Landsat and Local Land Surface Temperatures in a Heterogeneous Terrain Compared to MODIS Values
Abstract
:1. Introduction
2. Description of the Site and Tools
2.1. Landsat 7 ETM+ Land-Surface Temperatures
2.2. The Terra MODIS Land-Surface Temperatures
2.3. In Situ LST Field Data
2.4. Previous Validations of Satellite-Derived LST
3. Results
3.1. Spatial Variability of LST Fields
3.2. Annual Evolution of LST
3.3. Seasonal Distribution of LST Heterogeneities
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jin, M.; Dickinson, R.E. Land surface skin temperature climatology: Benefitting from the strengths of satellite observations. Environ. Res. Lett. 2010, 5, 041002. [Google Scholar] [CrossRef]
- Jin, M.; Dickinson, R.E.; Vogelmann, A.M. A comparison of CCM2-BATS skin temperature and surface-air temperature with satellite and surface observations. J. Clim. 1997, 10, 1505–1524. [Google Scholar] [CrossRef]
- Popiel, C.O.; Wojtkowiak, J.; Biernacka, B. Measurements of temperature distribution in ground. Exp. Therm. Fluid Sci. 2001, 25, 301–309. [Google Scholar] [CrossRef]
- Anderson, M.C.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens. Environ. 2012, 122, 50–65. [Google Scholar] [CrossRef]
- Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys. 2008, 29, 421–469. [Google Scholar] [CrossRef]
- Li, Z.L.; Tang, B.H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived Land Surface Temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Sellers, P.J.; Dickinson, R.E.; Randall, D.A.; Betts, A.K.; Hall, F.G.; Berry, J.A.; Collatz, G.J.; Denning, A.S.; Mooney, H.A.; Nobre, C.A.; et al. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 1997, 275, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Tierney, J.E.; Russell, J.M.; Huang, Y.; Damsté, J.S.S.; Hopmans, E.C.; Cohen, A.S. Northern hemisphere controls on tropical southeast African climate during the past 60,000 years. Science 2008, 322, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Cuxart, J.; Conangla, L.; Jiménez, M.A. Evaluation of the surface energy budget equation with experimental data and the ECMWF model in the Ebro Valley. J. Geophys. Res. Atmos. 2015, 120, 1008–1022. [Google Scholar] [CrossRef]
- Betts, A.K.; Ball, J.H.; Beljaars, A.C.M.; Miller, M.J.; Viterbo, P.A. The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res. Atmos. 1996, 101, 7209–7225. [Google Scholar] [CrossRef]
- Cuxart, J.; Wrenger, B.; Martínez-Villagrasa, D.; Reuder, J.; Jonassen, M.O.; Jiménez, M.A.; Lothon, M.; Lohou, F.; Hartogensis, O.; Dünnermann, J.; et al. Estimation of the advection effects induced by surface heterogeneities in the surface energy budget. Atmos. Chem. Phys. 2016, 14, 9489–9504. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Zhang, X.; Zhan, W.; Zhang, H. Land Surface Temperature retrieval from MODIS data by integrating regression models and the genetic algorithm in an arid region. Remote Sens. 2014, 6, 5344–5367. [Google Scholar] [CrossRef]
- Niclòs, R.; Valiente, J.A.; Barberà, M.J.; Coll, C. An autonomous system to take angular thermal-infrared measurements for validating satellite products. Remote Sens. 2015, 7, 15269–15294. [Google Scholar] [CrossRef]
- Ermida, S.L.; Trigo, I.F.; DaCamara, C.C.; Göttsche, F.M.; Olesen, F.S.; Hulley, G. Validation of remotely sensed surface temperature over an oak woodland landscape—The problem of viewing and illumination geometries. Remote Sens. Environ. 2014, 148, 16–27. [Google Scholar] [CrossRef]
- Coll, C.; García-Santos, V.; Niclòs, R.; Caselles, V. Test of the MODIS Land Surface Temperature and emissivity separation algorithm with ground measurements over a rice paddy. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3061–3069. [Google Scholar] [CrossRef]
- Krishnan, P.; Kochendorfer, J.; Dumas, E.J.; Guillevic, P.C.; Baker, C.B.; Meyers, T.P.; Martos, B. Comparison of in-situ, aircraft, and satellite land surface temperature measurements over a NOAA climate reference network site. Remote Sens. Environ. 2015, 165, 249–264. [Google Scholar] [CrossRef]
- Coll, C.; Galve, J.M.; Sánchez, J.M.; Caselles, V. Validation of Landsat-7/ETM+ thermal-band calibration and atmospheric correction with ground-based measurements. IEEE Transa. Geosci. Remote Sens. 2010, 48, 547–555. [Google Scholar] [CrossRef]
- Li, F.; Jackson, T.J.; Kustas, W.P.; Schmugge, T.J.; French, A.N.; Cosh, M.H.; Bindlish, R. Deriving Land Surface Temperature from Landsat 5 and 7 during SMEX02/SMACEX. Remote Sens. Environ. 2004, 92, 521–534. [Google Scholar] [CrossRef]
- Mukherjee, S.; Joshi, P.K.; Garg, R.D. Evaluation of LST downscaling algorithms on seasonal thermal data in humid subtropical regions of India. Int. J. Remote Sens. 2015, 36, 2503–2523. [Google Scholar]
- Wu, P.; Shen, H.; Zhang, L.; Göttsche, F.M. Integrated fusion of multi-scale polar-orbiting and geostationary satellite observations for the mapping of high spatial and temporal resolution Land Surface Temperature. Remote Sens. Environ. 2015, 156, 169–181. [Google Scholar] [CrossRef]
- Weng, Q.; Fu, P.; Gao, F. Generating daily Land Surface Temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sens. Environ. 2014, 145, 55–67. [Google Scholar] [CrossRef]
- Yu, W.; Ma, M. Scale mismatch between in situ and remote sensing observations of Land Surface Temperature: Implications for the validation of remote sensing LST products. IEEE Geosci. Remote Sens. Lett. 2015, 12, 497–501. [Google Scholar]
- Jiménez, M.A.; Mira, A.; Cuxart, J.; Luque, A.; Alonso, S.; Guijarro, J.A. Verification of a clear-sky mesoscale simulation using satellite-derived surface temperatures. Mon. Weather Rev. 2008, 136, 5148–5161. [Google Scholar] [CrossRef]
- Jiménez, M.A.; Ruiz, A.; Cuxart, J. Estimation of cold pool areas and chilling hours through satellite-derived surface temperatures. Agric. For. Meteorol. 2015, 207, 58–68. [Google Scholar] [CrossRef]
- Cuxart, J.; Jiménez, M.A.; Martínez, D. Nocturnal meso-beta basin and katabatic flowson a midlatitude island. Mon. Weather Rev. 2007, 135, 918–932. [Google Scholar] [CrossRef]
- Cuxart, J.; Jiménez, M.A.; Telisman-Prtenjak, M.; Grisogono, B. Study of a sea-breeze case through momentum, temperature, and turbulence budgets. J. Appl. Meteorol. Climatol. 2014, 53, 2589–2609. [Google Scholar] [CrossRef]
- Hook, S.J.; Gabell, A.R.; Green, A.A.; Kealy, P.S. A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies. Remote Sens. Environ. 1992, 42, 123–135. [Google Scholar] [CrossRef]
- Landsat 7 Science Data Users Handbook. Technical Report; U.S. Geological Survey, 1998. Available online: http://landsathandbook.gsfc.nasa.gov (accessed on 1 August 2016).
- Hulley, G.C.; Hook, S.J.; Abbott, E.; Malakar, N.; Islam, T.; Abrams, M. The ASTER Global Emissivity Dataset (ASTER GED): Mapping Earth’s emissivity at 100 m spatial scale. Geophys. Res. Lett. 2015, 42, 7966–7976. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Kahle, A.B.; Tsu, H.; Kawakami, T.; Pniel, M. Overview of advanced spaceborne thermal emission and reflection radiometer (ASTER). IEEE Trans. Geosci. Remote Sens. 1998, 36, 1062–1071. [Google Scholar] [CrossRef]
- Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, C.J.; Hook, S.; Kahle, A.B. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Bernstein, L.S.; Muratov, L.; Lee, J.; Fox, M.; Adler-Golden, S.M.; Chetwynd, J.H., Jr.; Hoke, M.L.; et al. MODTRAN5: 2006 update. Proc. SPIE 2006. [Google Scholar] [CrossRef]
- Barsi, J.A.; Schott, J.R.; Palluconi, F.D.; Hook, S.J. Validation of a web-based atmospheric correction tool for single thermal band instruments. Proc. SPIE 2005. [Google Scholar] [CrossRef]
- Pérez-Planells, L.; García-Santos, V.; Caselles, V. Comparing different profiles to characterize the atmosphere for three MODIS TIR bands. Atmos. Res. 2015, 161–162, 108–115. [Google Scholar] [CrossRef]
- Wan, Z.; Dozier, J. A generalised split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar]
- Wan, Z.; Li, Z.L. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 980–996. [Google Scholar]
- Hulley, G.; Hook, S.; Hughes, C. MODIS MOD21 Land Surface Temperature and Emissivity Algorithm Theoretical Basis Document; Jet Propulsion Laboratory Publications: Pasadena, CA, USA, 2012. [Google Scholar]
- Tonooka, H. Accurate atmospheric correction of ASTER thermal infrared imagery using the WVS method. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2778–2792. [Google Scholar] [CrossRef]
- Wan, Z.; Zhang, Y.; Zhang, Y.Q.; Li, Z.L. Validation of the Land Surface Temperature products retrieved from Moderate Resolution Imaging Spectroradiometer data. Remote Sens. Environ. 2002, 83, 163–180. [Google Scholar] [CrossRef]
- Hook, S.J.; Vaughan, R.G.; Tonooka, H. Absolute radiometric in-flight validation of mid infrared and thermal infrared data from ASTER and MODIS on the Terra spacecraft using the Lake Tahoe, CA/NV, USA, Automated Validation Site. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1798–1807. [Google Scholar] [CrossRef]
- Coll, C.; Wan, Z.; Galve, J.M. Temperature-based and radiance-based validations of the V5 MODIS Land Surface Temperature product. J. Geophys. Res. 2009, 114, 1–15. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J. Intercomparison of Versions 4, 4.1 and 5 of the MODIS land surface temperature and emissivity products and validation with laboratory measurements of sand samples from the Namib Desert, Namibia. Remote Sens. Environ. 2009, 113, 1313–1318. [Google Scholar] [CrossRef]
- Wan, Z. New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products. Remote Sens. Environ. 2008, 112, 59–74. [Google Scholar] [CrossRef]
- Snyder, W.C.; Wan, Z.; Zhang, Y.; Feng, Y.Z. Classification-based emissivity for Land Surface Temperature measurement from space. J. Remote Sens. 1998, 19, 2753–2774. [Google Scholar] [CrossRef]
- Vlassova, L.; Perez-Cabello, F.; Nieto, H.; Martín, P.; Riano, D.; de la Riva, J. Assessment of methods for Land Surface Temperature retrieval from Landsat-5 TM images applicable to multiscale tree-grass ecosystem modeling. Remote Sens. 2014, 6, 4345–4368. [Google Scholar] [CrossRef]
- Jiménez, M.A.; Cuxart, J. Study of the probability density functions from a large-eddy simulation for a stably stratified boundary layer. Bound. Layer Meteorol. 2006, 118, 401–420. [Google Scholar] [CrossRef]
Sensor | Surface Type | Radiometer | RMSE (K) | Bias (K) | Referenece |
---|---|---|---|---|---|
MODIS | Bare soil | 8–14 μm broadband (×1, handheld) | 1.1 | – | [12] |
Shrubland | 8–14 μm broadband (×1) | 2.7 | 0.8 | [13] | |
Rice crop | 1.8 | 0.1 | |||
Oak woodlan | 8–14 μm broadband (×3) | 2.4 (3.2) | 1.5 (2.7) | [14] | |
Seed corn, roads and buildings | 8–14 μm broadband (×7) | – | (15%) [53%] < 1 K (42%) > 3 K | [22] | |
5–50 μm 4 component (×1) | – | (33%) [57%] < 1 K (15%) > 3 K | |||
Rice crop | multispectral (×4) 8–14 μm broadband (×2) | 0.6 * | 0.1 * | [15] | |
Grassland and hardwood deciduous forest | 8–14 μm broadband (×3) | 2.8 (3.1) | 0.6 (1.8) | [16] | |
Grassland, crops, asphalt, wet regions | 5–50 μm 4 component (×1) | (4.2) | (3.2) | [cw] | |
ETM+ | Rice crop | multispectral (×3) | (1.1) | 0 | [17] |
Soybean and corn crops | 8–14 μm broadband (×12) | (1.2) | – | [18] | |
Grassland, crops, asphalt, wet regions | 5–50 μm 4 component (×1) | (1.7) | (−0.5) | [cw] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simó, G.; García-Santos, V.; Jiménez, M.A.; Martínez-Villagrasa, D.; Picos, R.; Caselles, V.; Cuxart, J. Landsat and Local Land Surface Temperatures in a Heterogeneous Terrain Compared to MODIS Values. Remote Sens. 2016, 8, 849. https://doi.org/10.3390/rs8100849
Simó G, García-Santos V, Jiménez MA, Martínez-Villagrasa D, Picos R, Caselles V, Cuxart J. Landsat and Local Land Surface Temperatures in a Heterogeneous Terrain Compared to MODIS Values. Remote Sensing. 2016; 8(10):849. https://doi.org/10.3390/rs8100849
Chicago/Turabian StyleSimó, Gemma, Vicente García-Santos, Maria A. Jiménez, Daniel Martínez-Villagrasa, Rodrigo Picos, Vicente Caselles, and Joan Cuxart. 2016. "Landsat and Local Land Surface Temperatures in a Heterogeneous Terrain Compared to MODIS Values" Remote Sensing 8, no. 10: 849. https://doi.org/10.3390/rs8100849
APA StyleSimó, G., García-Santos, V., Jiménez, M. A., Martínez-Villagrasa, D., Picos, R., Caselles, V., & Cuxart, J. (2016). Landsat and Local Land Surface Temperatures in a Heterogeneous Terrain Compared to MODIS Values. Remote Sensing, 8(10), 849. https://doi.org/10.3390/rs8100849