Rodríguez-Fernández, N.J.; Kerr, Y.H.; Van der Schalie, R.; Al-Yaari, A.; Wigneron, J.-P.; De Jeu, R.; Richaume, P.; Dutra, E.; Mialon, A.; Drusch, M.
Long Term Global Surface Soil Moisture Fields Using an SMOS-Trained Neural Network Applied to AMSR-E Data. Remote Sens. 2016, 8, 959.
https://doi.org/10.3390/rs8110959
AMA Style
Rodríguez-Fernández NJ, Kerr YH, Van der Schalie R, Al-Yaari A, Wigneron J-P, De Jeu R, Richaume P, Dutra E, Mialon A, Drusch M.
Long Term Global Surface Soil Moisture Fields Using an SMOS-Trained Neural Network Applied to AMSR-E Data. Remote Sensing. 2016; 8(11):959.
https://doi.org/10.3390/rs8110959
Chicago/Turabian Style
Rodríguez-Fernández, Nemesio J., Yann H. Kerr, Robin Van der Schalie, Amen Al-Yaari, Jean-Pierre Wigneron, Richard De Jeu, Philippe Richaume, Emanuel Dutra, Arnaud Mialon, and Matthias Drusch.
2016. "Long Term Global Surface Soil Moisture Fields Using an SMOS-Trained Neural Network Applied to AMSR-E Data" Remote Sensing 8, no. 11: 959.
https://doi.org/10.3390/rs8110959
APA Style
Rodríguez-Fernández, N. J., Kerr, Y. H., Van der Schalie, R., Al-Yaari, A., Wigneron, J. -P., De Jeu, R., Richaume, P., Dutra, E., Mialon, A., & Drusch, M.
(2016). Long Term Global Surface Soil Moisture Fields Using an SMOS-Trained Neural Network Applied to AMSR-E Data. Remote Sensing, 8(11), 959.
https://doi.org/10.3390/rs8110959