The Influence of Polarimetric Parameters and an Object-Based Approach on Land Cover Classification in Coastal Wetlands
Abstract
:1. Introduction
2. Study Area and Datasets
3. Methodology
3.1. Polarimetric Decomposition and Parameter Extraction
Decomposition Method | Polarimetric Parameters | ||
---|---|---|---|
Pauli [22] | Pauli_a | Pauli_b | Pauli_c |
Krogager [24] | Krogager_KS | Krogager_KD | Krogager_KH |
Huynen [25] | Huynen_T11 | Huynen_T22 | Huynen_T33 |
Barnes1 [26] | Barnes1_T11 | Barnes1_T22 | Barnes1_T33 |
Barnes2 [26] | Barnes2_T11 | Barnes2_T22 | Barnes2_T33 |
Holm1 [27] | Holm1_T11 | Holm1_T22 | Holm1_T33 |
Holm2 [27] | Holm2_T11 | Holm2_T22 | Holm2_T33 |
VanZyl3 [28] | VanZyl3_Vol | VanZyl3_Odd | VanZyl3_Dbl |
Cloude [22] | Cloude_T11 | Cloude_T22 | Cloude_T33 |
H/A/Alpha [29] | H/A/A_T11 | H/A/A_T22 | H/A/A_T33 |
Freeman2 [30] | Freeman2_Vol | Freeman2_Ground | |
Freeman3 [31] | Freeman_Vol | Freeman_Odd | Freeman_Dbl |
Yamaguchi3 [32] | Yamaguchi3_Vol | Yamaguchi3_Odd | Yamaguchi3_Dbl |
Yamaguchi4 [33] | Yamaguchi4_Vol | Yamaguchi4_Odd | Yamaguchi4_Dbl |
Neumann [34] | Neumann_delta_mod | Neumann_delta_pha | Neumann_tau |
Touzi [35] | TSVM_alpha_s | TSVM_alpha_s1 | TSVM_alpha_s2 |
An_Yang3 [36] | An_Yang3_Vol | An_Yang3_Odd | An_Yang3_Dbl |
An_Yang4 [37] | An_Yang4_Vol | An_Yang4_Odd | An_Yang4_Dbl |
Arii3_NNED [38] | Arii3_NNED_Vol | Arii3_NNED_Odd | Arii3_NNED_Dbl |
Arii3_ANNED [39] | Arii3_ANNED_Vol | Arii3_ANNED_Odd | Arii3_ANNED_Odd |
3.2. Object-Based Image Analysis and Feature Calculation
3.3. Decision Tree Algorithm
3.4. Methods for Comparison
4. Results and Discussion
4.1. Constructed Decision Tree and Selected Polarimetric Parameters
4.2. LULC Classification Results
Method | Accuracy | Class | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SA | DL | FP | GL | IL | PR | RI | RO | S | W | ||
Proposed method | PA (%) | 83.2 | 88.8 | 86.0 | 84.6 | 80.3 | 84.9 | 95.3 | 92.0 | 88.8 | 93.5 |
UA (%) | 89.2 | 87.1 | 89.5 | 86.4 | 87.4 | 90.9 | 85.5 | 85.2 | 90.0 | 80.7 | |
OA (%) | 87.3 | ||||||||||
WSC | PA (%) | 84.3 | 77.9 | 42.8 | 75.4 | 76.1 | 74.1 | 30.3 | 89.3 | 52.3 | 94.6 |
UA (%) | 83.4 | 87.2 | 6.6 | 78.8 | 87.4 | 71.6 | 80.7 | 87.9 | 17.3 | 72.5 | |
OA (%) | 66.6 | ||||||||||
PWPP | PA (%) | 88.6 | 79.4 | 73.6 | 74.4 | 67.9 | 75.7 | 73.4 | 91.1 | 49.2 | 89.3 |
UA (%) | 83.0 | 84.3 | 24.6 | 67.6 | 90.6 | 71.6 | 80.7 | 92.1 | 79.6 | 72.5 | |
OA (%) | 74.0 | ||||||||||
PWOS | PA (%) | 90.6 | 78.8 | 92.6 | 72.8 | 69.4 | 82.4 | 51.6 | 90.7 | 55.6 | 92.1 |
UA (%) | 79.6 | 84.8 | 82.5 | 67.6 | 90.6 | 78.8 | 23.4 | 93.2 | 89.0 | 77.6 | |
OA (%) | 77.1 | ||||||||||
PWTG | PA (%) | 87.8 | 79.9 | 61.6 | 71.8 | 71.2 | 75.7 | 75.6 | 90.1 | 47.6 | 84.5 |
UA (%) | 84.4 | 87.1 | 14.0 | 65.6 | 87.4 | 71.7 | 80.8 | 92.1 | 84.1 | 72.5 | |
OA (%) | 73.2 | ||||||||||
PNNC | PA (%) | 87.6 | 80.5 | 94.6 | 70.7 | 65.5 | 89.5 | 65.7 | 90.3 | 82.6 | 94.4 |
UA (%) | 79.5 | 83.8 | 69.7 | 67.1 | 91.7 | 81.2 | 81.8 | 88.4 | 84.6 | 77.8 | |
OA (%) | 80.5 |
5. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mitsch, W.J.; Gosselink, J.G. The value of wetlands: Importance of scale and landscape setting. Ecol. Econ. 2000, 35, 25–33. [Google Scholar] [CrossRef]
- Awange, J.L.; Kiema, J.B.K. Marine and coastal resources. In Environmental Geoinformatics; Springer-Verlag: Berlin Heidelberg, Germany, 2013; pp. 397–413. [Google Scholar]
- Ozesmi, S.; Bauer, M. Satellite remote sensing of wetlands. Wetl. Ecol. Manag. 2002, 10, 381–402. [Google Scholar] [CrossRef]
- Wang, H.; Huang, J. Study on characteristics of land cover change using MODIS NDVI time series. J. Zhejiang Univ. Sci. A 2009, 35, 105–110. [Google Scholar]
- Byrd, K.B.; O’Connell, J.L.; di Tommaso, S.; Kelly, M. Evaluation of sensor types and environmental controls on mapping biomass of coastal marsh emergent vegetation. Remote Sens. Environ. 2014, 149, 166–180. [Google Scholar] [CrossRef]
- Dabrowska-Zielinska, K.; Budzynska, M.; Tomaszewska, M.; Bartold, M.; Gatkowska, M.; Malek, I.; Turlej, K.; Napiorkowska, M. Monitoring wetlands ecosystems using ALOS PALSAR (L-Band, HV) supplemented by optical data: A case study of Biebrza Wetlands in northeast Poland. Remote Sens. 2014, 6, 1605–1633. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Lin, H. A comparison study of impervious surfaces estimation using optical and SAR remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 148–156. [Google Scholar] [CrossRef]
- Gosselin, G.; Touzi, R.; Cavayas, F. Polarimetric Radarsat-2 wetland classification using the Touzi decomposition: Case of the Lac Saint-Pierre Ramsar wetland. Can. J. Remote Sens. 2014, 39, 491–506. [Google Scholar] [CrossRef]
- Touzi, R.; Deschamps, A.; Rother, G. Wetland characterization using polarimetric RADARSAT-2 capability. Can. J. Remote Sens. 2007, 33, S56–S67. [Google Scholar] [CrossRef]
- Yajima, Y.; Yamaguchi, Y.; Sato, R.; Yamada, H.; Boerner, W.M. POLSAR image analysis of wetlands using a modified four-component scattering power decomposition. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1667–1673. [Google Scholar] [CrossRef]
- Cable, J.; Kovacs, J.; Shang, J.; Jiao, X. Multi-temporal polarimetric RADARSAT-2 for land cover monitoring in northeastern Ontario. Canada. Remote Sens. 2014, 6, 2372–2392. [Google Scholar] [CrossRef]
- Van Beijma, S.; Comber, A.; Lamb, A. Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sens. Environ. 2014, 149, 118–129. [Google Scholar] [CrossRef]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Peña, J.M.; Gutiérrez, P.A.; Hervás-Martínez, C.; Six, J.; Plant, R.E.; López-Granados, F. Object-based image classification of summer crops with machine learning methods. Remote Sens. 2014, 6, 5019–5041. [Google Scholar] [CrossRef]
- Ban, Y.; Hu, H.; Rangel, I.M. Fusion of Quickbird MS and RADARSAT SAR data for urban land-cover mapping: Object-based and knowledge-based approach. Int. J. Remote Sens. 2010, 31, 1391–1410. [Google Scholar] [CrossRef]
- Shi, W.; Yang, B.; Li, Q. An object-oriented data model for complex objects in three-dimensional geographical information systems. Int. J. Geogr. Inf. Sci. 2003, 17, 411–430. [Google Scholar] [CrossRef]
- Benz, U.; Pottier, E. Object based analysis of polarimetric SAR data in alpha-entropy-anisotropy decomposition using fuzzy classification by eCognition. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Sydney, Australia, 9–13 July 2001; pp. 1427–1429.
- Niu, X.; Ban, Y. Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach. Int. J. Remote Sens. 2012, 34, 1–26. [Google Scholar] [CrossRef]
- Qi, Z.; Yeh, A.G.O.; Li, X.; Lin, Z. A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data. Remote Sens. Environ. 2012, 118, 21–39. [Google Scholar] [CrossRef]
- Lee, J.S.; Pottier, E. Polarimetric SAR speckle filtering. In Polarimetric Radar Imaging: From Basics to Applications, 1st ed.; CRC Press: London, UK, 2009; pp. 161–165. [Google Scholar]
- Sartori, L.R.; Imai, N.N.; Mura, J.C.; Novo, E.M.L.M.; Silva, T.S.F. Mapping macrophyte species in the Amazon Floodplain wetlands using fully polarimetric ALOS/PALSAR data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4717–4728. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Krogager, E. New decomposition of the radar target scattering matrix. Electron. Lett. 1990, 26, 1525–1527. [Google Scholar] [CrossRef]
- Huynen, J.R. The Stokes matrix parameters and their interpretation in terms of physical target properties. In Proceedings of the Journées Internationales de la Polarimétrie Radar, Nantes, France, 20–22 March 1990.
- Barnes, R.M. Roll-invariant decomposition for the polarization covariance matrix. In Proceedings of the Polarimetry Technology Workshop, Redstone Arsenal, AL, USA, 16–18 August 1988.
- Holm, W.A.; Barnes, R.M. On radar polarization mixed target state decomposition techniques. In Proceedings of the 1988 USA National Radar Conference, Ann Arbor, MI, USA, 20–21 April 1988; pp. 20–21.
- Van Zyl, J.J. Application of cloude target decomposition theorem to polarimetric imaging radar data. Radar Polarim. 1993, 1748, 184–191. [Google Scholar]
- Pottier, E.; Lee, J.S. Application of the «H/A/alpha» polarimetric decomposition theorem for unsupervised classification of fully polarimetric SAR data based on the wishart distribution. In Proceedings of the CEOS SAR Workshop, Toulouse, France, 26–29 October 1999; pp. 335–340.
- Freeman, A. Fitting a two-component scattering model to polarimetric SAR data from forests. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2583–2592. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Singh, G.; Cui, Y.; Sang Eun, P.; Yamada, H.; Sato, R. Comparison of model-based four-component scattering power decompositions. In Proceedings of the 2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Tsukuba, Japan, 23–27 September 2013.
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Neumann, M.; Ferro-Famil, L.; Pottier, E. A general model-based polarimetric decomposition scheme for vegetated areas. In Proceedings of the 4th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry-PolInSAR, Frascati, Italy, 26–30 January 2009.
- Touzi, R. Target scattering decomposition in terms of roll-invariant target parameters. IEEE Trans. Geosci. Remote Sens. 2007, 45, 73–84. [Google Scholar] [CrossRef]
- An, W.; Cui, Y.; Yang, J. Three-component model-based decomposition for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2732–2739. [Google Scholar] [CrossRef]
- An, W.; Xie, C.; Yuan, X.; Cui, Y.; Yang, J. Four-component decomposition of polarimetric SAR images with deorientation. IEEE Geosci. Remote Sens. Lett. 2011, 8, 1090–1094. [Google Scholar] [CrossRef]
- Arii, M.; Van Zyl, J.J.; Kim, Y. Adaptive model-based decomposition of polarimetric SAR covariance matrices. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1104–1113. [Google Scholar] [CrossRef]
- Arii, M.; Van Zyl, J.; Kim, Y. Improvement of adaptive-model based decomposition with polarization orientation compensation. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 95–98.
- Wang, L.; Sousa, W.P.; Gong, P. Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. Int. J. Remote Sens. 2004, 25, 5655–5668. [Google Scholar] [CrossRef]
- Baatz, M.; Benz, U.; Dehghani, S.; Heynen, M.; Holtje, A.; Hofmann, P.; Lingenfelder, I.; Mimler, M.; Sohlbach, M.; Weber, M. ECognition Professional User Guide 4; Definiens Imaging: Munich, Germany, 2004. [Google Scholar]
- Safavian, S.R.; Landgrebe, D. A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 1991, 21, 660–674. [Google Scholar] [CrossRef]
- Loh, W.Y.; Shih, Y.S. Split selection methods for classification trees. Stat. Sin. 1997, 7, 815–840. [Google Scholar]
- Lee, J.S.; Grunes, M.R.; Ainsworth, T.L.; Du, L.J.; Schuler, D.L.; Cloude, S.R. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2249–2258.45. [Google Scholar] [CrossRef]
- Refregier, P.; Morio, J. Shannon entropy of partially polarized and partially coherent light with Gaussian fluctuations. J. Opt. Soc. A 2006, 23, 3036–3044. [Google Scholar] [CrossRef]
- Allain, S.; Ferro-Famil, L.; Pottier, E. A polarimetric classification from PolSAR data using SERD/DERD parameters. In Proceedings of the 6th European Conference on Synthetic Aperture Radar, Dresden, Germany, 16–18 May 2006.
- Ainsworth, T.L.; Cloude, S.R.; Lee, J.S. Eigenvector analysis of polarimetric SAR data. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Toronto, ON, Canada, 24–28 June 2002; pp. 626–628.
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; He, X.; Wang, J.; Xiao, R. The Influence of Polarimetric Parameters and an Object-Based Approach on Land Cover Classification in Coastal Wetlands. Remote Sens. 2014, 6, 12575-12592. https://doi.org/10.3390/rs61212575
Chen Y, He X, Wang J, Xiao R. The Influence of Polarimetric Parameters and an Object-Based Approach on Land Cover Classification in Coastal Wetlands. Remote Sensing. 2014; 6(12):12575-12592. https://doi.org/10.3390/rs61212575
Chicago/Turabian StyleChen, Yuanyuan, Xiufeng He, Jing Wang, and Ruya Xiao. 2014. "The Influence of Polarimetric Parameters and an Object-Based Approach on Land Cover Classification in Coastal Wetlands" Remote Sensing 6, no. 12: 12575-12592. https://doi.org/10.3390/rs61212575
APA StyleChen, Y., He, X., Wang, J., & Xiao, R. (2014). The Influence of Polarimetric Parameters and an Object-Based Approach on Land Cover Classification in Coastal Wetlands. Remote Sensing, 6(12), 12575-12592. https://doi.org/10.3390/rs61212575