Impact of Missing Passive Microwave Sensors on Multi-Satellite Precipitation Retrieval Algorithm
Abstract
:1. Background
2. Study Area and Data Sources
3. Results and Discussions
3.1. Intercomparison of RTV7-R1 and RTV7-R2 against Gauge Observations
Time Scale | Statistical Index | Grid-Based Comparison | Basin-Averaged Comparison | ||
---|---|---|---|---|---|
RTV7-R1 | RTV7-R2 | RTV7-R1 | RTV7-R2 | ||
Daily | CC | 0.48 | 0.57 | 0.66 | 0.74 |
RMSE (mm) | 5.00 | 4.11 | 2.92 | 2.30 | |
ME (mm) | 0.53 | 0.26 | 0.55 | 0.28 | |
BIAS (%) | 41.59 | 20.37 | 43.99 | 21.99 | |
POD | 0.65 | 0.65 | 0.83 | 0.83 | |
Daily | FAR | 0.50 | 0.45 | 0.46 | 0.40 |
CSI | 0.39 | 0.42 | 0.49 | 0.53 | |
Monthly | CC | 0.69 | 0.77 | 0.82 | 0.88 |
RMSE (mm) | 37.79 | 29.20 | 27.99 | 19.91 | |
ME (mm) | 16.00 | 7.83 | 16.65 | 8.39 | |
BIAS (%) | 41.59 | 20.37 | 43.99 | 21.99 |
Item | Summer | Winter | ||
---|---|---|---|---|
RTV7-R1 | RTV7-R2 | RTV7-R1 | RTV7-R2 | |
CC | 0.56 | 0.61 | 0.27 | 0.17 |
RMSE (mm) | 6.35 | 5.75 | 4.41 | 1.64 |
ME (mm) | 0.49 | 0.30 | 0.39 | 0.02 |
BIAS (%) | 19.36 | 11.60 | 155.55 | 8.15 |
POD | 0.77 | 0.77 | 0.22 | 0.16 |
FAR | 0.37 | 0.34 | 0.72 | 0.73 |
CSI | 0.53 | 0.55 | 0.14 | 0.11 |
3.2. Analysis of Sensor Retrieval Frequency for RTV7-R1 and RTV7-R2
Source Number | Sensor | Platform | Retrieval Counts | Retrieval Frequency | Retrieval Change | ||
---|---|---|---|---|---|---|---|
RTV7-R1 | RTV7-R2 | RTV7-R1 | RTV7-R2 | ||||
0 | no observation | - | 2139 | 700 | 0.35% | 0.11% | 0.24% |
1 | AMSU-B | NOAA-15/16/17 | 0 | 62,648 | 0 | 10.21% | 10.21% (↑) |
2 | TMI | TRMM | 61,946 | 52,107 | 10.09% | 8.49% | 1.60% (↑) |
3 | AMSR | Aqua | 73,899 | 73,899 | 12.04% | 12.04% | 0% |
4 | SSMI | DMSP-F13/F14/F15 | 92,098 | 52,561 | 15.00% | 8.56% | 6.44% (↓) |
5 | F17 SSMIS | DMSP-F17 | 12,206 | 10,652 | 1.99% | 1.74% | 0.25% |
6 | MHS | NOAA-18/19 MetOp-A | 110,280 | 34,348 | 17.97% | 5.60% | 12.37% (↓) |
7 | spare sounder 1 | - | 0 | 0 | 0 | 0 | 0% |
8 | spare sounder 2 | - | 0 | 0 | 0 | 0 | 0% |
9 | spare sounder 3 | - | 0 | 0 | 0 | 0 | 0% |
10 | F16 SSMIS | DMSP-F16 | 0 | 33153 | 0 | 5.40% | 5.40% (↑) |
11 | F18 SSMIS | DMSP-F18 | 0 | 0 | 0 | 0 | 0% |
12 | spare scanner 6 | - | 0 | 0 | 0 | 0 | 0% |
30 | AMSU-B & MHS avg. | - | 1154 | 83,582 | 0.19% | 13.62% | 13.43% (↑) |
31 | conical avg. | - | 62,093 | 113,941 | 10.12% | 18.56% | 8.44% (↑) |
50 | IR | GOES/GMS/MTSat/Meteosat | 197,939 | 96,169 | 32.25% | 15.67% | 16.58% (↓) |
1,2,…,12 + 100 | sparse-sample HQ | - | 6 | 0 | 0.001% | 0 | 0% |
Total retrieval for all sensors | 613,760 | 613,760 | 100% | 100% |
Item | Evaluating Data | Cumulative Snowmelt (mm) | ||
---|---|---|---|---|
Gauge | RTV7-R1 | RTV7-R2 | ||
Grid-Based | 11 January | 5.36 | 9.63 | 2.19 |
12 January | 4.55 | 43.30 | 4.28 | |
Whole Month | 20.35 | 80.76 | 23.99 | |
Basin-Average | 11 January | 5.02 | 11.93 | 3.12 |
12 January | 4.75 | 28.32 | 2.07 | |
Whole Month | 20.79 | 65.38 | 22.67 | |
Number of Snowing Days a | 10 | 10 | 10 |
Source Number | Sensor | 11 January | 12 January | Whole Month | |||
---|---|---|---|---|---|---|---|
RTV7-R1 | RTV7-R2 | RTV7-R1 | RTV7-R2 | RTV7-R1 | RTV7-R2 | ||
0 | no observation | 0 | 0 | 0 | 0 | 0 | 0 |
1 | AMSU-B | 0 | 2 | 0 | 0 | 0 | 384 |
2 | TMI | 89 | 89 | 17 | 17 | 605 | 536 |
3 | AMSR | 56 | 56 | 0 | 0 | 719 | 719 |
4 | SSMI | 115 | 15 | 5 | 0 | 321 | 141 |
5 | F17 SSMIS | 0 | 0 | 0 | 0 | 0 | 0 |
6 | MHS | 91 | 0 | 134 | 70 | 2934 | 827 |
7 | spare sounder 1 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | spare sounder 2 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | spare sounder 3 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | F16 SSMIS | 0 | 21 | 0 | 0 | 0 | 242 |
11 | F18 SSMIS | 0 | 0 | 0 | 0 | 0 | 0 |
12 | spare scanner 6 | 0 | 0 | 0 | 0 | 0 | 0 |
30 | AMSU-B & MHS avg. | 0 | 170 | 0 | 137 | 0 | 1163 |
31 | conical avg. | 0 | 11 | 14 | 25 | 371 | 684 |
50 | IR | 209 | 196 | 390 | 311 | 12,410 | 12,664 |
1,2,…,12 + 100 | sparse-sample HQ | 0 | 0 | 0 | 0 | 0 | 0 |
Total retrieval counts and for all sensors | 560 | 560 | 17,360 |
4. Conclusions and Recommendations
- Same as AMSU-B, the SSMIS-F16 inputs were also missed in the first Version-7 processing, which was not documented in the TMPA technical report [21].
- The inclusion of AMSU-B and SSMIS-F16 substantially reduced the systematic biases associated with inadequate PMW samples in the “early” RTV7-R1 estimates, though it was not capable of further enhancing the skill of detecting rainy events. Over the whole Jinghe river basin, the daily bias value decreased from 43.99% of RTV7-R1 to 21.99% of RTV7-R2 (decreasing by 22%). In RTV7-R2, AMSU-B (accounting for approximately 62% of newly added inputs) and SSMIS-F16 (about 33%) mainly compensated for the decreased retrievals from the IR sensors.
- Spatially, the improvement primarily appeared in flat areas at lower elevations. Both the AMSU-B and SSMIS-F16 results presented here and the evaluations of other passive microwave sensors presented in [22] and [18] suggest that the topography-dependent biases will continue to remain an open issue for the multi-sensor precipitation retrievals even in the forthcoming GPM era.
- In addition, the improvement exhibits an obvious seasonal dependence. For summer, the RTV7-R2 incorporating the AMSU-B and SSMIS-F16 retrievals generally outperformed the prior RTV7-R1. Taking the Jinghe river basin as example, the CC value rises from 0.56 of RTV7-R1 to 0.61 of RTV7-R2, meanwhile the BIAS decreases from 19.36% to 11.60. For winter, this introduction is more effective in reducing the TMPA’s systematic bias (decreasing from 155.55% for RTV7-R1 to 8.15% of RTV7-R2) than the other three seasons, especially for large snowfall events. The retrieval counts analysis indicates that SSMIS-F16, AMSU-B, and IR jointly offered the principal supplements for the decreased cross-tracking MHS retrievals in the RTV7-R2 estimates during the snowfall events. The added imager SSMIS-F16 substitute partial MHS sounder overpasses and play a key role in improving the TMPA estimates, especially in winter.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yong, B.; Chen, B.; Gourley, J.J.; Ren, L.; Hong, Y.; Chen, X.; Wang, W.; Chen, S.; Gong, L. Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks: Is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes? J. Hydrol. 2014, 508, 77–87. [Google Scholar]
- Yong, B.; Ren, L.; Hong, Y.; Gourley, J.J.; Tian, Y.; Huffman, G.J.; Chen, X.; Wang, W.; Wen, Y. First evaluation of the climatological calibration algorithm in the real-time TMPA precipitation estimates over two basins at high and low latitudes. Water Resour. Res. 2013, 49, 2461–2472. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T. Real-Time TRMM Multi-Satellite Precipitation Analysis Data Set Documentation. Available online: ftp://meso-a.gsfc.nasa.gov/pub/trmmdocs/rt/3B4XRT_doc_V7.pdf (accessed on 16 December 2013).
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Nelkin, E.J. The TRMM multi-satellite precipitation analysis (TMPA). In Satellite Rainfall Applications for Surface Hydrology; Springer: New York, NY, USA, 2010; pp. 3–22. [Google Scholar]
- Yong, B.; Hong, Y.; Ren, L.; Gourley, J.J.; Huffman, G.J.; Chen, X.; Wang, W.; Khan, S.I. Assessment of evolving TRMM-based multisatellite real-time precipitation estimation methods and their impacts on hydrologic prediction in a high latitude basin. J. Geophys. Res. 2012, 117, D09108. [Google Scholar]
- Turk, F.J.; Mostovoy, G.V.; Anantharaj, V. Soil moisture sensitivity to NRL-blend high resolution precipitation products: Analysis of simulations with two land surface models. IEEE J. Selec. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 32–48. [Google Scholar]
- NASA GSFC FTP. Available online: ftp://trmmopen.gsfc.nasa.gov/pub/merged/ (accessed on 8 January 2014).
- Yong, B.; Ren, L.; Hong, Y.; Wang, J.; Gourley, J.J.; Jiang, S.; Chen, X.; Wang, W. Hydrologic evaluation of multisatellite precipitation analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe basin, China. Water Resour. Res. 2010, 46, W07542. [Google Scholar]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D.; et al. The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar]
- Nicholson, S.E.; Some, B.; McCollum, J.; Nelkin, E.; Klotter, D.; Berte, Y.; Diallo, B.M.; Gaye, I.; Kpabeba, G.; Ndiaye, O.; et al. Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part II: Validation of TRMM rainfall products. J. Appl. Meteorol. 2003, 42, 1355–1368. [Google Scholar]
- Chiu, L.; Liu, Z.; Vongsaard, J.; Morain, S.; Budge, A.; Neville, P.; Bales, C. Comparison of TRMM and water district rain rates over New Mexico. Adv. Atmos. Sci. 2006, 23, 1–13. [Google Scholar]
- Chokngamwong, R.; Chiu, L.S. Thailand daily rainfall and comparison with TRMM products. J. Hydrometeorol. 2008, 9, 256–266. [Google Scholar]
- Ebert, E.E.; Janowiak, J.E.; Kidd, C. Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Am. Meteorol. Soc. 2007, 88, 47–64. [Google Scholar]
- Tian, Y.; Peters-Lidard, C.D.; Eylander, J.B.; Joyce, R.J.; Huffman, G.J.; Adler, R.F.; Hsu, K.-L.; Turk, F.J.; Garcia, M.; Zeng, J. Component analysis of errors in satellite-based precipitation estimates. J. Geophys. Res. 2009, 114, D24101. [Google Scholar]
- Hossain, F.; Huffman, G.J. Investigating error metrics for satellite rainfall data at hydrologically relevant scales. J. Hydrometeorol. 2008, 9, 563–575. [Google Scholar]
- Shepard, D. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM National Conference, Las Vegas, NV, USA, 27–29 August 1968; ACM: New York, NY, USA, 1968; pp. 517–52. [Google Scholar]
- Tian, Y.; Peters-Lidard, C.D. A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett. 2010, 37, L24407. [Google Scholar]
- Yong, B.; Liu, D.; Gourley, J.J.; Tian, Y.; Huffman, G.J.; Ren, L.L.; Hong, Y. Global view of real-time TRMM multi-satellite precipitation analysis: Implication to Global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2015. [CrossRef]
- Behrangi, A.; Tian, Y.; Lambrigtsen, B.H.; Stephens, G.L. What does cloudsat reveal about global land precipitation detection by other spaceborne sensors? Water Resour. Res. 2014, 50, 4893–4905. [Google Scholar]
- Behrangi, A.; Andreadis, K.; Fisher, J.B.; Turk, F.J.; Granger, S.; Painter, T.; Das, N. Satellite-based precipitation estimation and its application for streamflow prediction over mountainous western U.S. basins. J. Appl. Meteor. Climatol. 2014, 5, 2823–2842. [Google Scholar]
- NASA GSFC FTP-Dcouments. Available online: ftp://precip.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf (accessed on 10 September 2014).
- Tang, L.; Tian, Y.; Lin, X. Validation of precipitation retrievals over land from satellite-based passive microwave sensors. J. Geophys. Res. 2014, 119, 4546–4567. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yong, B.; Chen, B.; Hong, Y.; Gourley, J.J.; Li, Z. Impact of Missing Passive Microwave Sensors on Multi-Satellite Precipitation Retrieval Algorithm. Remote Sens. 2015, 7, 668-683. https://doi.org/10.3390/rs70100668
Yong B, Chen B, Hong Y, Gourley JJ, Li Z. Impact of Missing Passive Microwave Sensors on Multi-Satellite Precipitation Retrieval Algorithm. Remote Sensing. 2015; 7(1):668-683. https://doi.org/10.3390/rs70100668
Chicago/Turabian StyleYong, Bin, Bo Chen, Yang Hong, Jonathan J. Gourley, and Zhe Li. 2015. "Impact of Missing Passive Microwave Sensors on Multi-Satellite Precipitation Retrieval Algorithm" Remote Sensing 7, no. 1: 668-683. https://doi.org/10.3390/rs70100668
APA StyleYong, B., Chen, B., Hong, Y., Gourley, J. J., & Li, Z. (2015). Impact of Missing Passive Microwave Sensors on Multi-Satellite Precipitation Retrieval Algorithm. Remote Sensing, 7(1), 668-683. https://doi.org/10.3390/rs70100668