Evaluation of Different Topographic Corrections for Landsat TM Data by Prediction of Foliage Projective Cover (FPC) in Topographically Complex Landscapes
Abstract
:1. Introduction
2. Method
2.1. Study Area
2.2. Field Data Collection and Processing
2.3. Remotely Sensed Data and Analysis
2.3.1. Data Acquisition
2.3.2. Image Pre-Processing
- Converting digital numbers of images into top of atmospheric radiance
- The apparent surface-leaving radiance (L) and horizontal-surface direct and diffuse bottom-of-atmosphere irradiances were computed using 6S
- The direct irradiance is adjusted for the slope of the terrain, and the diffuse irradiance is adjusted to account for restricted sky view, due to slope and surrounding terrain, giving Edir and Edif, respectively
- The behaviour of reflectance as a function of angular configuration is modelled using the Ross Thick-Li Sparse Reciprocal (RTLSR) Bidirectional Reflectance Distribution Function (BRDF) model of Schaaf et al. [24]. This model is driven with the average set of parameters suitable for the dominant landscapes of eastern Australia described in Table 7 of Flood et al. [6].
2.3.3. Summary of Topographic Corrections Applied
2.4. LiDAR Data Acquisition
Linking Field, LiDAR and Image Data
2.5. Accuracy Assessment
3. Results
3.1. Visual Analysis
3.2. Linking LiDAR Data with Ground Measured Overstory FPC Estimates
3.3. Overall Comparison of Landsat TM FPC with Ground Measured Overstory FPC and LiDAR FPC
3.3.1. Comparison with Ground Measured Overstory FPC
- Non-topographically normalised TM predicted FPC (non-normalised FPC)
- PSSSR corrected TM predicted FPC (PSSSR FPC)
- SCS corrected TM predicted FPC (SCS FPC)
- Minnaert corrected TM predicted FPC (Minnaert FPC)
- C corrected TM predicted FPC (C FPC)
- SCS + C corrected TM predicted FPC (SCS + C FPC)
3.3.2. Comparison with LiDAR FPC
3.4. Comparison of Landsat TM FPC between Vegetation Types
4. Discussion
4.1. Overall Accuracy of FPC Prediction of Topographically Corrected Images
4.2. Comparison of Landsat TM FPC between Vegetation Types
5. Conclusions
Acknowledgments
Conflict of Interest
References
- Smith, J.; Lin, T.; Ranson, K. The Lambertian assumption and Landsat data. Photogramm. Eng. Remote. Sens 1980, 46, 1183–1189. [Google Scholar]
- Justice, C.O.; Wharton, S.W.; Holben, B.N. Application of digital terrain data to quantify and reduce the topographic effect on Landsat data. Int. J. Remote Sens 1981, 2, 213–230. [Google Scholar]
- Teillet, P.M.; Guindon, B.; Goodenough, D.G. On the slope-aspect correction of multispectral scanner data. Can. J. Remote. Sens. 1982, 8, 84–106. [Google Scholar]
- Gu, D.; Gillespie, A. Topographic Normalization of Landsat TM Images of Forest Based on Subpixel Sun–Canopy–Sensor Geometry. Remote Sens. Environ 1998, 64, 166–175. [Google Scholar]
- Shepherd, J.D.; Dymond, J.R. Correcting satellite imagery for the variance of reflectance and illumination with topography. Int. J. Remote Sens 2003, 24, 3503–3514. [Google Scholar]
- Flood, N.; Danaher, T.; Gill, T.; Gillingham, S. An Operational Scheme for Deriving Standardised Surface Reflectance from Landsat TM/ETM+ and SPOT HRG Imagery for Eastern Australia. Remote Sens 2013, 5, 83–109. [Google Scholar]
- Soenen, S.A.; Peddle, D.R.; Coburn, C.A. SCS + C: A modified Sun-Canopy-Sensor topographic correction in forested terrain. IEEE Trans. Geosci. Remote Sens 2005, 43, 2148–2159. [Google Scholar]
- Hale, S.R.; Rock, N.B. Impact of topographic normalization on land cover classification accuracy. Photogramm. Eng. Remote. Sens 2003, 69, 785–791. [Google Scholar]
- Riano, D.; Chuvieco, E.; Salas, J.; Aguado, I. Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types. IEEE Trans. Geosci. Remote Sens 2003, 41, 1056–1061. [Google Scholar]
- Huang, H.; Gong, P.; Clinton, N.; Hui, F. Reduction of atmospheric and topographic effect on Landsat TM data for forest classification. Int. J. Remote Sens 2008, 29, 5623–5642. [Google Scholar]
- Ediriweera, S.; Singhakumara, B.M.P.; Ashton, M.S. Variation in canopy structure, light and soil nutrition across elevation of a Sri Lankan tropical rainforest. For. Ecol. Manage 2008, 256, 1339–1349. [Google Scholar]
- Ackerly, D.D.; Knight, C.A.; Weiss, S.B.; Barton, K.; Starmer, K.P. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: Contrasting patterns in species level and community level analyses. Oecologia 2002, 130, 449–457. [Google Scholar]
- Specht, R.L.; Specht, A. Australian Plant Communities: Dynamics of Structure, Growth and Biodiversity; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Ediriweera, S.; Pathirana, S.; Danaher, T.; Nichols, D.; Moffiet, T. Impact of Different Topographic Corrections on Prediction Accuracy of Foliage Projective Cover (FPC) in a Topographically Complex Terrain. Proceedings of the ISPRS Annal of the Photogrammetry Remote Sensing and Spatial Information Science, Melbourne, Australia, 25 August–01 September 2012; pp. 123–128.
- Chen, J.M.; Cihlar, J. Plant canopy gap size analysis theory for improving optical measurements of Leaf area Index. Appl. Opt 1995, 34, 6211–6222. [Google Scholar]
- Kuhnell, C.A.; Goulevitch, B.M.; Danaher, T.J.; Harris, D.P. Mapping Woody Vegetation Cover over the State of Queensland Using Landsat TM Imagery. Proceedings of the Land AVHRR Workshop and the 9th Australasian Remote Sensing Photogrammetry Conference, Sydney, NSW, Australia, 24 July 1998; pp. 3201–3223.
- Sun, D.; Hantiuk, R.J.; Neldner, V.J. Review of vegetation classification and mapping systems undertaken by major forested land management agencies in Australia. Aust. J. Bot 1997, 45, 929–948. [Google Scholar]
- Armston, J.D.; Denham, R.J.; Danaher, T.J.; Scarth, P.F.; Moffiet, T.N. Prediction and validation of foliage projective cover from Landsat-5 TM and Landsat-7 ETM+ imagery. J. Appl. Remote Sens 2009, 3, 1–28. [Google Scholar]
- Weller, D.; Denham, R.; Witte, C.; Mackie, C.; Smith, D. Assessment and monitoring of foliage projected cover and canopy height across native vegetation in Queensland, Australia, using laser profiler data. Can. J. Remote. Sens 2003, 29, 578–591. [Google Scholar]
- Specht, A. Vegetation of north east NSW; Personal Communication; Lismore, Australia, 2010. [Google Scholar]
- Johansson, T. Estimating canopy density by the vertical tube method. For. Ecol. Manage 1985, 11, 139–144. [Google Scholar]
- Gallant, J.; Read, A. Enhancing the SRTM data for Australia. Proceedings of the Geomorphometry, Zurich, Switzerland, 31 August–2 September 2009; pp. 149–154.
- Geoscience Australia. 1 Second SRTM Derived Digital Elevation Models User Guide; Version 1.0; Geoscience Australia: Canberra, ACT, Australia, 2010; Available online: www.ga.gov.au (accessed on 10 May 2010).
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.P.; et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ 2002, 83, 135–148. [Google Scholar]
- Duguay, C.R.; Ledrew, E.F. Estimating surface reflectance and albedo from Landsat-5 Thematic Mapper over rugged terrain. Photogramm. Eng. Remote. Sens 1992, 58, 551–558. [Google Scholar]
- Meyer, P.; Itten, K.I.; Kellenberger, T.; Sandmeier, S.; Sandmeier, R. Radiometric corrections of topographically induced effects on Landsat TM data in an Alpine environment. ISPRS J. Photogramm. Remote. Sens 1993, 48, 17–28. [Google Scholar]
- Lovell, J.L.; Jupp, D.L.B.; Culvenor, D.S.; Coops, N.C. Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests. Can. J. Remote. Sens 2003, 29, 607–622. [Google Scholar]
- Gao, Y.; Zhang, W. A simple empirical topographic correction method for ETM+ imagery. Int. J. Remote Sens 2009, 30, 2259–2275. [Google Scholar]
- Koukal, T.; Schneider, W.; Suppan, F. Radiometric-Topographic Normalization in Mountainous Terrain for LANDSAT-TM-Based Forest Parameter Assessment by the kNN Method. In New Strategies for European Remote Sensing, Proceedings of The 24th Symposium of the European Associantion of Remote Sensing Laboratories (EARSeL), Dubrovnik, Croatia, 25–27 May 2004; Oluic, M., Ed.; Millpress: Rotterdam, The Netherlands, 2005; pp. 239–246. [Google Scholar]
Study Area | Slope (degrees) | Aspect (degrees) | FPC (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | ||
Ground measured | BRNP | 11.5 | 29 | 22 | 5.2 | 353 | 191 | 63.4 | 98.2 | 89 |
RRNP | 3.3 | 26 | 20 | 0.8 | 344 | 180 | 57.3 | 77 | 71 | |
LiDAR | BRNP | 1.8 | 41.6 | 24 | 1.5 | 350 | 218 | 52 | 95.5 | 91.7 |
RRNP | 1.5 | 37.8 | 20.2 | 0.5 | 344 | 184 | 32.3 | 90.5 | 63.5 |
RRNP | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Vegetation type | Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 6 | ||||||
c | k | c | k | c | k | c | k | c | k | c | k | |
Grass | 0.243 | 0.395 | 0.173 | 0.473 | 0.116 | −0.403 | 0.641 | 0.343 | 0.495 | 0.524 | 0.175 | 0.629 |
Eucalypts | 3.92 | 0.044 | 2.09 | 0.063 | 2.10 | −0.168 | 0.332 | −0.333 | 0.768 | 0.201 | 1.85 | 0.104 |
Rainforest | 0.16 | 0.353 | 0.034 | 0.321 | 0.092 | 0.433 | 0.508 | 0.223 | 0.182 | 0.453 | 0.397 | 0.651 |
BRNP | ||||||||||||
Shrub | 0.178 | 0.383 | 0.184 | 0.398 | 0.174 | −0.384 | 0.326 | 0.339 | 0.054 | 0.456 | 0.08 | 0.536 |
Rainforest | 1.43 | 0.189 | 1.182 | 0.197 | 1.023 | 0.204 | 0.915 | 0.204 | 0.850 | 0.234 | 1.05 | 0.232 |
Ground Measured Overstory FPC-Landsat TM FPC | df | F | p |
---|---|---|---|
Topographic correction methods | 4 | 46.03 | 0.000 |
Vegetation types | 1 | 2.84 | 0.099 |
Topographic correction methods × vegetation types | 4 | 9.732 | 0.034 |
LiDAR FPC-Landsat TM FPC | |||
Topographic correction methods | 4 | 76.65 | 0.000 |
Vegetation types | 1 | 41.32 | 0.000 |
Topographic correction methods × vegetation types | 4 | 16.24 | 0.000 |
Ground Measured Overstory FPC-Landsat TM FPC | LiDAR FPC-Landsat TM FPC | |||
---|---|---|---|---|
Closed | Open | Closed | Open | |
Non-topographic | 4.098 (1.38) | 7.093(1.380) | 11.096 (2.002) | 4.205 (1.173) |
PSSSR | 4.243 (1.048) | 6.473 (1.268) | 8.802 (1.633) | 3.986 (1.051) |
SCS + C | 7.176 (1.358) | 10.36 (1.358) | 15.714 (2.021) | 6.011 (1.101) |
Minnaert | 7.587 (1.345) | 10.98 (1.345) | 14.134 (2.065) | 6.099 (1.171) |
SCS | 5.014 (1.346) | 8.566 (1.346) | 16.354 (1.812) | 7.323 (1.110) |
C | 7.492 (1.389) | 12.118 (1.389) | 16.525 (2.132) | 8.425 (1.102) |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ediriweera, S.; Pathirana, S.; Danaher, T.; Nichols, D.; Moffiet, T. Evaluation of Different Topographic Corrections for Landsat TM Data by Prediction of Foliage Projective Cover (FPC) in Topographically Complex Landscapes. Remote Sens. 2013, 5, 6767-6789. https://doi.org/10.3390/rs5126767
Ediriweera S, Pathirana S, Danaher T, Nichols D, Moffiet T. Evaluation of Different Topographic Corrections for Landsat TM Data by Prediction of Foliage Projective Cover (FPC) in Topographically Complex Landscapes. Remote Sensing. 2013; 5(12):6767-6789. https://doi.org/10.3390/rs5126767
Chicago/Turabian StyleEdiriweera, Sisira, Sumith Pathirana, Tim Danaher, Doland Nichols, and Trevor Moffiet. 2013. "Evaluation of Different Topographic Corrections for Landsat TM Data by Prediction of Foliage Projective Cover (FPC) in Topographically Complex Landscapes" Remote Sensing 5, no. 12: 6767-6789. https://doi.org/10.3390/rs5126767
APA StyleEdiriweera, S., Pathirana, S., Danaher, T., Nichols, D., & Moffiet, T. (2013). Evaluation of Different Topographic Corrections for Landsat TM Data by Prediction of Foliage Projective Cover (FPC) in Topographically Complex Landscapes. Remote Sensing, 5(12), 6767-6789. https://doi.org/10.3390/rs5126767