A New Metric for Quantifying Burn Severity: The Relativized Burn Ratio
Abstract
:1. Introduction
2. Methods
2.1. Study Area and Field Data
2.2. Remotely-Sensed Severity Metrics
2.3. Data Analysis
3. Results
3.1. Correspondence to Field-Measured CBI: Nonlinear Regressions
3.2. Correlation to Pre-Fire NBR
3.3. Classification Accuracy
4. Discussion
5. Conclusion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.L.; Quayle, B.; Howard, S. A project for monitoring trends in burn severity. Fire Ecol 2007, 3, 3–21. [Google Scholar]
- Thompson, J.R.; Spies, T.A.; Ganio, L.M. Reburn severity in managed and unmanaged vegetation in a large wildfire. Proc. Natl. Acad. Sci. USA 2007, 104, 10743–10748. [Google Scholar]
- Bradstock, R.A.; Hammill, K.A.; Collins, L.; Price, O. Effects of weather, fuel and terrain on fire severity in topographically diverse landscapes of south-eastern Australia. Landscape Ecol 2010, 25, 607–619. [Google Scholar]
- Dillon, G.K.; Holden, Z.A.; Morgan, P.; Crimmins, M.A.; Heyerdahl, E.K.; Luce, C.H. Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006. Ecosphere 2011, 2. art130.. [Google Scholar]
- Wimberly, M.C.; Cochrane, M.A.; Baer, A.D.; Pabst, K. Assessing fuel treatment effectiveness using satellite imagery and spatial statistics. Ecol. Appl 2009, 19, 1377–1384. [Google Scholar]
- Arkle, R.S.; Pilliod, D.S.; Welty, J.L. Pattern and process of prescribed fires influence effectiveness at reducing wildfire severity in dry coniferous forests. For. Ecol. Manage 2012, 276, 174–184. [Google Scholar]
- Parks, S.A.; Miller, C.; Nelson, C.R.; Holden, Z.A. Previous fires moderate burn severity of subsequent wildland fires in two large western US wilderness areas. Ecosystems 2014, 17, 29–42. [Google Scholar]
- Arkle, R.S.; Pilliod, D.S.; Strickler, K. Fire, flow and dynamic equilibrium in stream macroinvertebrate communities. Freshwater Biol 2010, 55, 299–314. [Google Scholar]
- Key, C.H.; Benson, N.C. Landscape Assessment (LA): Sampling and Analysis Methods. In Firemon: Fire Effects Monitoring and Inventory System; Lutes, D., Keane, R.E., Caratti, J.F., Key, C.H., Benson, N.C., Sutherland, S., Gangi, L., Eds.; RMRS-GTR-164; Rocky Mountain Research Station, US Department of Agriculture, Forest Service: Fort Collins, CO, USA, 2006; pp. LA-1–LA-51. [Google Scholar]
- Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ 2007, 109, 66–80. [Google Scholar]
- Zhu, Z.; Key, C.H.; Ohlen, D.; Benson, N.C. Evaluate Sensitivities of Burn-Severity Mapping Algorithms for Different Ecosystems and Fire Histories in the United States; Final Report to the Joint Fire Sciences Program, JFSP 01-1-4-12; Joint Fire Science Program: Boise, IA, USA, 2006. [Google Scholar]
- Hudak, A.T.; Morgan, P.; Bobbitt, M.J.; Smith, A.M.S.; Lewis, S.A.; Lentile, L.B.; Robichaud, P.R.; Clark, J.S.; McKinley, R.A. The relationship of multispectral satellite imagery to immediate fire effects. Fire Ecol 2007, 3, 64–90. [Google Scholar]
- Miller, J.D.; Safford, H.D.; Crimmins, M.; Thode, A.E. Quantitative evidence for increasing forest fire severity in the Sierra Nevada and southern Cascade Mountains, California and Nevada, USA. Ecosystems 2009, 12, 16–32. [Google Scholar]
- Van Wagtendonk, J.W.; Root, R.R.; Key, C.H. Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity. Remote Sens. Environ 2004, 92, 397–408. [Google Scholar]
- Wimberly, M.C.; Reilly, M.J. Assessment of fire severity and species diversity in the southern Appalachians using Landsat TM and ETM plus imagery. Remote Sens. Environ 2007, 108, 189–197. [Google Scholar]
- Holden, Z.A.; Morgan, P.; Evans, J.S. A predictive model of burn severity based on 20-year satellite-inferred burn severity data in a large southwestern US wilderness area. For. Ecol. Manage 2009, 258, 2399–2406. [Google Scholar]
- Key, C.H. Ecological and sampling constraints on defining landscape fire severity. Fire Ecol 2006, 2, 34–59. [Google Scholar]
- Miller, J. Personal communication. 2012. [Google Scholar]
- Soverel, N.O.; Perrakis, D.D.B.; Coops, N.C. Estimating burn severity from Landsat dNBR and RdNBR indices across western Canada. Remote Sens. Environ 2010, 114, 1896–1909. [Google Scholar]
- Tanase, M.A.; Riva, J.D.L.; Pérez-Cabello, F. Estimating burn severity at the regional level using optically based indices. Can. J. For. Res 2010, 41, 863–872. [Google Scholar]
- Cansler, C.A.; McKenzie, D. How robust are burn severity indices when applied in a new region? Evaluation of alternate field-based and remote-sensing methods. Remote Sens 2012, 4, 456–483. [Google Scholar]
- Rollins, M.G. LANDFIRE: A nationally consistent vegetation, wildland fire, and fuel assessment. Int. J. Wildland Fire 2009, 18, 235–249. [Google Scholar]
- Cansler, C.A. Drivers of Burn Severity in the Northern Cascade Range, Washington; M.Sc. Thesis,; University of Washington: Seattle, WA, USA, 2011. [Google Scholar]
- Littell, J.S.; Oneil, E.E.; McKenzie, D.; Hicke, J.A.; Lutz, J.A.; Norheim, R.A.; Elsner, M.M. Forest ecosystems, disturbance, and climatic change in Washington state, USA. Clim. Change 2010, 102, 129–158. [Google Scholar]
- Westerling, A.L.; Turner, M.G.; Smithwick, E.A.H.; Romme, W.H.; Ryan, M.G. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proc. Natl. Acad. Sci. USA 2011, 108, 13165–13170. [Google Scholar]
- Kokaly, R.F.; Rockwell, B.W.; Haire, S.L.; King, T.V.V. Characterization of post-fire surface cover, soils, and burn severity at the Cerro Grande Fire, New Mexico, using hyperspectral and multispectral remote sensing. Remote Sens. Environ 2007, 106, 305–325. [Google Scholar]
- Lentile, L.B.; Smith, A.M.S.; Hudak, A.T.; Morgan, P.; Bobbitt, M.J.; Lewis, S.A.; Robichaud, P.R. Remote sensing for prediction of 1-year post-fire ecosystem condition. Int. J. Wildland Fire 2009, 18, 594–608. [Google Scholar]
- Veraverbeke, S.; Hook, S.; Hulley, G. An alternative spectral index for rapid fire severity assessments. Remote Sens. Environ 2012, 123, 72–80. [Google Scholar]
- Smith, A.M.S.; Eitel, J.U.H.; Hudak, A.T. Spectral analysis of charcoal on soils: Implications for wildland fire severity mapping methods. Int. J. Wildland Fire 2010, 19, 976–983. [Google Scholar]
- Epting, J.; Verbyla, D.; Sorbel, B. Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote Sens. Environ 2005, 96, 328–339. [Google Scholar]
- Picotte, J.J.; Robertson, K.M. Validation of remote sensing of burn severity in south-eastern US ecosystems. Int. J. Wildland Fire 2011, 20, 453–464. [Google Scholar]
Appendix
Fire Name | dNBR | RdNBR | RBR |
---|---|---|---|
Tripod Cx (Spur Peak) | 63.4 | 71.0 | 70.7 |
Tripod Cx (Tripod) | 58.8 | 58.1 | 60.6 |
Robert | 68.5 | 75.0 | 75.0 |
Falcon | 64.3 | 71.4 | 66.7 |
Green Knoll | 63.0 | 63.0 | 63.0 |
Puma | 86.7 | 77.8 | 86.7 |
Dry Lakes Cx | 75.5 | 77.6 | 81.6 |
Miller | 53.2 | 51.1 | 52.1 |
Outlet | 66.7 | 68.5 | 68.5 |
Dragon Cx WFU | 66.7 | 66.7 | 70.6 |
Long Jim | 67.3 | 71.4 | 71.4 |
Vista | 76.1 | 80.4 | 78.3 |
Walhalla | 70.2 | 66.0 | 70.2 |
Poplar | 75.9 | 69.4 | 75.9 |
Power | 75.0 | 77.3 | 77.3 |
Cone | 71.2 | 71.2 | 69.5 |
Straylor | 77.3 | 76.0 | 76.0 |
McNally | 50.8 | 57.1 | 52.9 |
Average of 18 fires | 68.4 | 69.4 | 70.4 |
All plots (n = 1681) | 63.8 | 65.8 | 66.5 |
Region | Fire Name | dNBR | RdNBR | RBR | ||||||
---|---|---|---|---|---|---|---|---|---|---|
unch/low | low/mod | unch/low | low/mod | mod/high | mod/high | unch/low | low/mod | mod/high | ||
Northwest and northern Rockies | Tripod Cx (Spur Peak) | 97 | 213 | 76 | 158 | 335 | 478 | 204 | 396 | 774 |
Tripod Cx (Tripod) | 108 | 250 | 85 | 182 | 344 | 496 | 229 | 429 | 773 | |
Robert2 | 105 | 221 | 60 | 136 | 313 | 518 | 124 | 281 | 643 | |
Falcon | 134 | 230 | 87 | 160 | 321 | 453 | 177 | 357 | 726 | |
Green Knoll3 | −71 | 159 | −47 | 97 | 295 | 474 | −101 | 200 | 610 | |
Southwest | Puma | 37 | 145 | 30 | 127 | 296 | 353 | 48 | 502 | 973 |
Dry Lakes Cx | 66 | 148 | 49 | 124 | 271 | 336 | 118 | 348 | 704 | |
Miller | 145 | 188 | 122 | 158 | 287 | 343 | 337 | 473 | 876 | |
Outlet | −47 | 109 | −38 | 77 | 271 | 382 | −103 | 172 | 607 | |
Dragon Cx WFU | 42 | 144 | 29 | 108 | 288 | 391 | 61 | 252 | 662 | |
Long Jim | 21 | 121 | 16 | 106 | 212 | 244 | 20 | 357 | 715 | |
Vista | −43 | 156 | −30 | 111 | 343 | 492 | −70 | 252 | 757 | |
Walhalla | −6 | 120 | −3 | 87 | 280 | 381 | −3 | 197 | 643 | |
Poplar | 72 | 197 | 58 | 141 | 317 | 437 | 235 | 347 | 701 | |
Sierra Nevada | Power | 38 | 161 | 25 | 100 | 286 | 475 | 55 | 210 | 589 |
Cone | −42 | 117 | −42 | 95 | 292 | 391 | −234 | 293 | 715 | |
Straylor | 19 | 121 | 15 | 92 | 244 | 329 | 24 | 229 | 584 | |
McNally | 71 | 147 | 39 | 112 | 265 | 359 | 6 | 331 | 682 | |
Coefficient of variation | 1.56 | 0.26 | 0.18 | 2.27 | 0.31 | 0.14 | 1.64 | 0.25 | 0.12 | |
All plots (n = 1681) | 37 | 188 | 32 | 135 | 304 | 430 | 90 | 336 | 722 |
Producer’s Accuracy | User’s Accuracy | Overall | |||||||
---|---|---|---|---|---|---|---|---|---|
Unchanged | Low | Moderate | High | Unchanged | Low | Moderate | High | Accuracy | |
dNBR | 73.9 | 57.9 | 60.4 | 73.2 | 42.5 | 57.9 | 66.1 | 74.0 | 64.2 |
RdNBR | 70.1 | 46.2 | 65.6 | 80.6 | 36.7 | 56.6 | 67.4 | 78.6 | 65.5 |
RBR | 72.7 | 51.6 | 64.9 | 78.9 | 40.5 | 57.8 | 68.0 | 78.0 | 66.2 |
Region | Fire Name | Year | Plots | Overstory Species (in Order of Prevalence) | Historical Fire Regime (Rollins 2009) | ||
---|---|---|---|---|---|---|---|
Surface | Mixed | Replace | |||||
Northwest and Northern Rockies | Tripod Cx (Spur Peak) 1 | 2006 | 328 | Douglas-fir, ponderosa pine, subalpine fir, Engelmann spruce | 80–90% | <5% | 5–10% |
Tripod Cx (Tripod) 1 | 2006 | 160 | Douglas-fir, ponderosa pine, subalpine fir, Engelmann spruce | >90% | <5% | <5% | |
Robert 2 | 2003 | 92 | Subalpine fir, Engelmann spruce, lodgepole pine, Douglas-fir, grand fir, western red cedar, western larch | 5–10% | 30–40% | 40–50% | |
Falcon 3 | 2001 | 42 | Subalpine fir, Engelmann spruce, lodgepole pine, whitebark pine | 0% | 30–40% | 60–70% | |
Green Knoll 3 | 2001 | 54 | Subalpine fir, Engelmann spruce, lodgepole pine, Douglas-fir, aspen | 0% | 20–30% | 70–80% | |
Southwest | Puma 4 | 2008 | 45 | Douglas-fir, white fir, ponderosa pine | 20–30% | 70–80% | 0% |
Dry Lakes Cx 3 | 2003 | 49 | Ponderosa pine, Arizona pine, Emory oak, alligator juniper | >90% | 0% | 0% | |
Miller 5 | 2011 | 94 | Ponderosa pine, Arizona pine, Emory oak, alligator juniper | 80–90% | 5–10% | 0% | |
Outlet 6 | 2000 | 54 | Subalpine fir, Engelmann spruce, lodgepole pine, ponderosa pine, Douglas-fir, white fir | 30–40% | 5–10% | 50–60% | |
Dragon Cx WFU 6 | 2005 | 51 | Ponderosa pine, Douglas-fir, white fir, aspen, subalpine fir, lodgepole pine | 60–70% | 20–30% | 5–10% | |
Long Jim 6 | 2004 | 49 | Ponderosa pine, Gambel oak | >90% | 0% | 0% | |
Vista 6 | 2001 | 46 | Douglas-fir, white fir, ponderosa pine, aspen, subalpine fir | 20–30% | 70–80% | 0% | |
Walhalla6 | 2004 | 47 | Douglas-fir, white fir, ponderosa pine, aspen, subalpine fir, lodgepole pine | 60–70% | 20–30% | <5% | |
Poplar 6 | 2003 | 108 | Douglas-fir, white fir, ponderosa pine, aspen, subalpine fir, lodgepole pine | 20–30% | 20–30% | 40–50% | |
Sierra Nevada | Power 7 | 2004 | 88 | Ponderosa/Jeffrey pine, white fir, mixed conifers, black oak | >90% | 0% | 0% |
Cone 7 | 2002 | 59 | Ponderosa/Jeffrey pine, mixed conifers | 80–90% | <5% | <5% | |
Straylor 7 | 2004 | 75 | Ponderosa/Jeffrey pine, western juniper | >90% | 0% | <5% | |
McNally 7 | 2002 | 240 | Ponderosa/Jeffrey pine, mixed conifers, interior live oak, scrub oak, black oak | 70–80% | 10–20% | 0% |
Fire Name | dNBR | RdNBR | RBR |
---|---|---|---|
Tripod Cx (Spur Peak) | 63.4 | 71.6 | 70.1 |
Tripod Cx (Tripod) | 58.8 | 58.8 | 61.3 |
Robert | 68.5 | 75.0 | 75.0 |
Falcon | 64.3 | 71.4 | 66.7 |
Green Knoll | 63.0 | 63.0 | 63.0 |
Puma | 86.7 | 75.6 | 86.7 |
Dry Lakes Cx | 75.5 | 77.6 | 81.6 |
Miller | 53.2 | 50.0 | 53.2 |
Outlet | 66.7 | 68.5 | 68.5 |
Dragon Cx WFU | 66.7 | 66.7 | 70.6 |
Long Jim | 67.3 | 69.4 | 71.4 |
Vista | 76.1 | 80.4 | 78.3 |
Walhalla | 70.2 | 68.1 | 70.2 |
Poplar | 75.9 | 68.5 | 75.9 |
Power | 75.0 | 76.1 | 77.3 |
Cone | 71.2 | 71.2 | 69.5 |
Straylor | 77.3 | 76.0 | 74.7 |
McNally | 50.8 | 57.1 | 54.2 |
Average of 18 fires | 68.4 | 69.2 | 70.5 |
All plots (n = 1681) | 64.2 | 65.5 | 66.2 |
Region | Fire Name | dNBR | RdNBR | RBR | ||||||
---|---|---|---|---|---|---|---|---|---|---|
unch/low | Low/mod | mod/high | unch/low | low/mod | mod/high | unch/low | low/mod | mod/high | ||
Northwest and Northern Rockies | Tripod Cx (Spur Peak) | 52 | 168 | 433 | 109 | 310 | 696 | 40 | 123 | 304 |
Tripod Cx (Tripod) | 96 | 238 | 484 | 204 | 408 | 752 | 76 | 173 | 336 | |
Robert | 109 | 225 | 522 | 129 | 286 | 648 | 63 | 139 | 316 | |
Falcon | 152 | 248 | 471 | 200 | 383 | 755 | 98 | 172 | 334 | |
Green Knoll | −27 | 203 | 518 | −37 | 258 | 666 | −18 | 125 | 322 | |
Southwest | Puma | 36 | 144 | 352 | 52 | 479 | 938 | 30 | 126 | 295 |
Dry Lakes Cx | 71 | 153 | 341 | 132 | 360 | 714 | 53 | 129 | 276 | |
Miller | 122 | 165 | 320 | 294 | 400 | 785 | 102 | 139 | 268 | |
Outlet | −30 | 126 | 399 | −65 | 201 | 633 | −24 | 90 | 284 | |
Dragon Cx WFU | 19 | 121 | 368 | 20 | 211 | 622 | 11 | 91 | 271 | |
Long Jim | 51 | 151 | 274 | 122 | 437 | 787 | 43 | 132 | 238 | |
Vista | −69 | 130 | 466 | −111 | 209 | 716 | −48 | 93 | 325 | |
Walhalla | 30 | 156 | 417 | 66 | 259 | 701 | 25 | 114 | 307 | |
Poplar | 60 | 185 | 425 | 178 | 312 | 688 | 50 | 132 | 308 | |
Sierra Nevada | Power | 38 | 161 | 475 | 56 | 211 | 590 | 26 | 101 | 287 |
Cone | −35 | 124 | 398 | −214 | 309 | 727 | −35 | 101 | 298 | |
Straylor | 36 | 138 | 346 | 94 | 273 | 612 | 30 | 107 | 258 | |
McNally | 91 | 167 | 379 | 73 | 366 | 717 | 54 | 128 | 281 | |
Coefficient of variation | 1.32 | 0.23 | 0.17 | 1.69 | 0.27 | 0.11 | 1.33 | 0.20 | 0.09 | |
All plots (n = 1681) | 42 | 180 | 422 | 99 | 319 | 704 | 35 | 130 | 298 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Parks, S.A.; Dillon, G.K.; Miller, C. A New Metric for Quantifying Burn Severity: The Relativized Burn Ratio. Remote Sens. 2014, 6, 1827-1844. https://doi.org/10.3390/rs6031827
Parks SA, Dillon GK, Miller C. A New Metric for Quantifying Burn Severity: The Relativized Burn Ratio. Remote Sensing. 2014; 6(3):1827-1844. https://doi.org/10.3390/rs6031827
Chicago/Turabian StyleParks, Sean A., Gregory K. Dillon, and Carol Miller. 2014. "A New Metric for Quantifying Burn Severity: The Relativized Burn Ratio" Remote Sensing 6, no. 3: 1827-1844. https://doi.org/10.3390/rs6031827
APA StyleParks, S. A., Dillon, G. K., & Miller, C. (2014). A New Metric for Quantifying Burn Severity: The Relativized Burn Ratio. Remote Sensing, 6(3), 1827-1844. https://doi.org/10.3390/rs6031827