Land-Use Mapping in a Mixed Urban-Agricultural Arid Landscape Using Object-Based Image Analysis: A Case Study from Maricopa, Arizona
Abstract
:1. Introduction
1.1. Aims and Objectives
2. Methodology
2.1. Data and Study Area
2.2. OBIA Classification
2.2.1. Image Segmentation
2.2.2. Intermediary Classes and Spectral Evaluation
2.2.3. Initial Classification
2.2.4. Region Growing, Morphing, and Merging
2.2.5. Supervised and Unsupervised Classification
2.2.6. The Final Classification and Assessment
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A meta-analysis of global urban land expansion. PLoS ONE 2011, 6, e23777. [Google Scholar]
- Population Reference Bureau, 2011 World Population Data Sheet; Population Reference Bureau: Washington, DC, USA, 2011; pp. 1–5.
- Meyer, W.B.; Turner, B.L., II. Human-population growth and global land-use cover change. Annu. Rev. Ecol. Syst 1992, 23, 39–61. [Google Scholar]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar]
- Reynolds, J.F.; Smith, D.M.S.; Lambin, E.F.; Turner, B.L., II; Mortimore, M.; Batterbury, S.P.J.; Downing, T.E.; Dowlatabadi, H.; Fernández, R.J.; Herrick, J.E.; et al. Global desertification: Building a science for dryland development. Science 2007, 316, 847–851. [Google Scholar]
- Turner, B.L., II; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar]
- Rozenstein, O.; Karnieli, A. Comparison of methods for land-use classification incorporating remote sensing and GIS inputs. Appl. Geogr 2011, 31, 533–544. [Google Scholar]
- Lu, D.; Weng, Q. Use of impervious surface in urban land-use classification. Remote Sens. Environ 2006, 102, 146–160. [Google Scholar]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens 2010, 65, 2–16. [Google Scholar]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Feitosa, R.Q.; van der Meer, F.; van der Werff, H.; van Coillie, F.; Tiede, D. Geographic Object-Based Image Analysis—Towards a new paradigm. ISPRS J. Photogramm. Remote Sens 2014, 87, 180–191. [Google Scholar]
- Blaschke, T.; Hay, G. J.; Weng, Q.; Resch, B. Collective sensing: Integrating geospatial technologies to understand urban systems—An overview. Remote Sens 2011, 3, 1743–1776. [Google Scholar]
- Baatz, M.; Schape, A. Multiresolution Segmentation: An Optimization Approach for High Quality Multi-Scale Image Segmentation. In Angewandte Geographische Informationsverarbeitung XII; Strobl, J., Blaschke, T., Griesebner, G., Eds.; Wichmann Verlag: Karlsruhe, Germany, 2000; pp. 12–23. [Google Scholar]
- Benz, U.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens 2004, 58, 239–258. [Google Scholar]
- Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ 2011, 115, 1145–1161. [Google Scholar]
- Grimm, N.B.; Foster, D.; Groffman, P.; Grove, J.M.; Hopkinson, C.S.; Nadelhoffer, K.J.; Pataki, D.E.; Peters, D.P. The changing landscape: Ecosystem responses to urbanization and pollution across climatic and societal gradients. Front. Ecol. Environ 2008, 6, 264–272. [Google Scholar]
- City of Maricopa. Size and Location. Available online: http://www.maricopa-az.gov/web/visiting-maricopa/population-demographics (accessed on 25 February 2014).
- Hartz, D.A.; Brazel, A.J.; Golden, J.S. A comparative climate analysis of heat-related emergency 911 dispatches: Chicago, Illinois and Phoenix, Arizona USA 2003 to 2006. Int. J. Biometeorol 2013, 57, 669–678. [Google Scholar]
- Balling, R.C.; Gober, P. Climate variability and residential water use in the city of Phoenix, Arizona. J. Appl. Meteorol. Climatol 2007, 46, 1130–1137. [Google Scholar]
- Chen, Y.; Shi, P.; Fung, T.; Wang, J.; Li, X. Object-oriented classification for urban land cover mapping with ASTER imagery. Int. J. Remote Sens 2007, 28, 4645–4651. [Google Scholar]
- Crocetto, N.; Tarantino, E. A class-oriented strategy for features extraction from multidate ASTER imagery. Remote Sens 2009, 1, 1171–1189. [Google Scholar]
- NASA Jet Propulsion Laboratory. SWIR—ASTER User Advisory. Available online: http://asterweb.jpl.nasa.gov/swir-alert.asp (accessed on 5 October 2011).
- French, A.N.; Hunsaker, D.; Thorp, K.; Clarke, T. Evapotranspiration over a camelina crop at Maricopa, Arizona. Ind. Crop. Prod 2009, 29, 289–300. [Google Scholar]
- Mauney, J.R.; Kimball, B.A.; Pinter, P.J., Jr.; LaMorte, R.L.; Lewin, K.F.; Nagy, J.; Hendrey, G.R. Growth and yield of cotton in response to a free-air carbon dioxide enrichment (FACE) environment. Agric. Forest Meteorol. 1994, 70, 49–67. [Google Scholar]
- Lang, S.; Langanke, T. Object-based mapping and object-relationship modeling for land use classes and habitats. Photogramm. Fernerkun 2006, 2006, 5–18. [Google Scholar]
- Definiens, AG. eCognition Developer 8 User Guide; Definiens AG: Munich, Germany, 2009; pp. 170–171. [Google Scholar]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ 1988, 25, 295–309. [Google Scholar]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ 1994, 48, 119–126. [Google Scholar]
- Stefanov, W.L.; Ramsey, M.S.; Christensen, P.R. Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to arid urban centers. Remote Sens. Environ 2001, 77, 173–185. [Google Scholar]
- Dragut, L.; Blaschke, T. Automated classification of landform elements using object-based image analysis. Geomorphology 2006, 81, 330–344. [Google Scholar]
- Daughtry, C.S.T.; Doroiswamy, P.C.; McMurtrey, J.E., III. Remote sensing the spatial distribution of crop residues. Agron. J 2005, 97, 864–871. [Google Scholar]
- Serbin, G.; Daughtry, C.S.T.; Huntjr, E.R., Jr.; Reeves, J.B., III; Brown, D.J. Effects of soil composition and mineralogy on remote sensing of crop residue cover. Remote Sens. Environ 2009, 113, 224–238. [Google Scholar]
- Daughtry, C.S.T.; Serbin, G.; Reeves, J.B., III; Doraiswamy, P.C.; Hunt, E.R., Jr. Spectral reflectance of wheat residue during decomposition and remotely sensed estimates of residue cover. Remote Sens 2010, 2, 416–431. [Google Scholar]
- Myint, S.W.; Lam, N. A study of lacunarity-based texture analysis approaches to improve urban image classification. Compute. Environ. Urban Syst 2005, 29, 501–523. [Google Scholar]
- Haralick, R.M.; Dinstein, I.; Shanmugam, K. Textural features for image classification. IEEE T. Syst. Man Cyb 1973, 3, 610–621. [Google Scholar]
- Ball, G.H.; Hall, D.J. A clustering technique for summarizing multivariate data. Behav. Sci 1967, 12, 153–155. [Google Scholar]
- Myint, S.W.; Galletti, C.S.; Kaplan, S.; Kim, W.Y. Object vs. pixel: A systematic evaluation in urban environments. Geocarto Int 2013, 28, 657–678. [Google Scholar]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ 1991, 37, 35–46. [Google Scholar]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ 2002, 80, 185–201. [Google Scholar]
- Turner, M.G.; Gardner, R.H.; O’Neill, R.V. Landscape Ecology in Theory and Practice: Pattern and Process; Springer-Verlag: Berlin/Heidelberg, Germany, 2001; p. 110. [Google Scholar]
- Yuan, F.; Bauer, M.E. Mapping Impervious Surface Area Using High Resolution Imagery: A Comparison of Object-Based and Per Pixel Classification. Proceedings of American Society for Photogrammetry and Remote Sensing Annual Conference 2006, Reno, NV, USA, 1–5 May 2006.
Primary (short name) | Intermediary |
---|---|
(1) Active Agriculture (active agriculture) | 1. Active Agriculture |
(2) Inactive or Fallow Agriculture (inactive agriculture) | 2. Very Dark Ag |
3. Light/Unused Ag | |
4. Dark Agriculture | |
5. DarkAgConfusionSoil | |
6. Mid range SAVI Ag | |
7. Mid SAVI Unclassified | |
(3) Recreational Green Zones (green space) | 8. NonAgVegetation |
9. NonAg2Veg | |
(4) Open Desert and Exposed Soil (open desert) | 10. Soil |
(5) Undeveloped Urban and Future High Density Residential Areas (undeveloped urban) | 11. Undeveloped 1 |
12. Undeveloped 2 | |
(6) Urban and Residential Areas (developed urban) | 13. Urban Layer10 |
14. Urban/Residential 1 | |
15. Urban/Residential 2 |
Classified Data | Active Ag. | Inactive Ag. | Green Space | Open Desert | Undevel’d Urban/Res. | Developed Urban/Res | Row Total | Ref. Totals | Class.Totals | # Correct | Prod.’ Accur. | Users’ Accur |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Active Ag. | 54 | 0 | 0 | 0 | 0 | 0 | 54 | 67 | 54 | 54 | 80.60% | 100.00% |
Inactive Ag. | 6 | 68 | 0 | 7 | 0 | 0 | 81 | 73 | 81 | 68 | 93.15% | 83.95% |
Green Space | 7 | 2 | 31 | 0 | 0 | 0 | 40 | 31 | 40 | 31 | 100.00% | 77.50% |
Open Desert | 0 | 1 | 0 | 88 | 0 | 1 | 90 | 96 | 90 | 88 | 91.67% | 97.78% |
Undeveloped Urban/Res. | 0 | 2 | 0 | 1 | 34 | 6 | 43 | 34 | 43 | 34 | 100.00% | 79.07% |
Developed Urban/Res | 0 | 0 | 0 | 0 | 0 | 42 | 42 | 49 | 42 | 42 | 85.71% | 100.00% |
Column Totals | 67 | 73 | 31 | 96 | 34 | 49 | 350 | 350 | 350 | 317 | ||
Overall Accuracy = 90.57%, Overall Kappa = 0.8840 |
Classified Data | Active Ag. | Inactive Ag. | Developed Urban/Res | Open Desert | Undeveloped Urban/Res. | Reference Totals | Classified Totals | Number Correct | Producers’ Accuracy | Users’ Accuracy | Row Total |
---|---|---|---|---|---|---|---|---|---|---|---|
Active Ag. | 52 | 3 | 0 | 1 | 0 | 60 | 56 | 52 | 86.67% | 92.86% | 56 |
Inactive Ag. | 2 | 61 | 0 | 42 | 2 | 107 | 107 | 61 | 57.01% | 57.01% | 107 |
Developed Urban/Res | 1 | 14 | 15 | 4 | 1 | 20 | 35 | 15 | 75.00% | 42.86% | 35 |
Open Desert | 1 | 19 | 0 | 83 | 0 | 143 | 103 | 83 | 58.04% | 80.58% | 103 |
Undeveloped Urban/Res. | 4 | 10 | 5 | 13 | 17 | 20 | 49 | 17 | 85.00% | 34.69% | 49 |
Column Totals | 60 | 107 | 20 | 143 | 20 | 350 | 350 | 228 | 350 | ||
Overall Accuracy = 65.14%, Overall Kappa = 0.5322 |
Classified Data | Active Ag. | Inactive Ag. | Developed Urban/Res | Open Desert | Undeveloped Urban/Res. | Row Total | Reference Totals | Classified Totals | Number Correct | Producers’ Accuracy | Users’ Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|
Active Ag. | 43 | 0 | 0 | 0 | 0 | 43 | 55 | 43 | 43 | 78.18% | 100.00% |
Inactive Ag. | 0 | 26 | 0 | 2 | 2 | 30 | 115 | 30 | 26 | 22.61% | 86.67% |
Developed Urban/Res | 4 | 25 | 25 | 12 | 0 | 66 | 28 | 66 | 25 | 89.29% | 37.88% |
Open Desert | 8 | 46 | 2 | 114 | 4 | 174 | 131 | 174 | 114 | 87.02% | 65.52% |
Undeveloped Urban/Res. | 0 | 18 | 1 | 3 | 15 | 37 | 21 | 37 | 15 | 71.43% | 40.54% |
Column Totals | 55 | 115 | 28 | 131 | 21 | 350 | 350 | 350 | 223 | ||
Overall Accuracy = 63.71%, Overall Kappa = 0.513 |
Unsupervised | Supervised | OBIA | ||||
---|---|---|---|---|---|---|
Classes per 7 ×7 pixel window | Window count | Windows times classes | Window count | Windows times classes | Window count | Windows times classes |
1 class | 552,488 | 552,488 | 504,954 | 504,954 | 893,234 | 893,234 |
2 classes | 443,938 | 887,876 | 340,562 | 681,124 | 233,997 | 467,994 |
3 classes | 160,944 | 482,832 | 230,895 | 692,685 | 54,006 | 162,018 |
4 classes | 29,512 | 118,048 | 101,643 | 406,572 | 6,672 | 26,688 |
5 classes | 1,658 | 8290 | 10,486 | 52,430 | 622 | 3,110 |
6 classes | 0 | 0 | 0 | 0 | 9 | 54 |
Sum: | 1,188,540 | 2,049,534 | 1,188,540 | 2,337,765 | 1,188,540 | 1,553,098 |
Land-Use Class | Area (hectares) | Composition |
---|---|---|
Active Agriculture (active agriculture) | 4,819.13 | 14.03% |
Inactive or Fallow Agriculture (inactive agriculture) | 10,999.72 | 32.02% |
Recreational Green Zones (green space) | 303.74 | 0.88% |
Open Desert and Exposed Soil (open desert) | 15,028.69 | 43.75% |
Undeveloped Urban and Future High Density Residential Areas (undeveloped) | 1,662.59 | 4.84% |
Urban and Residential Areas (developed) | 1,534.94 | 4.47% |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Galletti, C.S.; Myint, S.W. Land-Use Mapping in a Mixed Urban-Agricultural Arid Landscape Using Object-Based Image Analysis: A Case Study from Maricopa, Arizona. Remote Sens. 2014, 6, 6089-6110. https://doi.org/10.3390/rs6076089
Galletti CS, Myint SW. Land-Use Mapping in a Mixed Urban-Agricultural Arid Landscape Using Object-Based Image Analysis: A Case Study from Maricopa, Arizona. Remote Sensing. 2014; 6(7):6089-6110. https://doi.org/10.3390/rs6076089
Chicago/Turabian StyleGalletti, Christopher S., and Soe W. Myint. 2014. "Land-Use Mapping in a Mixed Urban-Agricultural Arid Landscape Using Object-Based Image Analysis: A Case Study from Maricopa, Arizona" Remote Sensing 6, no. 7: 6089-6110. https://doi.org/10.3390/rs6076089
APA StyleGalletti, C. S., & Myint, S. W. (2014). Land-Use Mapping in a Mixed Urban-Agricultural Arid Landscape Using Object-Based Image Analysis: A Case Study from Maricopa, Arizona. Remote Sensing, 6(7), 6089-6110. https://doi.org/10.3390/rs6076089