Operational Actual Wetland Evapotranspiration Estimation for South Florida Using MODIS Imagery
Abstract
:1. Introduction
Evapotranspiration as an Indicator of Wetland Recovery
2. Study Area, Data Set and Methods
2.1. Description of the Study Area
2.2. Data Set
Station | Basin | Latitude | Longitude | County | Description |
---|---|---|---|---|---|
3AS3WX | Conservation area 3A | 25°51′6.2″ | 80°45′58.5″ | Miami-Dade | Water Conservation Area 3 (WCA3) weather station, tree islands. |
Ave Maria | Faka Union | 26°18′6.09″ | 81°25′52.9″ | Collier | Town of Ave Maria weather station |
BELLE GL | S-2_6_7 | 26°39′24.6″ | 80°37′48.1″ | Palm Beach | Belle Glade weather station |
BIG CY SIR | Feeder Canal | 26°19′17.3″ | 81°4′4.24″ | Hendry | Big Cypress at Seminole Indian Reservation |
CFSW | S-4 | 26º44′6.23″ | 80°53′43.2″ | Hendry | Clewinston field station weather station |
ENR308 | STA-1W | 26°37′21.2″ | 80°26′20.2″ | Palm Beach | Weather station near interior levee in cell 3 |
FPWX | Estero Bay | 26°25′57.3″ | 81°43′24.3″ | Lee | Flint Pen Strand weather station |
JBTS | C-111 Coastal | 25°13′28.4″ | 80°32′24.2″ | Miami-Dade | Joe Bay, approx. 9.5 km from Gilbert’s Res. Overseas Hwy boat ramp, key Largo |
L006 | Lake Okeechobee | 26°49′21.2″ | 80°46′58.2″ | Palm Beach | Lake Okeechobee tower South (#6) |
LOXWS | Conservation area 1 | 26°29′56.3″ | 80°13′20.2″ | Palm Beach | Loxahatchee weather station at CA1-8C and L-40 |
ROTNWX | STA-5/6 | 26°19′56.8″ | 80°52′53.1″ | Broward | Rotenberger tract weather station |
S140W | Conservation Area 3A | 26°10′16.7″ | 80°49′33.6″ | Broward | S140 weather station on levee L28 near Alligator Alley |
S331W | L-31NS | 25°36′37.5″ | 80°30′34.6″ | Miami-Dade | S-331 weather station on L-31N |
S78W | East Caloosahatchee | 26°47′23.2″ | 81°18′10.3″ | Glades | S-78 weather station on Caloosahatchee River at Ortona |
SGGEWX | Faka Union | 26°8′43.3″ | 81°34′32.3″ | Collier | Southern Golden Gate Estates weather station |
Site Name | Latitude | Longitude | Height of EC Tower (m) | Land Cover Description |
---|---|---|---|---|
Dwarf Cypress | 25°45′45″ | 80°54′27″ | 16.5 | Dwarf cypress and sawgrass (herbaceous vegetation) |
Cypress Swamp | 25°45′10″ | 81°06′01″ | 38 | Tall cypress strand |
Pine Upland | 25°59′59″ | 80°55′29″ | 38 | Pine upland and cypress domes |
Wet Prairie | 25°44′41″ | 80°56′24″ | 3.6 | Wet prairie with short (<1 m) sawgrass (herbaceous vegetation) |
Marsh | 26°11′57″ | 81°15′58″ | 3.6 | Deep-water marsh with tall (1–2 m) sawgrass (herbaceous vegetation). |
2.3. Methods
2.3.1. The Simple Method and the Simplified Surface Energy Balance Equation
2.3.2. Potential Evapotranspiration (PET) Calculation
2.3.3. Actual Evapotranspiration (AET) Calculation
2.3.4. Model Evaluation
3. Results and Discussion
3.1. Correlation between Modeled and Observed AET
3.2. Modeled AET Temporal Variation
Site | MeanC (mm) | STDC (mm) | CVC (%) | Meanm (mm) | STDm (mm) | CVm (%) | Bias (mm) | RMSE (mm) | Bias/Meanc (%) | RMSE/Meanc (%) |
---|---|---|---|---|---|---|---|---|---|---|
Cypress Swamp | 2.302 | 0.943 | 40.8 | 1.944 | 0.761 | 39 | −0.357 | 0.697 | −15.5 | 30.3 |
Pine Upland | 1.816 | 0.513 | 28.2 | 1.774 | 0.674 | 37.8 | −0.042 | 0.463 | −2.3 | 25.5 |
Dwarf Cypress | 2.209 | 0.631 | 28.4 | 2.003 | 0.718 | 35.7 | −0.206 | 0.494 | −9.3 | 22.3 |
Marsh | 2.013 | 0.617 | 30.6 | 1.968 | 0.753 | 38.1 | −0.045 | 0.655 | −2.2 | 32.6 |
Wet Prairie | 2.36 | 0.549 | 23.2 | 1.946 | 0.775 | 39.7 | −0.414 | 0.701 | −17.5 | 29.7 |
Average | 2.14 | 0.651 | 30.2 | 1.927 | 0.736 | 38.1 | −0.213 | 0.602 | −9.4 | 28.1 |
Site | MeanC (mm) | STDC (mm) | CVC (%) | Meanm (mm) | STDm (mm) | CVm (%) | Bias (mm) | RMSE (mm) | Bias/Meanc (%) | RMSE/Meanc (%) |
---|---|---|---|---|---|---|---|---|---|---|
Cypress Swamp | 3.543 | 0.808 | 22.7 | 1.889 | 0.918 | 48.4 | −1.954 | 2.013 | −46.7 | 56.8 |
Pine Upland | 2.784 | 0.471 | 16.8 | 1.824 | 0.834 | 45.5 | −0.96 | 1.448 | −34.5 | 52.0 |
Dwarf Cypress | 3.381 | 0.556 | 16.4 | 1.973 | 0.957 | 48.3 | −1.409 | 1.954 | −41.7 | 57.8 |
Marsh | 2.795 | 0.453 | 16.1 | 1.924 | 0.925 | 47.9 | −0.871 | 1.409 | −31.2 | 50.4 |
Wet Prairie | 3.443 | 0.533 | 15.4 | 1.934 | 0.948 | 48.8 | −1.509 | 1.8 | −43.8 | 52.3 |
Average | 3.189 | 0.564 | 17.5 | 1.909 | 0.916 | 47.8 | −1.281 | 1.725 | −39.6 | 53.9 |
3.3. Comparisons with Other Studies
Source | Dry Season | Wet Season | Site |
---|---|---|---|
SSEB−Simple Method | 1.92 mm/day | 1.91 mm/day | Average of 5 sites |
Mao et al. [44] | 1.42 mm/day | to 4.9 mm/day | Lysimeter (sawgrass & cattail) |
German [11], Douglas et al. [41], Abtew [42], Bidlake et al. [43] | 1.5 mm/day | 4.5 mm/day | Wetland regions |
Abtew [33] | 3.16 mm/day in 1993 2.74 mm/day in 1994 | Lysimeter marsh site from 1993 to 1994 |
3.4. Limitations and Suggested Improvements
4. Conclusions and Recommendations
Acknowledgments
Author Contributions
Conflict of Interest
References
- Maltby, E.; Barker, T. Section II: Wetlands in the natural environment, how do wetlands work? In The Wetlands Handbook; Maltby, E., Barker, T., Eds.; Wiley: Oxford, UK, 2009; Volume 2, pp. 115–326. [Google Scholar]
- Abers, J.S.; Pavri, S.; Aber, S.A. Part I and Part II. In Wetland Environments: A Global Perspective; Wiley-Blackwell: Chichester, UK, 2012; pp. 1–132. [Google Scholar]
- LePage, B.A. Wetlands: A multidisciplinary perspective. In Wetlands: Integrating Multidisciplinary Concepts, 1st ed.; Springer: New York, NY, USA, 2011; pp. 3–25. [Google Scholar]
- Abtew, W.; Melesse, A.M. Chapter 6: Evaporation and evapotranspiration estimation methods. In Evaporation and Evapotranspiration: Measurements and Estimations; Abtew, W., Melesse, A.M., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 63–91. [Google Scholar]
- Davis, D. Threats to Wetlands. Available online: http://permanent.access.gpo.gov/gpo701/threats.pdf (accessed on 18 September 2013).
- Mitsch, W.G.; Gosselink, J.G. The Wetland Environment. In Wetlands, 4th ed.; John Wiley & Sons: New York, NY, USA, 2000; pp. 107–258. [Google Scholar]
- Gurnell, A.M.; Hupp, C.R.; Gregory, S.V. Linking hydrology and ecology. Hydrol. Process. 2000, 14, 2813–2815. [Google Scholar] [CrossRef]
- Price, J.S.; Waddington, J.M. Advances in Canadian wetland hydrology and biogeochemistry. Hydrol. Process. 2000, 14, 1579–1589. [Google Scholar] [CrossRef]
- Janssen, R.; Goosen, H.; Verhoeven, M.L.; Verhoeven, J.T.A.; Omtzigt, A.Q.A.; Maltby, E. Decision support for integrated wetland management. Environ. Model. Softw. 2005, 20, 215–229. [Google Scholar] [CrossRef]
- Oberg, J.W.; Melesse, A.M. Wetland evapotranspiration dynamics vs. ecohydrological restoration: An energy balance and remote sensing approach. J. Am. Water Resourc. Assoc. 2005, 42, 565–582. [Google Scholar] [CrossRef]
- German, E.R. Regional Evaluation of Evapotranspiration in the Everglades; Water-Resources Investigations Report 00-4217; US Geological Survey: Tallahassee, FL, USA, 2000; p. 48. [Google Scholar]
- Monteith, J.L.; Unsworth, M.H. Principles of Environmental Physics, 2nd ed.; Butterworth-Heinemann: Woburn, MA, USA, 1990. [Google Scholar]
- Brooks, K.N.; Ffolliott, P.F.; Gregersen, H.M.; DeBano, H.F. Hydrology and the Management of Watersheds, 2nd ed.; Iowa State University Press: Ames, IA, USA, 1997. [Google Scholar]
- Tateishi, R.; Ahn, C.H. Mapping evapotranspiration and water balance for global land surfaces. ISPRS J. Photogramm. Remote Sens. 1996, 51, 209–215. [Google Scholar] [CrossRef]
- Mauser, W.; Schadlich, S. Modeling the spatial distribution of evapotranspiration on different scales using remote sensing data. J. Hydrol. 1998, 212–213, 250–267. [Google Scholar] [CrossRef]
- Melesse, A.; Nangia, V.; Wang, X.; McClain, M. Wetland restoration response analysis using MODIS and groundwater data. Sensors 2007, 7, 1916–1933. [Google Scholar] [CrossRef]
- Glenn, E.P.; Mexicano, L.; Garcia-Hernandez, J.; Naglerc, P.L.; Gomez-Sapiensa, M.M.; Tanga, D.; Lomelid, M.A.; Ramirez-Hernandezd, J.; Zamora-Arroyoe, F. Evapotranspiration and water balance of an anthropogenic coastal desert wetland: Responses to fire, inflows and salinities. Ecol. Eng. 2013, 59, 176–184. [Google Scholar] [CrossRef]
- Melesse, A.M.; Oberg, J.; Beeri, O.; Nangia, V.; Baumgartner, D. Spatiotemporal dynamics of evapotranspiration and vegetation at the glacial ridge prairie restoration. Hydrol. Process. 2006, 20, 1451–1464. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Y. Lake fluctuation effectively regulates wetland evapotranspiration: A case study of the largest freshwater lake in China. Water 2014, 6, 2482–2500. [Google Scholar] [CrossRef]
- Li, Z.; Liu, X.; Ma, T.; Kejia, D.; Zhou, Q.; Yao, B.; Niua, T. Retrieval of the surface evapotranspiration patterns in the alpine grassland-wetland ecosystem applying SEBAL model in the source region of the Yellow River, China. Ecol. Eng. 2013, 270, 64–75. [Google Scholar]
- Venturini, V.; Bisht, G.; Islam, S.; Jiang, L. Comparison of evaporative fractions estimated from AVHRR and MODIS sensors over South Florida. Remote Sens. Environ. 2004, 93, 77–86. [Google Scholar] [CrossRef]
- Jiang, L.; Islam, S. Estimation of surface evaporation map over southern great plains using remote sensing data. Water Resour. Res. 2001, 37, 329–340. [Google Scholar] [CrossRef]
- Jiang, L.; Islam, S.; Jutla, A.; Senarath, S.; Ramsey, B.H.; Eltahir, E. An intercomparison of regional latent heat flux estimation using remote sensing data. Int. J. Remote Sens. 2009, 24, 2221–2236. [Google Scholar] [CrossRef]
- Lagomasino, D.; Price, R.M.; Whitman, D.; Melesse, A.M.; Oberbauer, S. Spatial and temporal variability in spectral-based evapotranspiration measured from Landsat 5TM across two mangrove ecotones. Agric. For. Meteorol. 2014. [Google Scholar] [CrossRef]
- Senay, G.B.; Verdin, J.P.; Lietzow, R.; Melesse, A.M. Global daily reference evapotranspiration modeling and validation. J. Am. Water Resour. Assoc. 2008, 44, 969–979. [Google Scholar] [CrossRef]
- DBHYDRO. Available online: http://xportal.sfwmd.gov/dbhydroplsql/show_dbkey_info.main_menu (accessed on 15 March 2014).
- LP DAAC. Available online: https://lpdaac.usgs.gov/data_access (accessed on 10 February 2014).
- Toller, GN; Isaacman, A. MODIS Level 1B Product User’s Guide; NASA/Goddard Space Flight Center: Greenbelt, MD, USA, 2012; p. 56. [Google Scholar]
- Wan, Z. Collection-5 MODIS Land Surface Temperature Products User’s Guide; University of California: Santa Barbara, CA, USA, 2006. [Google Scholar]
- Ackerman, S.; Frey, R.; Strabala, K.; Liu, Y.; Gumley, L.; Baum, B.; Menzel, P. Discriminating Clear-Sky from Cloud with MODIS Algorithm Theoretical Basis Document (MOD35); Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison: Madison, WI, USA, 2010; p. 20. [Google Scholar]
- Earth Explorer. Available online: http://earthexplorer.usgs.gov (accessed on 02 February 2014).
- Shoemaker, W.B.; Lopez, C.D.; Duever, M.J. Evapotranspiration over Spatially Extensive Plant Communities in the Big Cypress National Preserve, Southern Florida, 2007-2010; U.S. Geological Survey SIR 2011-5212; U.S. Geological Survey: Reston, VA, USA, 2011; p. 46. [Google Scholar]
- Abtew, W. Evapotranspiration measurements and modeling for three wetland systems in South Florida. J. Am. Water Resour. Assoc. 1996, 32, 465–473. [Google Scholar] [CrossRef]
- Senay, G.B.; Budde, M.; Verdin, J.P.; Melesse, A.M. A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields. Sensors 2007, 7, 979–1000. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL) 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.F.; Roerink, G.J.; van der Wal, T. A remote sensing Surface Energy Balance Algorithm for Land (SEBAL) 2. Validation. J. Hydrol. 1998, 212–213, 213–229. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Noordman, E.J.M.; Pelgrum, H.; Davids, G.; Thoreson, B.P.; Allen, R.G. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. J. Irrig. Drain. Eng. 2005, 131, 85–93. [Google Scholar] [CrossRef]
- Senay, G.B.; Bohms, S.; Singh, R.K.; Gowda, P.H.; Velpuri, N.M.; Alemu, H.; Verdin, J.P. Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach. J. Am. Water Resour. Assoc. 2013, 49, 577–591. [Google Scholar] [CrossRef]
- Pilz, J.; Spöck, G. Why do we need and how should we implement Bayesian Kriging methods. Stoch. Environ. Res. Risk Assess. 2007, 22, 621–632. [Google Scholar] [CrossRef]
- Abtew, W.; Obeysekera, J.; Irizarry-Ortiz, M.; Lyons, D.; Reardon, A. Evapotranspiration estimation for South Florida. In Proceedings of World Water and Environmental Resources Congress 2003, Philadelphia, PA, USA, 22–26 June 2003.
- Douglas, E.M.; Jacobs, J.M.; Sumner, D.M.; Ray, R.L. A comparison of models for estimating potential evapotranspiration for Florida land cover types. J. Hydrol. 2009, 373, 366–376. [Google Scholar] [CrossRef]
- Abtew, W. Comparison of Bowen Ratio Measurements and Model Estimations. In Evapotranspiration in the Everglades; South Florida Water Management District: West Palm Beach, FL, USA, 2004; pp. 2–13. [Google Scholar]
- Bidlake, W.R.; Woodham, W.M.; Lopez, M.A. Evapotranspiration from Areas of Native Vegetation in West-Central Florida; Water-Supply Paper 2430; U.S. Geological Survey: Washington, DC, USA, 1996. [Google Scholar]
- Mao, L.M.; Bergman, M.J.; Tai, C.C. Evapotranspiration measurement and estimation of three wetland environments in the Upper St. Johns River Basin, Florida. J. Am. Water Resour. Assoc. 2002, 38, 1271–1285. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef]
- Jiang, L.; Islam, S.; Guo, W.; Jutla, A.S.; Senarath, S.U.S.; Ramsay, B.H.; Eltahir, E. A satellite-based daily actual evapotranspiration estimation algorithm over South Florida. Glob. Planet. Chang. 2009, 67, 62–77. [Google Scholar] [CrossRef]
- Enku, T.; van der Tol, C.; Gieske, A.; Rientjes, T. Chapter 8: Evapotranspiration modeling using remote sensing and empirical models in the Fogera Floodplain. In Nile River Basin: Hydrology, Climate and Water Use; Melesse, A.M., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 163–178. [Google Scholar]
- Courault, D.; Seguin, B.; Olioso, A. Review on estimation of evapotranpiration from remote sensing data: From empirical to numerical modeling approaches. Irrig. Drain. Syst. 2005, 19, 223–249. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R.A. Landsat-based energy balance and evapotranspiration model in Western US water rights regulation and planning. Irrig. Drain. Syst. 2005, 19, 251–268. [Google Scholar] [CrossRef]
- Savoca, M.E.; Senay, G.B.; Maupin, M.A.; Kenny, J.F.; Perry, C.A. Actual Evapotranspiration Modeling Using Operational Simplified Surface Energy Balance (SSEBop) Approach; U.S. Geological Survey: Reston, VA, USA, 2013; p. 14. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceron, C.N.; Melesse, A.M.; Price, R.; Dessu, S.B.; Kandel, H.P. Operational Actual Wetland Evapotranspiration Estimation for South Florida Using MODIS Imagery. Remote Sens. 2015, 7, 3613-3632. https://doi.org/10.3390/rs70403613
Ceron CN, Melesse AM, Price R, Dessu SB, Kandel HP. Operational Actual Wetland Evapotranspiration Estimation for South Florida Using MODIS Imagery. Remote Sensing. 2015; 7(4):3613-3632. https://doi.org/10.3390/rs70403613
Chicago/Turabian StyleCeron, Cristobal N., Assefa M. Melesse, René Price, Shimelis B. Dessu, and Hari P. Kandel. 2015. "Operational Actual Wetland Evapotranspiration Estimation for South Florida Using MODIS Imagery" Remote Sensing 7, no. 4: 3613-3632. https://doi.org/10.3390/rs70403613
APA StyleCeron, C. N., Melesse, A. M., Price, R., Dessu, S. B., & Kandel, H. P. (2015). Operational Actual Wetland Evapotranspiration Estimation for South Florida Using MODIS Imagery. Remote Sensing, 7(4), 3613-3632. https://doi.org/10.3390/rs70403613