, 299, 80–87. [Google Scholar]
- Cliver, E.W. The 1859 space weather event: Then and now. Adv. Space Res 2006, 38, 119–129. [Google Scholar]
- Seaman, C.; Miller, S.D. Aurora motion VIIRS Day/Night Band. Bull. Am. Meteorol. Soc 2013, 87, 191–199. [Google Scholar]
- Miller, S.D.; Mills, S.P.; Elvidge, C.D.; Lindsey, D.T.; Lee, T.F.; Hawkins, J.D. Suomi satellite brings to light a unique frontier of environmental imaging capabilities. Proc. Natl. Acad. Sci. USA 2012, 109, 15706–15711. [Google Scholar]
- Ingham, M.F. The light of the night sky and the interplanetary medium. Rep. Prog. Phys 1971, 34, 875–912. [Google Scholar]
- Alexander, M.J.; Holton, J.R.; Durran, D.R. The gravity response above deep convection in squall line simulation. J. Atmos. Sci 1995, 52, 2212–2226. [Google Scholar]
- Yue, J.; Vadas, S.L.; She, C.-Y.; Nakamura, T.; Reising, S.C.; Liu, H.-L.; Stamus, P.; Krueger, D.A.; Lyons, W.; Li, T. Concentric gravity waves in the mesosphere generated by deep convective plumes in the lower atmosphere near Fort Collins, Colorado. J. Geophys. Res 2009, 114, D06104. [Google Scholar]
- Vadas, S.L.; Yue, J.; She, C.-Y.; Stamus, P.; Liu, A.Z. A model study of the effects of winds on concentric rings of gravity waves from a convective plume near Fort Collins on 11 May 2004. J. Geophys. Res 2009, 114, D06103. [Google Scholar]
- National Research Council. Climate Data Records from Environmental Satellites: Interim Report; The National Academies Press: Washington, DC, USA, 2004. [Google Scholar]
- Schiffer, R.A.; Rossow, W.B. The International Satellite Cloud Climatology Project (ISCCP): The first project of the world climate research program. Bull. Am. Meteorol. Soc 1983, 64, 779–784. [Google Scholar]
- Rossow, W.B.; Schiffer, R.A. Advances in understanding clouds from ISCCP. Bull. Am. Meteorol. Soc 1999, 80, 2261–2287. [Google Scholar]
- Rossow, W.B.; Schiffer, R.A. ISCCP cloud data products. Bull. Am. Meteorol. Soc 1991, 72, 2–20. [Google Scholar]
- Han, C.J.; Rossow, W.B.; Warren, S.G. ISCCP cloud properties associated with standard cloud types identified in individual surface observations. J. Clim 2001, 14, 11–28. [Google Scholar]
- Deschamps, P.Y.; Phulpin, T. Atmospheric correction of infrared measurements of sea surface temperature using channels at 3.7, 11 and 12 μm. Bound.-Layer Meteor 1980, 18, 131–143. [Google Scholar]
- McClain, E.P.; Pichel, W.G.; Walton, C.C. Comparative performance of AVHRR-based multichannel sea-surface temperatures. J. Geophys. Res 1985, 90, 1587–1601. [Google Scholar]
- Price, J.F.; Weller, R.A.; Pinkel, R. Diurnal cycling: observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res 1986, 91, 8411–8427. [Google Scholar]
- Yokoyama, R.; Tanba, S.; Souma, T. Sea surface effects on the sea surface temperature by remote sensing. Int. J. Remote Sens 1995, 16, 227–238. [Google Scholar]
- Hurrell, J.W.; Trenberth, K.E. Global sea surface temperature analyses: multiple problems and their implications for climate analysis, modeling, and reanalysis. Bull. Am. Meteorol. Soc 1999, 80, 2661–2678. [Google Scholar]
- Miller, S.D.; Combs, C.; Kidder, S.Q.; Lee, T.F. Assessing global and seasonal lunar availability for nighttime low-light visible remote sensing applications. J. Atmos. Ocean. Tech 2012, 29, 538–557. [Google Scholar]
- Cinzano, P.; Falchi, F.; Elvidge, C.D. The first world atlas of the artificial night sky brightness. Mon. Not. R. Astron. Soc 2001, 328, 689–707. [Google Scholar]
- Longcore, T.; Rich, C. Ecological light pollution. Front. Ecol. Environ 2004, 2, 191–198. [Google Scholar]
- Henderson-Sellers, A.; Hughes, N.A. 1979 3D-nephanalysis global total cloud amount climatology. Bull. Am. Meteorol. Soc 1985, 66, 626–627. [Google Scholar]
- Hamill, T.M.; D’Entremont, R.P; Bunting, J.T. A description of the Air Force real-time nephanalysis model. Wea. Forecast 1992, 7, 288–306. [Google Scholar]
- Crum, T.D. AFGWC Cloud Forecast Models; AFGWC Tech. Note 87/001; Air Force Global Weather Central: Omaha, NE, USA, 1987; p. 73. [Google Scholar]
- Kidder, S.Q.; Vonder Haar, T.H. On the use of satellites in Molniya orbits for meteorological observation of middle and high latitudes. J. Atmos. Ocean. Tech 1990, 7, 517–522. [Google Scholar]
- Trishchenko, A.P; Garand, L.; Trichtchenko, L.D. Three-apogee 16-h highly elliptical orbit as optimal choice for continuous meteorological imaging of polar regions. J. Atmos. Ocean. Tech 2011, 28, 1407–1422. [Google Scholar]
- Holton, J.R. The influence of gravity wave breaking on the general circulation of the middle atmosphere. J. Atmos. Sci 1983, 40, 2497–2507. [Google Scholar]
- Takahashi, M.; Boville, B.A. A three-dimensional simulation of the equatorial quasi-biennial oscillation. J. Atmos. Sci 1992, 49, 1020–1035. [Google Scholar]
- Makela, J.J. Imaging and modeling the ionospheric airglow response over Hawaii to the tsunami generated by the Tohoku earthquake of 11 March 2011. Geophys. Res. Lett 2011, 38, L00G02. [Google Scholar]
- Elvidge, C.D.; Cinzano, P.; Pettit, D.R.; Arvesen, J.; Sutton, P.; Small, C.; Nemani, R.; Longcore, T.; Rich, C.; Safran, J.; et al. The Nightsat mission concept. Int. J. Remote Sens 2007, 12, 2645–2670. [Google Scholar]
- Zhang, Q.; Seto, K.C. Can night-time light data identify typologies of urbanization? A global assessment of successes and failures. Remote Sens 2013, 5, 3476–3494. [Google Scholar]
Measurement Objective | Primary Light Source (s) | Accompanying VIIRS Bands Required (μm) | Challenges, Limitations, Contamination |
---|---|---|---|
Near-Constant Contrast Standard Imagery | All | N/A | Stray Light Contamination |
Lunar Reflectance Imagery | Lunar | N/A | Lunar Model Uncertainty, Astronomical Dark Only |
Sea/Lake Ice Mask | Lunar | N/A | Cloud Obscuration |
Snow Cover Mask | Lunar | N/A | Cloud Obscuration & Artificial Light Contamination |
Cloud Cover Mask | Lunar | 3.7, 4.05, 8.55, 10.8, 12.0 | Artificial Light Contamination |
Cloud Eff. Particle Size | Lunar | 3.7, 8.55, 10.8, 12.0 | Artificial Light Contamination |
Cloud Optical Depth | Lunar | 3.7, 8.55, 10.8, 12.0 | Artificial Light Contamination |
Cloud Top Height, Pressure, & Temperature | Lunar | 3.7, 4.05, 8.55, 10.8, 12.0 | Artificial Light Contamination |
Tropical Cyclone Low-Level Circulation | Lunar | 10.8 | High Cloud Obscuration |
Storm Electrification | Lightning | 10.8 | Artificial Light Contamination, Non-Staring Sensor |
Biomass Burning | Flames | 2.25, 4.05, 10.8, 12.0 | Artificial Light Contamination |
Biomass Smoke | Lunar | 8.55, 10.8, 12.0 | Limited Geometries |
Surface Type | Lunar | 3.7, 4.05, 8.55, 10.8, 12.0 | Near-IR Bands Unavailable |
Soil Moisture | Lunar | 3.7, 4.05, 8.55, 10.8, 12.0 | Certain Surface Types |
Water Turbidity | Lunar | N/A | Gross Detection for Significant Events |
Bioluminescence (Ocean) | Luminous Bacteria, Dinoflagellates | N/A | Cloud Obscuration, Unconfirmed for DNB |
Internal Waves, Sea Surface Currents | Lunar | N/A | Cloud Obscuration, Valid for Glint Zone Only |
Aerosol Optical Depth (Ocean) | Lunar or Stable Anthro. Lights | 8.55, 10.8, 12.0 | N/A in Glint Zone |
Volcanic Ash Mask | Lunar | 3.7, 8.55, 10.8, 12.0 | Cloud Obscuration |
Pyroclastic Flow | Molten Lava | 2.25, 3.7, 10.8 | Ambiguity with Lava-Induced Fires |
Lofted Dust Mask (Ocean) | Lunar | 8.55, 10.8, 12.0 | Cloud Obscuration |
Human Settlements and Economic Activity/Change | City Lights | N/A | Cloud Diffusion |
Power Consumption & Power Outages | City Lights | N/A | Clear Sky Only |
CO2 Emissions | City Lights, Flares | N/A | Clear Sky Only |
Ship Monitoring | Ship Lights | N/A | Clear Sky Only |
Fossil Fuel Mining | Natural Gas Flares | 1.61, 2.25, 3.7 | Clear Sky Only |
Solar Storms | Auroral Light | N/A | Ambiguity with Clouds on Lunar Nights |
Mesospheric Gravity Waves | Nightglow | N/A | Moon-Free, Astronomical Dark Conditions Only |
Attribute | DMSP/OLS | VIIRS/DNB |
---|---|---|
Orbital Details | Sun-synchronous, ∼850 km | Sun-synchronous, 824 km |
Nighttime Nodal Overpass Time | ∼1930 UTC | ∼0130 UTC |
Swath Width | 3000 km | 3000 km |
Spectral Passband Bandwidth | Panchromatic 500–900 nm | Panchromatic 500–900 nm |
Spectral Passband Center | ∼600 nm | ∼700 nm |
Horizontal Sampling Interval | 2.8 km (Nighttime “Smooth” Data) | 0.740 ± 0.043 km (Scan) 0.755 ± 0.022 km (Track) |
Horizontal Spatial Resolution | 5 km (Nadir)/∼7 km (Edge) | <0.770 km (Scan) <0.750 km (Track) |
Geolocation Uncertainty | ∼450 m–5.4 km | 266 m (Nadir), 1151 m (Edge) |
Minimum Detectable Signal | 4 × 10−5 W·m−2·sr−1 | 3 × 10−5 W·m−2·sr−1 |
Noise Floor | ∼5 × 10−6 W·m−2·sr−1 | ∼5 × 10−7 W·m−2·sr−1 (Nadir) |
Radiometric Quantization | 6 bit | 13–14 bit |
Accompanying Spectral Bands | 1 (Thermal IR) | 11 (Night)/21 (Day) |
Radiometric Calibration | None | On-Board Solar Diffuser |
Saturation, Stray Light Artifcats | Urban Cores, Substantial, Uncorrectable | None, Near-Terminator, Corrected |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Miller, S.D.; Straka, W., III; Mills, S.P.; Elvidge, C.D.; Lee, T.F.; Solbrig, J.; Walther, A.; Heidinger, A.K.; Weiss, S.C. Illuminating the Capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band. Remote Sens. 2013, 5, 6717-6766. https://doi.org/10.3390/rs5126717
Miller SD, Straka W III, Mills SP, Elvidge CD, Lee TF, Solbrig J, Walther A, Heidinger AK, Weiss SC. Illuminating the Capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band. Remote Sensing. 2013; 5(12):6717-6766. https://doi.org/10.3390/rs5126717
Chicago/Turabian StyleMiller, Steven D., William Straka, III, Stephen P. Mills, Christopher D. Elvidge, Thomas F. Lee, Jeremy Solbrig, Andi Walther, Andrew K. Heidinger, and Stephanie C. Weiss. 2013. "Illuminating the Capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band" Remote Sensing 5, no. 12: 6717-6766. https://doi.org/10.3390/rs5126717
APA StyleMiller, S. D., Straka, W., III, Mills, S. P., Elvidge, C. D., Lee, T. F., Solbrig, J., Walther, A., Heidinger, A. K., & Weiss, S. C. (2013). Illuminating the Capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band. Remote Sensing, 5(12), 6717-6766. https://doi.org/10.3390/rs5126717