Burned Area Detection and Burn Severity Assessment of a Heathland Fire in Belgium Using Airborne Imaging Spectroscopy (APEX)
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Field Data
2.3. Airborne Data and Preprocessing
2.4. Ancillary Data
3. Methods
3.1. Spectral Indices
3.2. Spectral Sensitivity for Burned Area Discrimination
3.3. Relationship between Spectral Bands and Indices versus Burn Severity
4. Results
4.1. Spectral Sensitivity for Burned Area Discrimination
4.2. Relationship between Spectral Indices and Field Assessments of Burn Severity
5. Discussion
5.1. Burned Area Discrimination
5.2. Burn Severity Assessment
6. Conclusion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- De Blust, G. Heathland, an Ever Changing Landscape. In Europe’s Living Landscape. Essays Exploring Our Identity in the Countryside; Pedroli, B., Van Doorn, A., De Blust, G., Paracchini, M.L., Wascher, D., Bunce, F., Eds.; KNNV & Landscape Europe: Zeist, The Netherlands, 2007; pp. 179–192. [Google Scholar]
- De Blust, G.; Slootmaekers, M. De Kalmthoutse Heide; Davidsfonds: Leuven, Belgium, 1997. [Google Scholar]
- Webb, N.R. The traditional management of European Heathlands. J. Appl. Ecol 1998, 35, 987–990. [Google Scholar]
- Davies, G.M.; Smith, A.A.; MacDonald, A.J.; Bakker, J.D.; Legg, C.J. Fire intensity, fire severity and ecosystem response in heathlands: Factors affecting the regeneration of Calluna vulgaris. J. Appl. Ecol 2010, 47, 356–365. [Google Scholar]
- Harris, M.P.K.; Allen, K.A.; McAllister, H.A.; Eyre, G.; Le Duc, M.G.; Marrs, R.H. Factors affecting moorland plant communities and component species in relation to prescribed burning. J. Appl. Ecol 2011, 48, 1411–1421. [Google Scholar]
- Ross, S.; Adamson, H.; Moon, A. Evaluating management techniques for controlling Molinia caerulea and enhancing Calluna vulgaris on upland wet heathland in Northern England, UK. Agric. Ecosyst. Environ 2003, 97, 39–49. [Google Scholar]
- Marrs, R.H.; Phillips, J.D.P.; Todd, P.A.; Ghorbani, J.; Le Duc, M.G. Control of Molinia caerulea on upland moors. J. Appl. Ecol 2004, 41, 398–411. [Google Scholar]
- Ascoli, D.; Beghin, R.; Ceccato, R.; Gorlier, A.; Lombardi, G.; Lonati, M.; Marzano, R.; Bovio, G.; Cavallero, A. Developing an adaptive management approach to prescribed burning: A long-term heathland conservation experiment in north-west Italy. Int. J. Wildland Fire 2009, 18, 727–735. [Google Scholar]
- Velle, L.G.; Nilsen, L.S.; Vandvik, V. The age of Calluna stands moderates post-fire regeneration rate and trends in northern Calluna heathlands. Appl. Veg. Sci 2012, 15, 119–128. [Google Scholar]
- Goldammer, J.G.; Hoffmann, G.; Bruce, M.; Kondrashov, L.; Verkhovets, S.; Kisilyakhov, Y.K.; Rydkvist, T.; Page, H.; Brunn, E.; Lovén, L.; et al. The Eurasian Fire in Nature Conservation Network (EFNCN): Advances in the Use of Prescribed Fire in Nature Conservation, Landscape Management, Forestry and Carbon Management in Temperate-Boreal Europe and Adjoining Countries in Southeast Europe, Caucasus. Proceeding of 4th International Wildland Fire Conference, Sevilla, Spain, 13–17 May 2007.
- Brys, R.; Jacquemyn, H.; de Blust, G. Fire increases aboveground biomass, seed production and recruitment success of Molinia caerulea in dry heathland. Acta Oecol 2005, 28, 299–305. [Google Scholar]
- Jacquemyn, H.; Brys, R.; Neubert, M.G. Fire increases invasive spread of Molinia caerulea mainly through changes in demographic parameters. Ecol. Appl 2005, 15, 2097–2108. [Google Scholar]
- Díaz-Delgado, R.; Lloret, F.; Pons, X. Influence of fire severity on plant regeneration by means of remote sensing imagery. Int. J. Remote Sens 2003, 24, 1751–1763. [Google Scholar]
- Turner, M.G.; Romme, W.H.; Gardner, R.H. Prefire heterogeneity, fire severity, and early postfire plant reestablishment in subalpine forests of Yellowstone National Park, Wyoming. Int. J. Wildland Fire 1999, 9, 21–36. [Google Scholar]
- Epting, J.; Verbyla, D. Landscape-level interactions of prefire vegetation, burn severity, and postfire vegetation over a 16-year period in interior Alaska. Can. J. For. Res 2005, 35, 1367–1377. [Google Scholar]
- Lentile, L.B.; Smith, F.W.; Shepperd, W.D. Patch structure, fire-scar formation, and tree regeneration in a large mixed-severity fire in the South Dakota Black Hills, USA. Can. J. For. Res 2005, 35, 2875–2885. [Google Scholar]
- El-Kahloun, M.; Boeye, D.; Verhagen, B.; van Haesebroeck, V. A comparison of the nutrient status of Molinia caerulea and neighbouring vegetation in a rich fen. Belg. J. Bot 2000, 133, 91–102. [Google Scholar]
- Milligan, A.L.; Putwain, P.D.; Cox, E.S.; Ghorbani, J.; Le Duc, M.G.; Marrs, R.H. Developing an integrated land management strategy for the restoration of moorland vegetation on Molinia caerulea-dominated vegetation for conservation purposes in upland Britain. Biol. Conserv 2004, 119, 371–385. [Google Scholar]
- Milligan, A.L.; Putwain, P.D.; Marrs, R.H. A field assessment of the role of selective herbicides in the restoration of British moorland dominated by Molinia. Biol. Conserv 2003, 109, 369–379. [Google Scholar]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar]
- Lentile, L.B.; Holden, Z.; Smith, A.M.S.; Falkowski, M.; Hudak, A.; Morgan, P.; Lewis, S.; Gessler, P.; Benson, N. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int. J. Wildland Fire 2006, 15, 319–345. [Google Scholar]
- Veraverbeke, S.; Lhermitte, S.; Verstraeten, W.W.; Goossens, R. The temporal dimension of differenced Normalized Burn Ratio (dNBR) fire/burn severity studies: The case of the large 2007 Peloponnese wildfires in Greece. Remote Sens. Environ 2010, 114, 2548–2563. [Google Scholar] [Green Version]
- Haest, B.; Thoonen, G.; Borre, J.V.; Spanhove, T.; Delalieux, S.; Bertels, L.; Kooistra, L.; Scheunders, P. An object-based approach to quantity and quality assessment of heathland habitats in the framework of NATURA 2000 using hyperspectral airborne AHS images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2010. Available online: http://www.isprs.org/proceedings/XXXVIII/4-C7/pdf/Haest_211.pdf (accessed on 13 February 2014). [Google Scholar]
- Veraverbeke, S.; Somers, B.; Gitas, I.; Katagis, T.; Polychronaki, A.; Goossens, R. Spectral mixture analysis to assess post-fire vegetation regeneration using Landsat Thematic Mapper imagery: Accounting for soil brightness variation. Int. J. Appl. Earth Obs. Geoinf 2012, 14, 1–11. [Google Scholar] [Green Version]
- Key, C.H.; Benson, N.C. Landscape Assessment: Ground Measure of Severity, the Composite Burn Index, and Remote Sensing of Severity, the Normalized Burn Index. In FIREMON: Fire Effects Monitoring and Inventory System; Lutes, D., Keane, R., Caratti, J., Key, C.H., Benson, N.C., Sutherland, S., Gangi, L., Eds.; Rocky Mountains Research Station, USDA Forest Service: Fort Collins, CO, USA, 2005. [Google Scholar]
- Van Wagtendonk, J.W.; Root, R.R.; Key, C.H. Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity. Remote Sens. Environ 2004, 92, 397–408. [Google Scholar]
- Chuvieco, E. Remote Sensing of Large Wildfires in the European Mediterranean Basin; Springer: Berlin/Heidelberg, Germany, 1999; p. 212. [Google Scholar]
- De Santis, A.; Chuvieco, E. Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models. Remote Sens. Environ 2007, 108, 422–435. [Google Scholar]
- De Santis, A.; Chuvieco, E.; Vaughan, P.J. Short-term assessment of burn severity using the inversion of PROSPECT and GeoSail models. Remote Sens. Environ 2009, 113, 126–136. [Google Scholar]
- Lhermitte, S.; Verbesselt, J.; Verstraeten, W.W.; Veraverbeke, S.; Coppin, P. Assessing intra-annual vegetation regrowth after fire using the pixel based regeneration index. ISPRS J. Photogramm. Remote Sens 2011, 66, 17–27. [Google Scholar] [Green Version]
- Murphy, K.A.; Reynolds, J.H.; Koltun, J.M. Evaluating the ability of the differenced Normalized Burn Ratio (dNBR) to predict ecologically significant burn severity in Alaskan boreal forests. Int. J. Wildland Fire 2008, 17, 490–499. [Google Scholar]
- French, N.H.F.; Kasischke, E.S.; Hall, R.J.; Murphy, K.A.; Verbyla, D.L.; Hoy, E.E.; Allen, J.L. Using Landsat data to assess fire and burn severity in the North American boreal forest region: An overview and summary of results. Int. J. Wildland Fire 2008, 17, 443–462. [Google Scholar]
- De Santis, A.; Asner, G.P.; Vaughan, P.J.; Knapp, D.E. Mapping burn severity and burning efficiency in California using simulation models and Landsat imagery. Remote Sens. Environ 2010, 114, 1535–1545. [Google Scholar]
- Veraverbeke, S.; Hook, S. Evaluating spectral indices and spectral mixture analysis for assessing fire severity, combustion completeness, and carbon emissions. Int. J. Wildland Fire 2013, 22, 707–720. [Google Scholar]
- Kokaly, R.F.; Rockwell, B.W.; Haire, S.L.; King, T.V.V. Characterization of post-fire surface cover, soils, and burn severity at the Cerro Grande Fire, New Mexico, using hyperspectral and multispectral remote sensing. Remote Sens. Environ 2007, 106, 305–325. [Google Scholar]
- Robichaud, P.R.; Lewis, S.A.; Laes, D.Y.M.; Hudak, A.T.; Kokaly, R.F.; Zamudio, J.A. Postfire soil burn severity mapping with hyperspectral image unmixing. Remote Sens. Environ 2007, 108, 467–480. [Google Scholar]
- Lewis, S.A.; Lentile, L.B.; Hudak, A.T.; Robichaud, P.R.; Morgan, P.; Bobbitt, M.J. Mapping ground cover using hyperspectral remote sensing after the 2003 Simi and old wildfires in Southern California. Fire Ecol 2007, 3, 109–128. [Google Scholar]
- Smith, A.M.S.; Lentile, L.B.; Hudak, A.T.; Morgan, P. Evaluation of linear spectral unmixing and ΔNBR for predicting post-fire recovery in a North American ponderosa pine forest. Int. J. Remote Sens 2007, 28, 5159–5166. [Google Scholar]
- Smith, A.M.S.; Wooster, M.J.; Drake, N.A.; Dipotso, F.M.; Falkowski, M.J.; Hudak, A.T. Testing the potential of multi-spectral remote sensing for retrospectively estimating fire severity in African Savannahs. Remote Sens. Environ 2005, 97, 92–115. [Google Scholar]
- Quintano, C.; Fernández-Manso, A.; Roberts, D.A. Multiple Endmember Spectral Mixture Analysis (MESMA) to map burn severity levels from Landsat images in Mediterranean countries. Remote Sens. Environ 2013, 136, 76–88. [Google Scholar]
- Veraverbeke, S.; Harris, S.; Hook, S. Evaluating spectral indices for burned area discrimination using MODIS/ASTER (MASTER) airborne simulator data. Remote Sens. Environ 2011, 115, 2702–2709. [Google Scholar]
- Chafer, C.; Noonan, M.; Macnaught, E. The post-fire measurement of fire severity and intensity in the Christmas 2001 Sydney wildfires. Int. J. Wildland Fire 2004, 13, 227–240. [Google Scholar]
- Hammill, K.A.; Bradstock, R.A. Remote sensing of fire severity in the Blue Mountains: Influence of vegetation type and inferring fire intensity. Int. J. Wildland Fire 2006, 15, 213–226. [Google Scholar]
- Harris, S.; Veraverbeke, S.; Hook, S. Evaluating spectral indices for assessing fire severity in chaparral ecosystems (Southern California) using MODIS/ASTER (MASTER) airborne simulator data. Remote Sens 2011, 3, 2403–2419. [Google Scholar]
- Chuvieco, E.; Martín, M.P.; Palacios, A. Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination. Int. J. Remote Sens 2002, 23, 5103–5110. [Google Scholar]
- Smith, A.M.S.; Drake, N.A.; Wooster, M.J.; Hudak, A.T.; Holden, Z.A.; Gibbons, C.J. Production of Landsat ETM+ reference imagery of burned areas within Southern African savannahs: Comparison of methods and application to MODIS. Int. J. Remote Sens 2007, 28, 2753–2775. [Google Scholar]
- Trigg, S.; Flasse, S. An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah. Int. J. Remote Sens 2001, 22, 2641–2647. [Google Scholar]
- Bastarrika, A.; Chuvieco, E.; Martín, M.P. Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors. Remote Sens. Environ 2011, 115, 1003–1012. [Google Scholar]
- Epting, J.; Verbyla, D.; Sorbel, B. Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote Sens. Environ 2005, 96, 328–339. [Google Scholar]
- Hoy, E.E.; French, N.H.F.; Turetsky, M.R.; Trigg, S.N.; Kasischke, E.S. Evaluating the potential of Landsat TM/ETM+ imagery for assessing fire severity in Alaskan black spruce forests. Int. J. Wildland Fire 2008, 17, 500–514. [Google Scholar]
- Ju, J.; Roy, D.P. The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally. Remote Sens. Environ 2008, 112, 1196–1211. [Google Scholar]
- Boelman, N.T.; Rocha, A.V.; Shaver, G.R. Understanding burn severity sensing in Arctic tundra: Exploring vegetation indices, suboptimal assessment timing and the impact of increasing pixel size. Int. J. Remote Sens 2011, 32, 7033–7056. [Google Scholar]
- Verbyla, D.L.; Kasischke, E.S.; Hoy, E.E. Seasonal and topographic effects on estimating fire severity from Landsat TM/ETM+ data. Int. J. Wildland Fire 2008, 17, 527–534. [Google Scholar]
- Veraverbeke, S.; Verstraeten, W.W.; Lhermitte, S.; Goossens, R. Illumination effects on the differenced Normalized Burn Ratio’s optimality for assessing fire severity. Int. J. Appl. Earth Obs. Geoinf 2010, 12, 60–70. [Google Scholar]
- Veraverbeke, S.; Lhermitte, S.; Verstraeten, W.W.; Goossens, R. Evaluation of pre/post-fire differenced spectral indices for assessing burn severity in a Mediterranean environment with Landsat Thematic Mapper. Int. J. Remote Sens 2011, 32, 3521–3537. [Google Scholar] [Green Version]
- De Santis, A.; Chuvieco, E. GeoCBI: A modified version of the Composite Burn Index for the initial assessment of the short-term burn severity from remotely sensed data. Remote Sens. Environ 2009, 113, 554–562. [Google Scholar]
- De Blust, G. (Ed.) Heathlands in a Changing Society. Abstracts and Excursion Guide. 9th European Heathland Workshop, Belgium, 13th–17th September 2005; Institute of Nature Conservation: Brussels, Belgium, 2005.
- Hudak, A.T.; Morgan, P.; Bobbitt, M.J.; Smith, A.M.S.; Lewis, S.A.; Lentile, L.B.; Robichaud, P.R.; Clark, J.T.; McKinley, R.A. The relationship of multispectral satellite imagery to immediate fire effects. Fire Ecol 2007, 3, 64–90. [Google Scholar]
- Keeley, J. Fire severity and plant age in postfire resprouting of woody plants in sage scrub and chaparral. Madrono 2006, 53, 373–379. [Google Scholar]
- Holden, Z.A.; Morgan, P.; Smith, A.M.S.; Vierling, L. Beyond Landsat: A comparison of four satellite sensors for detecting burn severity in ponderosa pine forests of the Gila Wilderness, NM, USA. Int. J. Wildland Fire 2010, 19, 449. [Google Scholar]
- Schläpfer, D.; Schaepman, M.; Bojinski, S.; Börner, A. Calibration and validation concept for the airborne prism experiment (APEX). Can. J. Remote Sens 2000, 26, 455–465. [Google Scholar]
- Biesemans, J.; Sterckx, S.; Knaeps, E.; Vreys, K.; Adriaensen, S.; Hooyberghs, J.; Meuleman, K.; Kempeneers, P.; Deronde, B.; Everaerts, J.; et al. Image Processing Workflows for Airborne Remote Sensing. Proceedings 5th EARSeL Workshop on Imaging Spectroscopy, Bruges, Belgium, 23–25 April 2007; pp. 1–14.
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Chetwynd, J.H.; Bernstein, L.S.; Shettle, E.P.; Matthew, M.W.; Adler-Golden, S.M. Modtran4 USER’S MANUAL; Air Force Materiel Command, Hanscom AFB: Bedford, MA, USA, 2001. [Google Scholar]
- Thoonen, G.; Spanhove, T.; Vanden Borre, J.; Scheunders, P. Classification of heathland vegetation in a hierarchical contextual framework. Int. J. Remote Sens 2013, 34, 96–111. [Google Scholar]
- Tucker, C. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ 1979, 8, 127–150. [Google Scholar]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ 1994, 48, 119–126. [Google Scholar]
- Huete, A. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ 1988, 25, 295–309. [Google Scholar]
- Pinty, B.; Verstraete, W.W. GEMI: A non-linear index to monitor global vegetation from satellites. Vegetatio 1992, 101, 15–20. [Google Scholar]
- Pereira, J.M.C. A comparative evaluation of NOAA/AVHRR vegetation indexes for burned surface detection and mapping. IEEE Trans. Geosci. Remote Sens 1999, 37, 217–226. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.; Gao, X.; Ferreira, L. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ 2002, 83, 195–213. [Google Scholar]
- Pleniou, M.; Koutsias, N. Sensitivity of spectral reflectance values to different burn and vegetation ratios: A multi-scale approach applied in a fire affected area. ISPRS J. Photogramm. Remote Sens 2013, 79, 199–210. [Google Scholar]
- Holden, Z.A.; Smith, A.M.S.; Morgan, P.; Rollins, M.G.; Gessler, P.E. Evaluation of novel thermally enhanced spectral indices for mapping fire perimeters and comparisons with fire atlas data. Int. J. Remote Sens 2005, 26, 4801–4808. [Google Scholar]
- Lasaponara, R. Estimating spectral separability of satellite derived parameters for burned areas mapping in the Calabria region by using SPOT-Vegetation data. Ecol. Model 2006, 196, 265–270. [Google Scholar]
- Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ 2007, 109, 66–80. [Google Scholar]
- Allen, J.L.; Sorbel, B. Assessing the differenced Normalized Burn Ratio’s ability to map burn severity in the boreal forest and tundra ecosystems of Alaska’s national parks. Int. J. Wildland Fire 2008, 17, 463. [Google Scholar]
- López-García, M.J.; Caselles, V. Mapping burns and natural reforestation using Thematic Mapper data. Geocarto Int 1991, 6, 31–37. [Google Scholar]
- Pereira, J.M.C.; Sá, A.C.L.; Sousa, A.M.O.; Silva, J.M.N.; Santos, T.N.; Carreiras, J.M.B. Spectral Characterisation and Discrimination of Burnt Areas. In Remote Sensing of Large Wildfires in the European Mediterranean Basin; Springer-Verlag: Berlin, Germany, 1999; pp. 123–138. [Google Scholar]
- Gao, B.-C.; Goetz, A.F.H. Extraction of dry leaf spectral features from reflectance spectra of green vegetation. Remote Sens. Environ 1994, 47, 369–374. [Google Scholar]
- Gao, B.-C. NDWI—A Normalized Difference Water Index for remote sensing of vegetation liquid water from space. Remote Sens. Environ 1996, 58, 257–266. [Google Scholar]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT+SAIL models: A review of use for vegetation characterization. Remote Sens. Environ 2009, 113, S56–S66. [Google Scholar]
- Bacour, C.; Baret, F.; Jacquemoud, S. Information Content of HyMap Hyperspectral Imagery. Proceedings of 1st International Symposium on Recent Advances in Quantitative Remote Sensing, Valencia, Spain, 27 September–1 October 2002; pp. 503–508.
- Lewis, S.A.; Hudak, A.T.; Ottmar, R.D.; Robichaud, P.R.; Lentile, L.B.; Hood, S.M.; Cronan, J.B.; Morgan, P. Using hyperspectral imagery to estimate forest floor consumption from wildfire in boreal forests of Alaska, USA. Int. J. Wildland Fire 2011, 20, 255–271. [Google Scholar]
- Somers, B.; Asner, G.P.; Tits, L.; Coppin, P. Endmember variability in Spectral Mixture Analysis: A review. Remote Sens. Environ 2011, 115, 1603–1616. [Google Scholar]
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ 2009, 113, 711–715. [Google Scholar]
Factors | Rating | Factor Score | References |
---|---|---|---|
A. SUBSTRATES | Weighting Factor: 1 | ||
Ancillary data: Percentage dead leaves on the soil, pre-fire exposed soil | |||
Percentage black char | 0–100% | 0–1 | [21,34,38,39,58] |
Medium/heavy fuel charring | Light/superficial/medium/deep | 0.2 / 0.4/ 0.6 / 0.8 | [25] |
Soil cover change | 0–100% | 0–1 | [25] |
B. MOSSES, GRASSES, HERBS, LOW SHRUBS < 1 m | Weighting Factor: Fraction of Cover (FCOV) | ||
Ancillary data: Dominant pre-fire vegetation type, dominant regrowth species, dominant sprout species | |||
% Foliage altered | 0–100% | 0–1 | In contrast to [25,56], mosses and grasses are included here, since they make up a large part of the ground cover in heath landscapes (similar to [50] in tundra landscapes). |
Length of burned Calluna branches | Average length in cm of the 3 longest burned branches in or within 1 m of the plot’s border. | 1–(rating/100) | Similar to shrub skeleton height [59] |
Regrowth % cover | 0–100% | 1–(rating/% foliage altered) | This study |
Sprouts | 1–10 | 1–(rating/10) | [56] |
C. TALL SHRUBS AND TREES 1–5 m (only if FCOV > 5%) | Weighting Factor: FCOV | ||
Ancillary data: Dominant vegetation type | |||
% Foliage altered | 0–100% | 0–1 | [25] |
Frequency % living | 0–100% | 1–rating | [25] |
Leaf Area Index change % | 0–100% | 0–1 | [56] |
D. TREES > 5 m (only if FCOV > 5%) | Weighting Factor: FCOV | ||
Ancillary data: Dominant vegetation type | |||
% Green (unaltered) | 0–100% | 1–rating | [25] |
% Black/brown | 0–100% | 0–1 | [25] |
Frequency % living | 0–100% | 1– rating | [25] |
Leaf Area Index change % | 0–100% | 0–1 | [25] |
Char height | Average char height in meter. | rating/8 (max score 1) | [25] |
Spectral Index | Abbreviation | Formula | Reference |
---|---|---|---|
Normalized Difference Vegetation Index | NDVI | [65] | |
Global Environmental Monitoring Index | GEMI | [68] | |
Enhanced Vegetation Index | EVI | [70] | |
Soil Adjusted Vegetation Index | SAVI | [67] | |
Modified Soil Adjusted Vegetation Index | MSAVI | [66] | |
Burned Area Index | BAI | [45] | |
Normalized Burn Ratio | NBR | [25] | |
Char Soil Index | CSI | [46] | |
Mid-Infrared Burn Index | MIRBI | MIRBI = 10 LSWIR − 9.8 SSWIR + 2 | [47] |
Vegetation Type | Area (ha) | Percentage |
---|---|---|
Erica | 88.9 | 25.2 |
Calluna | 72.4 | 20.6 |
Molinia | 105.5 | 30.0 |
Pinus | 9.0 | 2.6 |
other | 76.3 | 21.7 |
Spectral Region | Pooled Dataset | Calluna | Erica | Molinia | Pinus |
---|---|---|---|---|---|
B | 0.05 (499) | 0.17 (450) | 0.32 (499) | 0.20 (499) | 0.06 (450) |
G | 0.22 (552) | 0.25 (552) | 0.65 (552) | 0.51 (552) | 0.21 (546) |
R | 0.18 (699) | 0.39 (699) | 0.64 (699) | 0.46 (699) | 0.19 (675) |
NIR | 0.73 (801) | 1.14 (1063) | 1.18 (828) | 1.13 (1063) | 0.84 (767) |
SSWIR | 0.43 (1302) | 0.98 (1302) | 0.98 (1302) | 1.03 (1302) | 0.48 (1302) |
LSWIR | 0.50 (2232) | 0.85 (2352) | 0.37 (2332) | 0.50 (2339) | 0.43 (1977) |
Spectral Index | Separability Index M |
---|---|
NDVI | 0.59 |
GEMI | 0.67 |
EVI | 0.01 |
SAVI | 0.74 |
MSAVI | 0.73 |
BAI | 0.34 |
NBR | 1.15 |
CSI | 0.04 |
MIRBI | 0.86 |
R2 | Pooled Data (n = 109) | Per Vegetation Type | |||
---|---|---|---|---|---|
Calluna (n = 34) | Erica (n = 29) | Molinia (n = 27) | Pinus (n = 8) | ||
B | 0.12 *** | 0.21 ** | 0.03 | 0.08 | 0.45 |
G | 0.20 *** | 0.00 | 0.00 | 0.31 ** | 0.02 |
R | 0.20 *** | 0.05 | 0.03 | 0.33 ** | 0.64 * |
NIR | 0.40 *** | 0.41 *** | 0.13 | 0.55 *** | 0.54 * |
SSWIR | 0.41 *** | 0.41 *** | 0.08 | 0.75 *** | 0.13 |
LSWIR | 0.00 | 0.51 *** | 0.06 | 0.17 * | 0.19 |
NDVI | 0.14 *** | 0.49 *** | 0.38 *** | 0.15 * | 0.64 * |
GEMI | 0.21 *** | 0.45 *** | 0.15 * | 0.45 *** | 0.59 * |
EVI | 0.07 ** | 0.33 *** | 0.14 * | 0.60 *** | 0.44 |
SAVI | 0.24 *** | 0.50 *** | 0.22 ** | 0.40 *** | 0.63 * |
MSAVI | 0.40 *** | 0.41 *** | 0.13 | 0.55 *** | 0.54 * |
BAI | 0.26 *** | 0.32 *** | 0.10 | 0.31 ** | 0.39 |
NBR | 0.22 *** | 0.55 *** | 0.25 ** | 0.38 *** | 0.33 |
CSI | 0.18 *** | 0.65 *** | 0.26 ** | 0.57 *** | 0.50 |
MIRBI | 0.40 *** | 0.58 *** | 0.42 *** | 0.78 *** | 0.19 |
Regression Parameters | GeoCBI = a SI + b | ||
---|---|---|---|
Vegetation Type | Best Performing SI | Slope | Intercept |
Calluna | CSI | −0.2168 | 0.7640 |
Erica | MIRBI | 0.1686 | 0.2815 |
Molinia | MIRBI | 0.2716 | 0.1977 |
Pinus | NDVI | −1.7498 | 1.3697 |
Other classes | MSAVI | −1.9697 | 0.7492 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Schepers, L.; Haest, B.; Veraverbeke, S.; Spanhove, T.; Vanden Borre, J.; Goossens, R. Burned Area Detection and Burn Severity Assessment of a Heathland Fire in Belgium Using Airborne Imaging Spectroscopy (APEX). Remote Sens. 2014, 6, 1803-1826. https://doi.org/10.3390/rs6031803
Schepers L, Haest B, Veraverbeke S, Spanhove T, Vanden Borre J, Goossens R. Burned Area Detection and Burn Severity Assessment of a Heathland Fire in Belgium Using Airborne Imaging Spectroscopy (APEX). Remote Sensing. 2014; 6(3):1803-1826. https://doi.org/10.3390/rs6031803
Chicago/Turabian StyleSchepers, Lennert, Birgen Haest, Sander Veraverbeke, Toon Spanhove, Jeroen Vanden Borre, and Rudi Goossens. 2014. "Burned Area Detection and Burn Severity Assessment of a Heathland Fire in Belgium Using Airborne Imaging Spectroscopy (APEX)" Remote Sensing 6, no. 3: 1803-1826. https://doi.org/10.3390/rs6031803
APA StyleSchepers, L., Haest, B., Veraverbeke, S., Spanhove, T., Vanden Borre, J., & Goossens, R. (2014). Burned Area Detection and Burn Severity Assessment of a Heathland Fire in Belgium Using Airborne Imaging Spectroscopy (APEX). Remote Sensing, 6(3), 1803-1826. https://doi.org/10.3390/rs6031803