Validation of Land Cover Maps in China Using a Sampling-Based Labeling Approach
Abstract
:1. Introduction
2. Data and Method
2.1. Land Cover Maps
- (1)
- GLCC (Global Land Cover Characterization) land cover map with 1 km spatial resolution from the IGBP (International Geosphere-Biosphere Programme) [9].
- (2)
- UMd land cover map with 1 km spatial resolution from the University of Maryland [15].
- (3)
- GLC2000 land cover map with 1 km spatial resolution from the European Commission’s Joint Research Center [13].
- (4)
- (5)
- GlobCover land cover map with 300 m spatial resolution from the ESA (European Space Agency) [31].
- (6)
- GLCD-2005 (Geodata Land Cover Dataset for year 2005) land cover map of China at a scale of 1 to 250,000 produced by the Data Sharing Infrastructure of Earth System Science [32].
2.2. Data Pre-Processing
Harmonized Legend | Life Forms |
---|---|
Evergreen needleleaf forest | Trees |
Evergreen broadleaf forest | |
Deciduous needleleaf forest | |
Deciduous broadleaf forest | |
Mixed forest | |
Shrubland | |
Grassland | Grassland |
Cropland | Cropland |
Wetland | Wetland |
Water | Water |
Urban | Urban |
Others | Others |
2.3. Accuracy Validation
2.3.1. Sampling Design
- (i)
- The per-pixel comparison result (agreement map) of the five global land cover maps (GLCC, UMd, GLC2000, MODIS LC, and GlobCover) in China, which was assigned with five levels of agreement ranging from “No agreement” to “Full agreement” (identified as 1 to 5 accordingly) (see [29]). Here, we reclassified this agreement again into two categories: “high agreement” (pixel value > 3) and “low agreement” (pixel value ≤ 3) (Figure 1).
- (ii)
- The synthetical land cover map Geodata LC, which was synthesized from the five global land cover maps by voting according to the majority criteria in terms of life forms in Table 1. If the accumulated number of votes for a pixel is more than three among the five global land cover maps, then the final type of this pixel in Geodata LC is the majority class of the corresponding pixel in the five maps. Supposing that the total number of voting is less than three on a pixel among the compared maps, the land cover type of this pixel in Geodata LC is set to be the corresponding class in MODIS LC.
- (a)
- Sample size depends on the area of the strata, in that larger sample sizes are allocated to larger strata.
- (b)
- To increase the sample size in the “low agreement” strata, the sampling probability of “low agreement” is set to be ten times that of the “high agreement”.
- (c)
- Sample size of each land cover class was controlled under Geodata LC, avoiding the case that the sample size of one class is too excessive while another class is too little.
2.3.2. Sample Labeling
- (i)
- (ii)
- Yearly NDVI (Normalized Difference Vegetation Index) variation profile derived from the eight-day composited MODIS Surface Reflectance products (MOD09A1) after cloud and shadow masking, and
- (iii)
- Google Maps, and photos collected by Panoramio [55].
2.3.3. Accuracy Estimation
3. Results
3.1. Validation of Six Land Cover Maps in China
Year | Life Forms | Number | GLCC | UMd | ||
---|---|---|---|---|---|---|
UA (%) | PA (%) | UA (%) | PA (%) | |||
1990 | Trees | 1287 | 74.8 | 48.1 | 80.4 | 53.4 |
Grassland | 654 | 73.0 | 67.2 | 48.7 | 52.7 | |
Cropland | 281 | 51.9 | 72.1 | 56.3 | 51.7 | |
Water | 32 | 39.7 | 38.1 | 45.9 | 41.4 | |
Urban | 16 | Nodata | 0 | Nodata | 0 | |
Others | 730 | 98.4 | 49.7 | 94.6 | 42.0 | |
OA (%) | 57.2 | 48.6 |
Year | Life Forms | Number | GLC2000 | MODIS LC | ||
---|---|---|---|---|---|---|
UA (%) | PA (%) | UA (%) | PA (%) | |||
2000 | Trees | 1293 | 80.2 | 69.2 | 83.7 | 72.9 |
Grassland | 654 | 51.5 | 58.4 | 71.3 | 62.2 | |
Cropland | 270 | 61.9 | 64.1 | 66.6 | 69.3 | |
Water | 32 | 47.4 | 37.9 | 52.1 | 43.7 | |
Urban | 21 | 0 | 0 | 48.6 | 41.2 | |
Others | 730 | 83.4 | 72.1 | 92.4 | 73.3 | |
OA (%) | 65.2 | 68.9 |
Year | Life Forms | Number | GlobCover | GLCD-2005 | ||
---|---|---|---|---|---|---|
UA (%) | PA (%) | UA (%) | PA (%) | |||
2005 | Trees | 1293 | 82.8 | 55.6 | 90.0 | 70.9 |
Grassland | 655 | 45.0 | 33.3 | 59.2 | 78.0 | |
Cropland | 269 | 38.7 | 70.0 | 90.0 | 80.8 | |
Water | 32 | 52.6 | 46.7 | 46.6 | 56.9 | |
Urban | 23 | 72.9 | 15.5 | 88.8 | 76.4 | |
Others | 728 | 83.1 | 74.6 | 90.9 | 64.1 | |
OA (%) | 57.7 | 72.3 |
- (i)
- “Trees” and “Others” in all of the six land cover maps,
- (ii)
- “Grassland” in GLCC, GLC2000, MODIS LC and GLCD-2005,
- (iii)
- “Cropland” in the all of the six maps except GlobCover,
- (iv)
- “Water” in MODIS LC and GlobCover, and
- (v)
- “Urban” in GlobCover and GLCD-2005.
- (i)
- “Trees” in all of the six land cover maps except GLCC,
- (ii)
- “Grassland” in all of the six maps except GlobCover,
- (iii)
- “Cropland” in all of the six maps,
- (iv)
- “Water” and “Urban” only in GLCD-2005, and
- (v)
- “Others” in all of the six maps except GLCC and UMd.
3.2. Validation of GLCD-2005 in Geographical Regions of China
- (a)
- East: Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong, and Taiwan.
- (b)
- Central: Henan, Hubei, and Hunan.
- (c)
- Northeast: Heilongjiang, Jilin, and Liaoning.
- (d)
- North: Beijing, Tianjin, Hebei, Shanxi, and Inner Mongolia.
- (e)
- Northwest: Shannxi, Gansu, Qinghai, Ningxia, and Xinjiang.
- (f)
- South: Guangdong, Guangxi, Hainan, Hongkong, and Macau.
- (g)
- Southwest: Chongqing, Guizhou, Sichuan, Yunnan, and Tibet.
Life Forms | East (263) | Central (132) | Northeast (328) | North (454) | Northwest (686) | South (202) | Southwest (935) |
---|---|---|---|---|---|---|---|
Trees | Y | Y | Y | Y | Y | Y | Y |
Grassland | Y | Y | Y | Y | Y | Y | Y |
Cropland | Y | Y | Y | Y | Y | Y | Y |
Urban | Y | Y | Y | Y | N | Y | N |
Wetland/Water | Y | Y | Y | Y | Y | N | Y |
Barren | N | N | Y | Y | Y | N | Y |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- McCallum, I.; Obersteiner, M.; Nilsson, S.; Shvidenko, A. A spatial comparison of four satellite derived 1km global land cover datasets. Int. J. Appl. Earth Observ. Geoinf. 2006, 8, 246–255. [Google Scholar] [CrossRef]
- Mitchell, R.B. International environmental agreements: A survey of their features, formation, and effects. Annu. Rev. Env. Resour. 2003, 28, 429–461. [Google Scholar] [CrossRef]
- Earth Observation for Biodiversity Monitoring: A Review of Current Approaches and Future Opportunities for Tracking Progress towards the Aichi Biodiversity Targets. Available online: http://www.eubon.eu/news/10842_Earth%20Observation%20for%20Biodiversity%20Monitoring:%20A%20review%20of%20current%20approaches%20and%20future%20opportunities%20for%20tracking%20progress%20towards%20the%20Aichi%20Biodiversity%20Targets (accessed on 24 March 2014).
- Sellers, P.J.; Dickinson, R.E.; Randall, D.A.; Betts, A.K.; Hall, F.G.; Berry, J.A.; Collatz, G.J.; Denning, A.S.; Mooney, H.A.; Nobre, C.A.; et al. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 1997, 275, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Townshend, J.; Justice, C.; Li, W.; Gurney, C.; McManus, J. Global land cover classification by remote sensing: Present capabilities and future possibilities. Remote Sens. Environ. 1991, 35, 243–255. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant. Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Jung, M.; Henkel, K.; Herold, M.; Churkina, G. Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sens. Environ. 2006, 101, 534–553. [Google Scholar] [CrossRef]
- Loveland, T.R.; Belward, A.S. The international geosphere biosphere programme data and information system global land cover data set (discover). Acta Astronaut. 1997, 41, 681–689. [Google Scholar] [CrossRef]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Loveland, T.R.; Belward, A.S. The IGBP-DIS global 1km land cover data set, DISCover: First results. Int. J. Remote Sens. 1997, 18, 3289–3295. [Google Scholar] [CrossRef]
- Tchuenté, A.T.K.; Roujean, J.L.; De Jong, S.M. Comparison and relative quality assessment of the GLC2000, GLOBCOVER, MODIS and ECOCLIMAP land cover data sets at the African continental scale. Int. J. Appl. Earth Observ. Geoinf. 2011, 13, 207–219. [Google Scholar] [CrossRef]
- Arino, O.; Gross, D.; Ranera, F.; Bourg, L.; Leroy, M.; Bicheron, P.; Latham, J.; di Gregorio, A.; Brockman, C.; Witt, R.; et al. GlobCover: ESA service for Global Land Cover from MERIS. In Proceedings of the 2007 International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 2412–2415.
- Bartholome, E.; Belward, A. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Friedl, M.A.; Mclver, D.K.; Hodges, J.C.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Hansen, M.C.; Defries, R.S.; Townshend, J.R.G.; Sohlberg, R. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- Liu, J.; Zhuang, D.; Zhang, Z.; Gao, Z.; Deng, X. The establishment of land-use spatial-temporal database and its relative studies in China. Geoinf. Sci. 2002, 4, 3–7. [Google Scholar]
- Lu, L.; Kuenzer, C.; Guo, H.; Li, Q.; Long, T.; Li, X. A novel land cover classification map based on a modis time-series in Xinjiang, China. Remote Sens. 2014, 6, 3387–3408. [Google Scholar] [CrossRef]
- Mayaux, P.; Bartholomé, E.; Fritz, S.; Belward, A. A new land-cover map of Africa for the year 2000. J. Biogeogr. 2004, 31, 861–877. [Google Scholar] [CrossRef]
- Mayaux, P.; Strahler, A.; Eva, H.; Herold, M.; Shefali, A.; Naumov, S. Validation of the global land cover 2000 map. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1728–1739. [Google Scholar] [CrossRef]
- Nowak, D.; Greenfield, E. Evaluating the national land cover database tree canopy and impervious cover estimates across the conterminous United States: A comparison with photo-interpreted estimates. J.Environ. Manage. 2010, 46, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.S.; Liao, A.P.; Chen, L.J. The creation of national land cover database in china. Sci. Surv. Map. 2007, 32, 138–140. [Google Scholar]
- Fritz, S.; See, L. Identifying and quantifying uncertainty and spatial disagreement in the comparison of global land cover for different applications. Glob. Chang. Biol. 2008, 14, 1057–1075. [Google Scholar] [CrossRef]
- Comparison and Validation of Five Land Cover Products over the African Continent. Available online: http://www.natgeo.lu.se/ex-jobb/exj_195.pdf (accessed on 18 July 2015).
- Fritz, S.; See, L.; Rembold, F. Comparison of global and regional land cover maps with statistical information for the agricultural domain in Africa. Int. J. Remote Sens. 2010, 31, 2237–2256. [Google Scholar] [CrossRef]
- Kuenzer, C.; Leinenkugel, P.; Vollmuth, M.; Dech, S. Comparing global land-cover products—Implications for geoscience applications: An investigation for the trans-boundary mekong basin. Int. J. Remote Sens. 2014, 35, 2752–2779. [Google Scholar] [CrossRef]
- Latifovic, R.; Olthof, I. Accuracy assessment using sub-pixel fractional error matrices of global land cover products derived from satellite data. Remote Sens. Environ. 2004, 90, 153–165. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X.; Lu, L. Evaluation of four remote sensing based land cover products over China. Int. J. Remote Sens. 2010, 31, 391–401. [Google Scholar] [CrossRef]
- Wu, W.; Shibasaki, R.; Yang, P.; Ongaro, L.; Zhou, Q.; Tang, H. Validation and comparison of 1 km global land cover products in China. Int. J. Remote Sens. 2008, 29, 3769–3785. [Google Scholar] [CrossRef]
- Bai, Y.; Feng, M.; Jiang, H.; Wang, J.; Zhu, Y.; Liu, Y. Assessing consistency of five global land cover data sets in China. Remote Sens. 2014, 6, 8739–8759. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. Modis collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Bicheron, P.; Defourny, P.; Brockman, C.; Schouten, L.; Vancutsem, C.; Huc, M.; Bontemps, S.; Leroy, A.; Achard, F.; Herold, M.; et al. Globcover: Product Description and Validation Report. Available online: http://publications.jrc.ec.europa.eu/repository/handle/JRC49240 (accessed on 18 July 2015).
- Zhang, Z.; Wang, X.; Wang, C.; Zuo, L.; Wen, Q.; Dong, T.; Zhao, X.; Liu, B.; Yi, L. National land cover mapping by remote sensing under the control of interpreted data. J. Geoinf. Sci. 2009, 11, 216–224. [Google Scholar] [CrossRef]
- Defries, R.S.; Hansen, M.; Townshend, J.R.G.; Sohlberg, R. Global land cover classifications at 8 km spatial resolution: The use of training data derived from Landsat imagery in decision tree classifiers. Int. J. Remote Sens. 1998, 19, 3141–3168. [Google Scholar] [CrossRef]
- Scepan, J. Thematic validation of high-resolution global land-cover data sets. Photogramm. Eng. Rem. Sens. 1999, 65, 1051–1060. [Google Scholar]
- Strahler, A.; Boschetti, L.; Foody, G.; Friedl, M.; Hansen, M.; Herold, M.; Mayaux, P.; Morisette, J.; Stehman, S.; Woodcock, C. Global Land Cover Validation: Recommendations for Evaluation And Accuracy Assessment of Global Land Cover Maps. Available online: http://159.226.251.230/videoplayer/GlobalLandCoverValidation.pdf?ich_u_r_i=d828839f030b9388e43469edb5cb240c&ich_s_t_a_r_t=0&ich_e_n_d=0&ich_k_e_y=1545088906750763552478&ich_t_y_p_e=1&ich_d_i_s_k_i_d=3&ich_u_n_i_t=1 (accessed on 18 July 2015).
- Scepan, J.; Estes, J.E.; Starmer, W.J. Accuracy analysis and validation of global 1 km land cover data sets. In Proceedings of the Geoscience and Remote Sensing Symposium, Lincoln, NE, USA, 27–31 May 1996; pp. 198–200.
- Lillesand, M.T.; Kiefer, W.R.; Chipman, W.J. Digital image processing. In Remote Sensing and Image Interpretation; John Wiley & Sons: New Jersey, NJ, USA, 2004; pp. 586–593. [Google Scholar]
- Stehman, S.V. Sampling designs for accuracy assessment of land cover. Int. J. Remote Sens. 2009, 30, 5243–5272. [Google Scholar] [CrossRef]
- Lewis, H.G.; Brown, M. A generalized confusion matrix for assessing area estimates from remotely sensed data. Int. J. Remote Sens. 2001, 22, 3223–3235. [Google Scholar] [CrossRef]
- Stehman, S.V.; Arora, M.K.; Kasetkasem, T.; Varshney, P.K. Estimation of fuzzy matrix accuracy measures under stratified random sampling. Photogramm. Eng. Remote Sens. 2007, 73, 165–173. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Bo, Y.; Wang, J. Assessment on uncertainty in remotely sensed data classification: Progresses, problems and prospects. Adv. Earth Sci. 2005, 20, 1218–1225. [Google Scholar]
- Gong, P. Accuracies of global land cover maps checked against fluxnet sites. Sci. Found. China 2008, 16, 31–35. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Iwao, K.; Nishida, K.; Kinoshita, T.; Yamagata, Y. Validating land cover maps with degree confluence project information. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Kloditz, C.; Van Boxtel, A.; Carfagna, E.; Van Deursen, W. Estimating the accuracy of coarse scale classifications using high scale information. Photogramm. Eng. Remote Sens. 1998, 62, 127–133. [Google Scholar]
- Ning, J.; Zhang, S.; Cai, H.; Bu, K. A comparative analysis of the modis land cover data sets and globcover land cover data sets in Heilongjiang Basin. J. Geoinf. Sci. 2012, 14, 240–249. [Google Scholar] [CrossRef]
- Yates, F. Sampling Methods for Censuses and Surveys; Macmillan: London, UK, 1981. [Google Scholar]
- Feng, M.; Huang, C.; Sexton, J.O.; Channan, S.; Narasimhan, R.; Townshend, J.R. An approach for quickly labeling land cover types for multiple epochs at globally selected locations. In Proceedings of the Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 6203–6206.
- Feng, M.; Huang, C.; Channan, S.; Vermote, E.F.; Masek, J.G.; Townshend, J.R. Quality assessment of Landsat surface reflectance products using MODIS data. Comput. Geosci. 2012, 38, 9–22. [Google Scholar] [CrossRef]
- Feng, M.; Sexton, J.O.; Huang, C.; Masek, J.G.; Vermote, E.F.; Gao, F.; Narasimhan, R.; Channan, S.; Wolfe, R.E.; Townshend, J.R. Global surface reflectance products from Landsat: Assessment using coincident modis observations. Remote Sens. Environ. 2013, 134, 276–293. [Google Scholar] [CrossRef]
- Franks, S.; Masek, J.; Headley, R.; Gasch, J.; Covington, S.; Arvidson, T. Large area scene selection interface (LASSI): Methodology of selecting Landsat imagery for the global land survey 2005. Photogramm. Eng. Remote Sens. 2009, 75, 1287–1296. [Google Scholar] [CrossRef]
- Gutman, G.; Byrnes, R.; Masek, J. Towards monitoring land-cover and land-use changes at a global scale: The global land survey 2005. Photogramm. Eng. Remote Sens. 2008, 74, 6–10. [Google Scholar]
- Gutman, G.; Huang, C.; Chander, G.; Noojipady, P.; Masek, J.G. Assessment of the NASA–USGS global land survey (GLS) datasets. Remote Sens. Environ. 2013, 134, 249–265. [Google Scholar] [CrossRef]
- Google Maps. Available online: http://www.panoramio.com/ (accessed on 18 July 2015).
- Stehman, S.V. Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes. Int. J. Remote Sens. 2014, 35, 4923–4939. [Google Scholar] [CrossRef]
- Muchoney, D.M.; Borak, J.; Strahler, A. Global Land Cover Classification Training and Validation Issues and Requirements. Available online: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=516301&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D516301 (accessed on 18 July 2015).
- Stehman, S.V.; Czaplewski, R.L. Design and analysis for thematic map accuracy assessment: Fundamental principles. Remote Sens. Environ. 1998, 64, 331–344. [Google Scholar] [CrossRef]
- Tateishi, R.; Uriyangqai, B.; Al-Bilbisi, H.; Ghar, M.A.; Tsend-Ayush, J.; Kobayashi, T.; Kasimu, A.; Hoan, N.T.; Shalaby, A.; Alsaaideh, B.; et al. Production of global land cover data—GLCNMO. Int. J. Digit. Earth 2010, 4, 22–49. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A pok-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.; Feng, M.; Jiang, H.; Wang, J.; Liu, Y. Validation of Land Cover Maps in China Using a Sampling-Based Labeling Approach. Remote Sens. 2015, 7, 10589-10606. https://doi.org/10.3390/rs70810589
Bai Y, Feng M, Jiang H, Wang J, Liu Y. Validation of Land Cover Maps in China Using a Sampling-Based Labeling Approach. Remote Sensing. 2015; 7(8):10589-10606. https://doi.org/10.3390/rs70810589
Chicago/Turabian StyleBai, Yan, Min Feng, Hao Jiang, Juanle Wang, and Yingzhen Liu. 2015. "Validation of Land Cover Maps in China Using a Sampling-Based Labeling Approach" Remote Sensing 7, no. 8: 10589-10606. https://doi.org/10.3390/rs70810589
APA StyleBai, Y., Feng, M., Jiang, H., Wang, J., & Liu, Y. (2015). Validation of Land Cover Maps in China Using a Sampling-Based Labeling Approach. Remote Sensing, 7(8), 10589-10606. https://doi.org/10.3390/rs70810589