A Method for Retrieving Daily Land Surface Albedo from Space at 30-m Resolution
Abstract
:1. Introduction
2. Theoretical Basis
2.1. Land Surface Albedo and BRDF
2.2. Spatio-temporal Downscaling of Land Surface Reflectance
3. Method
3.1. NTOB Reflectance
Band | 1 (nm) | 2 (nm) | 3 (nm) | 4 (nm) | 5 (nm) | 6 (nm) | 7 (nm) |
---|---|---|---|---|---|---|---|
MODIS | 620–670 | 841–876 | 459–479 | 545–565 | 1230–1250 | 1628–1652 | 2105–2155 |
HJ-1A/B | 430–520 | 520–600 | 630–690 | 760–900 | - | - | - |
Band | 1 | 2 | 3 | 4 |
---|---|---|---|---|
HJ1ACCD1 | −0.5878 | 0.6543 | 0.4183 | 0.3891 |
HJ1ACCD2 | −0.5138 | 0.5175 | 0.4838 | 0.3865 |
HJ1BCCD1 | −0.6066 | 0.6175 | 0.4703 | 0.3925 |
HJ1BCCD2 | −0.5149 | 0.5403 | 0.4592 | 0.3898 |
Band | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Const |
---|---|---|---|---|---|---|---|---|
MODIS | 0.3973 | 0.2382 | 0.3489 | −0.2655 | 0.1604 | −0.0138 | 0.0682 | 0.0036 |
3.2. Downscaling Reflectance by Fusing MODIS and HJ-1A/B Data
3.3. Retrieving Daily 30-m Land Surface Albedo for Pure MODIS Pixels
3.4. Retrieving the Daily 30-m Land Surface Albedo for Mixed MODIS Pixels
4. Study Area and Study Data
4.1. Ground Measurements
Site | No. 1 | No. 7 | No. 15 | No. 17 | Gobi | Shenshawo |
---|---|---|---|---|---|---|
Location (degree) | 100.3582E, 38.8932N | 100.3652E, 38.8767N | 100.3722E, 38.8555N | 100.3697E, 38.8451N | 100.3042E, 38.9149N | 100.4933E, 38.7891N |
LC | Vegetable | Corn | Corn | Orchard | Gobi | Desert |
Radius of Coverage | 10 m | 10 m | 20 m | 10 m | 10 m | 10 m |
4.2. Study Data
5. Results
5.1. Comparison of Daily Reflectance at 30 m with That of MODIS and HJ-1A/B
5.2. Comparison of the Retrieved Albedo Values with Those of MODIS and HJ-1A/B
Site | No. 1 | No. 7 | No. 15 | No. 17 | Gobi | Shenshawo | All |
---|---|---|---|---|---|---|---|
Proposed/HJ-1A/B | 2 | 1.96 | 1.88 | 2.45 | 2.08 | 2 | >2.0 |
5.3. Validation of the Retrieved Albedo
Product | Temporal Resolution (day) | Spatial Resolution(m) | Total RMSE | Total Absolute Error |
---|---|---|---|---|
MODIS | 8 | 500 | 0.029 | 0.023 |
Proposed method | 1 | 30 | 0.028 | 0.022 |
Method | Temporal Resolution (day) | Spatial Resolution (m) |
---|---|---|
Shuai or Franch | 2–4 | 30 |
Proposed method | 1 | 30 |
5.4. Test of Applicability and Robustness of the Proposed Method
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lucht, W.; Schaaf, C.B.; Strahler, A.H. An algorithm for the retrieval of albedo from space using semiempirical brdf models. IEEE Trans. Geosci. Remote Sens. 2000, 38, 977–998. [Google Scholar] [CrossRef]
- Gao, F.; Schaaf, C.B.; Strahler, A.H.; Roesch, A.; Lucht, W.; Dickinson, R. MODIS bidirectional reflectance distribution function and albedo climate modeling grid products and the variability of albedo for major global vegetation types. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Leroy, M.; Deuze, J.L.; Breon, F.M.; Hautecoeur, O.; Herman, M.; Buriez, J.C.; Tanre, D.; Bouffies, S.; Chazette, P.; Roujean, J.L. Retrieval of atmospheric properties and surface bidirectional reflectances over land from POLDER/ADEOS. J. Geophys. Res. Atmos. 1997, 102, 17023–17037. [Google Scholar] [CrossRef]
- Pinty, B.; Roveda, F.; Verstraete, M.M.; Gobron, N.; Govaerts, Y.; Martonchik, J.V.; Diner, D.J.; Kahn, R.A. Surface albedo retrieval from Meteosat-1. Theory. J. Geophys. Res. Atmos. 2000, 105, 18099–18112. [Google Scholar] [CrossRef]
- Pinty, B.; Roveda, F.; Verstraete, M.M.; Gobron, N.; Govaerts, Y.; Martonchik, J.V.; Diner, D.J.; Kahn, R.A. Surface albedo retrieval from Meteosat-2. Applications. J. Geophys. Res. Atmos. 2000, 105, 18113–18134. [Google Scholar] [CrossRef]
- Geiger, B.; Carrer, D.; Franchisteguy, L.; Roujean, J.L.; Meurey, C. Land surface albedo derived on a daily basis from Meteosat second generation observations. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3841–3856. [Google Scholar] [CrossRef]
- Liang, S.L.; Strahler, A.H.; Walthall, C. Retrieval of land surface albedo from satellite observations: A simulation study. J. Appl. Meteorol. 1999, 38, 712–725. [Google Scholar] [CrossRef]
- Liang, S.L.; Stroeve, J.; Box, J.E. Mapping daily snow/ice shortwave broadband albedo from moderate resolution imaging spectroradiometer (MODIS): The improved direct retrieval algorithm and validation with greenland in situ measurement. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Qu, Y.; Liu, Q.; Liang, S.L.; Wang, L.Z.; Liu, N.F.; Liu, S.H. Direct-estimation algorithm for mapping daily land-surface broadband albedo from MODIS data. IEEE Trans. Geosci. Remote Sens. 2013, 52, 907–919. [Google Scholar] [CrossRef]
- Wen, J.G.; Zhao, X.J.; Liu, Q.; Tang, Y.; Dou, B.C. An improved land-surface albedo algorithm with dem in rugged terrain. IEEE Geosci. Remote Sens. Lett. 2014, 11, 883–887. [Google Scholar]
- Shuai, Y.M.; Masek, J.G.; Gao, F.; Schaaf, C.B. An algorithm for the retrieval of 30-m snow-free albedo from landsat surface reflectance and MODIS BRDF. Remote Sens. Environ. 2011, 115, 2204–2216. [Google Scholar] [CrossRef]
- Franch, B.; Vermote, E.F.; Claverie, M. Intercomparison of landsat albedo retrieval techniques and evaluation against in situ measurements across the us surfrad network. Remote Sens. Environ. 2014, 152, 627–637. [Google Scholar] [CrossRef]
- Franch, B.; Vermote, E.F.; Sobrino, J.A.; Julien, Y. Retrieval of surface albedo on a daily basis: Application to MODIS data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7549–7558. [Google Scholar] [CrossRef]
- He, T.; Liang, S.; Wang, D.; Shuai, Y.; Yu, Y. Fusion of satellite land surface albedo products across scales using a multiresolution tree method in the north central United States. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3428–3439. [Google Scholar] [CrossRef]
- Gao, B.; Jia, L.; Wang, T.X. Derivation of land surface albedo at high resolution by combining HJ-1A/B reflectance observations with MODIS BRDF products. Remote Sens. 2014, 6, 8966–8985. [Google Scholar] [CrossRef]
- Atkinson, P.M. Downscaling in remote sensing. Int. J. Appl. Earth Obs. 2013, 22, 106–114. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Rutten, M.M.; Droogers, P. Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula. Remote Sens. Environ. 2009, 113, 362–370. [Google Scholar] [CrossRef]
- Jia, S.F.; Zhu, W.B.; Lu, A.F.; Yan, T.T. A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam basin of China. Remote Sens. Environ. 2011, 115, 3069–3079. [Google Scholar] [CrossRef]
- Duan, Z.; Bastiaanssen, W.G.M. First results from version 7 TRMM 3B43 precipitation product in combination with a new downscaling-calibration procedure. Remote Sens. Environ. 2013, 131, 1–13. [Google Scholar] [CrossRef]
- Chen, F.R.; Liu, Y.; Liu, Q.; Li, X. Spatial downscaling of TRMM 3B43 precipitation considering spatial heterogeneity. Int. J. Remote Sens. 2014, 35, 3074–3093. [Google Scholar] [CrossRef]
- Merlin, O.; Walker, J.P.; Chehbouni, A.; Kerr, Y. Towards deterministic downscaling of SMOS soil moisture using MODIS derived soil evaporative efficiency. Remote Sens. Environ. 2008, 112, 3935–3946. [Google Scholar] [CrossRef] [Green Version]
- Zhan, W.F.; Chen, Y.H.; Wang, J.F.; Zhou, J.; Quan, J.L.; Liu, W.Y.; Li, J. Downscaling land surface temperatures with multi-spectral and multi-resolution images. Int. J. Appl. Earth Obs. 2012, 18, 23–36. [Google Scholar] [CrossRef]
- Zhu, S.Y.; Guan, H.D.; Millington, A.C.; Zhang, G.X. Disaggregation of land surface temperature over a heterogeneous urban and surrounding suburban area: A case study in Shanghai, China. Int. J. Remote Sens. 2013, 34, 1707–1723. [Google Scholar] [CrossRef]
- Sorooshian, S.; AghaKouchak, A.; Arkin, P.; Eylander, J.; Foufoula-Georgiou, E.; Harmon, R.; Hendrickx, J.M.H.; Imam, B.; Kuligowski, R.; Skahill, B.; et al. Advanced concepts on remote sensing of precipitation at multiple scales. B Am. Meteorol. Soc. 2011, 92, 1353–1357. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
- Song, H.H.; Huang, B. Spatiotemporal satellite image fusion through one-pair image learning. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1883–1896. [Google Scholar] [CrossRef]
- Wanner, W.; Li, X.; Strahler, A.H. On the derivation of kernels for kernel-driven models of bidirectional reflectance. J. Geophys. Res. Atmos. 1995, 100, 21077–21089. [Google Scholar] [CrossRef]
- Roujean, J.L. A bidirectional reflectance model of the earth’s surface for the correction of remote sensing data. J. Geophys. Res. 1992, 97, 20,455–420,468. [Google Scholar] [CrossRef]
- Li, X.W.; Strahler, A.H. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: Effect of crown shape and mutual shadowing. IEEE Trans. Geosci. Remote Sens. 1992, 30, 276–292. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanré, D.; Deuze, J.L.; Herman, M.; Morcette, J.J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Liang, S.L. Narrowband to broadband conversions of land surface albedo I: Algorithms. Remote Sens. Environ. 2000, 76, 213–238. [Google Scholar] [CrossRef]
- Liu, S. The Angular & Spectral Kernel BRDF Model for Albedo Retrieval; Graduate University of Chinese Academy of Sciences: Beijing, China, 2010. [Google Scholar]
- Li, X.; Li, X.W.; Li, Z.Y.; Ma, M.G.; Wang, J.; Xiao, Q.; Liu, Q.; Che, T.; Chen, E.X.; Yan, G.J.; et al. Watershed allied telemetry experimental research. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.D.; Liu, S.M.; Xiao, Q.; Ma, M.G.; Jin, R.; Che, T.; Liu, Q.H.; Wang, W.Z.; Qi, Y.; et al. Heihe watershed allied telemetry experimental research (HiWATER): Scientific objectives and experimental design. B Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Wang, Q.A.; Wu, C.Q.; Li, Q.; Li, J.S. Chinese HJ-1A/B satellites and data characteristics. Sci. China Earth Sci. 2010, 53, 51–57. [Google Scholar] [CrossRef]
- Loveland, T.; Reed, B.; Brown, J.; Ohlen, D.; Zhu, Z.; Yang, L.; Merchant, J. Development of a global land cover characteristics database and IGBP discover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar]
- Zhong, B.; Ma, P.; Nie, A.; Yang, A.; Yao, Y.; Lü, W.; Zhang, H.; Liu, Q. Land cover mapping using time series HJ-1/CCD data. Sci. China Earth Sci. 2014, 57, 1790–1799. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, B.; Gong, H.; Wang, T. A Method for Retrieving Daily Land Surface Albedo from Space at 30-m Resolution. Remote Sens. 2015, 7, 10951-10972. https://doi.org/10.3390/rs70810951
Gao B, Gong H, Wang T. A Method for Retrieving Daily Land Surface Albedo from Space at 30-m Resolution. Remote Sensing. 2015; 7(8):10951-10972. https://doi.org/10.3390/rs70810951
Chicago/Turabian StyleGao, Bo, Huili Gong, and Tianxing Wang. 2015. "A Method for Retrieving Daily Land Surface Albedo from Space at 30-m Resolution" Remote Sensing 7, no. 8: 10951-10972. https://doi.org/10.3390/rs70810951
APA StyleGao, B., Gong, H., & Wang, T. (2015). A Method for Retrieving Daily Land Surface Albedo from Space at 30-m Resolution. Remote Sensing, 7(8), 10951-10972. https://doi.org/10.3390/rs70810951