Melt Patterns and Dynamics in Alaska and Patagonia Derived from Passive Microwave Brightness Temperatures
Abstract
:1. Introduction
2. Data and Methods
3. Results and Discussion
3.1. Melt Regimes
3.2. Brightness Temperature Anomalies
3.3. Percent Positive and Negative Anomalies
3.4. Statistical Analysis
3.5. Discharge Case Studies
3.6. Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar]
- Arendt, A.; Walsh, J.; Harrison, W. Changes of glaciers and climate in northwestern North America during the late twentieth century. J. Clim 2009, 22, 4117–4134. [Google Scholar]
- Willis, M.J.; Melkonian, A.K.; Pritchard, M.E.; Ramage, J.M. Ice loss rates at the Northern Patagonian Ice Field derived using a decade of satellite remote sensing. Remote Sens. Environ 2012, 117, 184–198. [Google Scholar]
- Willis, M.J.; Melkonian, A.K.; Pritchard, M.E.; Rivera, A. Ice loss from the Southern Patagonia Ice Field, South America, between 2000 and 2012. Geophys. Res. Lett 2012, 39, L17501. [Google Scholar] [CrossRef]
- Molnia, B.F. Glaciers of North America—Glaciers of Alaska. In Satellite Image Atlas of Glaciers of the World; Williams, R.S., Jr., Ferrigno, J.G., Eds.; USGS Professional Paper 1386-K; US Department of the Interior: Washington, DC, USA, 2008; p. 525. [Google Scholar]
- Molnia, B.F. Late nineteenth to early twenty-first century behavior of Alaska glaciers as indicators of changing regional climate. Glob. Planet. Chang 2007, 56, 23–56. [Google Scholar]
- Arendt, A.; Echelmeyer, K.A.; Harrison, W.D.; Lingle, C.S.; Valentine, V.B. Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science 2002, 297, 382–386. [Google Scholar]
- Berthier, E.; Schiefer, E.; Clarke, G.K.C.; Menounos, B.; Remy, F. Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery. Nat. Geosci 2010, 3, 92–95. [Google Scholar] [Green Version]
- Neal, E.G.; Hood, E.; Smikrud, K. Contribution of glacier runoff to freshwater discharge into the Gulf of Alaska. Geophys. Res. Lett 2010. [Google Scholar] [CrossRef]
- Rignot, E.; Rivera, A.; Casassa, G. Contribution of the Patagonia Icefields of South America to sea level rise. Science 2003, 302, 434–437. [Google Scholar]
- Davies, B.J.; Glasser, N.F. Accelerating shrinkage of Patagonia glaciers from the Little Ice Age (∼AD1870) to 2011. J. Glaciol 2012, 58, 1063–1084. [Google Scholar]
- Rivera, A.; Benham, T.; Casassa, G.; Bamber, J.; Dowdeswell, J.A. Ice elevation and areal changes of glaciers from the Northern Patagonia Icefield, Chile. Glob. Planet. Chang 2007, 59, 126–137. [Google Scholar]
- Rosenbluth, B.; Fuenzalida, H.A.; Aceituno, P. Recent temperature variations in southern South America. Int. J. Climatol 1996, 17, 67–85. [Google Scholar]
- Jones, P.D.; Lister, D.H.; Osborn, T.J.; Harpham, C.; Salmon, M.; Morice, C.P. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res 2012. [Google Scholar] [CrossRef]
- Rasmussen, L.A.; Conway, H.; Raymond, C.F. Influence of upper air conditions on the Patagonia Icefields. Glob. Planet. Chang 2007, 59, 203–216. [Google Scholar]
- Glasser, N.F.; Harrison, S.; Jansson, K.N.; Anderson, K.; Cowley, A. Global sea-level contribution from the Patagonia Icefields since the Little Ice Age maximum. Nat. Geosci 2011, 4, 303–307. [Google Scholar]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D.; Blankenship, D.D.; Ivins, E.R. Patagonia Icefield melting observed by Gravity Recovery and Climate Experiment (GRACE). Geophys. Res. Lett 2007. [Google Scholar] [CrossRef]
- Jacob, T.; Wahr, J.; Pfeffer, W.T.; Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 2012, 482, 514–518. [Google Scholar]
- Ramage, J.M.; Isacks, B.L. Determination of melt onset and refreeze timing on Southeast Alaskan Icefields using SSM/I diurnal amplitude variations. Ann. Glaciol 2002, 34, 391–398. [Google Scholar]
- Ramage, J.M.; Isacks, B.L. Interannual variations in snow melt and refreeze timing on Southeast Alaskan Glaciers. J. Glaciol 2003, 49, 102–116. [Google Scholar]
- Kopczynski, S.; Ramage, J.; Lawson, D.; Goetz, S.; Evenson, E.; Denner, J.; Larson, G. Passive microwave (SSM/I) satellite predictions of valley glacier hydrology, Matanuska Glacier, Alaska. Geophys. Res. Lett 2008. [Google Scholar] [CrossRef]
- Monahan, P.A.; Ramage, J.M. AMSR-E melt patterns on the Southern Patagonian Ice Field. J. Glaciol 2010, 56, 699–708. [Google Scholar]
- Armstrong, R.L.; Knowles, K.W.; Brodzik, M.; Hardman, M.A. DMSP SSM/I-SSMIS Pathfinder Daily EASE-Grid Brightness Temperatures, Version 2; NSIDC (National Snow and Ice Data Center): Boulder, CO, USA, 1998. [Google Scholar]
- Armstrong, R.; Raup, B.; Khalsa, S.J.S.; Barry, R.; Kargel, J.; Helm, C.; Kieffer, H. GLIMS Glacier Database; NSIDC (National Snow and Ice Data Center): Boulder, CO, USA, 2011. [Google Scholar]
- US Geological Survey (USGS). Landsat ETM Plus Pan Sharpened Mosaic; USGS Earth Resources Observation and Science Center: Sioux Falls, SD, USA, 2010. [Google Scholar]
- Long, D.; Brabets, T. Coverage YUK_LAND and YUK_DEM National Stream Quality Accounting Network (NASQAN) Yukon River Basin, Canada and Alaska Landcover-Yukon River Basin; US Geological Survey: Anchorage, AK, USA, 2002. [Google Scholar]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc 1996, 77, 437–470. [Google Scholar]
- Carrasco, J.F.; Casassa, G.; Rivera, A. Meteorological and Climatological Aspect of the Southern Patagonia Icefield. In The Patagonia Icefields; Casassa, G., Sepulveda, F., Sinclair, R., Eds.; Kluwer-Plenum: New York, NY, USA, 2002; pp. 29–41. [Google Scholar]
- Mesinger, F.; DiMego, G.; Kalnay, E.; Mitchell, K.; Shafran, P.C.; Ebisuzaki, W.; Jovic, D.; Woollen, J.; Rogers, E.; Berbery, E.H.; et al. North American regional reanalysis: A long-term, consistent, high-resolution climate dataset for the North American domain, as a major improvement upon the earlier global reanalysis datasets in both resolution and accuracy. Bull. Am. Meteorol. Soc 2005. [Google Scholar] [CrossRef]
- Brabets, T.P. Hydrology and Modeling of Flow Conditions at Bridge 339 and Mile 38–43, Copper River Highway, Alaska; USGS Scientific Investigations Report 2012–5153; US Geological Survey: Reston, VA, USA, 2012. [Google Scholar]
- Neal, E.G.; Host, R.H. Hydrology, Geomorphology, and Flood Profiles of the Mendenhall River, Juneau, Alaska; USGS Water-Resources Investigations Report 99–4150; US Geological Survey: Reston, VA, USA, 1999. [Google Scholar]
- Kim, H.; Manghani, R.; Pappone, L. Baker-Pascua Project, Patagonia, Chile. Available online: https://wikis.uit.tufts.edu/confluence/display/aquapedia/Baker-Pascua+Project,+Patagonia,+Chile (accessed on 12 November 2013).
- Chile: Dirección General de Aguas of the Ministerio de Obras Pũblicas, Golbierno de Chile. Información Oficial Hidrometeorológica y de Calidad de Aguas en Línea. Available online: snia.dga.cl/BNAConsultas(accessed on 10 December 2013).
- Moya Quiroga, V.; Mano, A.; Asaoka, Y.; Kure, S.; Udo, K.; Mendoza, J. Snow glacier melt estimation in tropical Andean glaciers using artificial neural networks. Hydrol. Earth Syst. Sci 2013, 17, 1265–1280. [Google Scholar]
- Shulski, M.; Walsh, J.; Stevens, E.; Thoman, R. Diagnosis of extended cold-season temperature anomalies in Alaska. Mon. Wea. Rev 2010, 138, 453–462. [Google Scholar]
Alaska | Patagonia | |||
---|---|---|---|---|
% Positive Tb Anomaly | % Negative Tb Anomaly | % Positive Tb Anomaly | % Negative Tb Anomaly | |
Latitude | 0.061 | 0.178 | 0.045 | −0.096 |
Longitude | −0.034 | −0.060 | 0.009 | 0.091 |
Elevation | 0.025 | 0.131 | −0.027 | 0.163 |
Melt Regime | −0.116 | 0.041 | −0.036 | 0.173 |
SLP anomaly | −0.077 | −0.016 | −0.111 | 0.096 |
Tair anomaly | 0.054 | 0.095 | 0.187 | 0.141 |
RH anomaly | −0.028 | 0.192 | −0.096 | 0.060 |
Year | 0.310 | −0.175 | 0.348 | −0.143 |
Dist2Coast | 0.145 | 0.193 | 0.003 | 0.143 |
Multiple | 0.424 | 0.384 | 0.389 | 0.374 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Semmens, K.; Ramage, J. Melt Patterns and Dynamics in Alaska and Patagonia Derived from Passive Microwave Brightness Temperatures. Remote Sens. 2014, 6, 603-620. https://doi.org/10.3390/rs6010603
Semmens K, Ramage J. Melt Patterns and Dynamics in Alaska and Patagonia Derived from Passive Microwave Brightness Temperatures. Remote Sensing. 2014; 6(1):603-620. https://doi.org/10.3390/rs6010603
Chicago/Turabian StyleSemmens, Kathryn, and Joan Ramage. 2014. "Melt Patterns and Dynamics in Alaska and Patagonia Derived from Passive Microwave Brightness Temperatures" Remote Sensing 6, no. 1: 603-620. https://doi.org/10.3390/rs6010603
APA StyleSemmens, K., & Ramage, J. (2014). Melt Patterns and Dynamics in Alaska and Patagonia Derived from Passive Microwave Brightness Temperatures. Remote Sensing, 6(1), 603-620. https://doi.org/10.3390/rs6010603