Madagascar’s Mangroves: Quantifying Nation-Wide and Ecosystem Specific Dynamics, and Detailed Contemporary Mapping of Distinct Ecosystems
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Area
2.2. Inventory and Comparison of Existing Data-Sets
2.3. National-Level Mangrove Distribution and Dynamics; Ecosystem-Level Dynamics
2.4. AOI-Specific Ecosystem-Level Mapping
2.4.1. Acquisition and Pre-Processing of Remotely Sensed Data
AOI | Sensor | Date | Path/row | Tide (m) |
---|---|---|---|---|
AAB | Landsat 7 (L7) ETM | 09/06/2010 | 159/69 | 1.9 |
MHJ | Landsat 5 (L5) TM | 29/07/2011 | 160/71 | 1.7 |
TMD | Landsat 8 (L8) OLI | 28/07/2014 | 161/73; 161/74 | 1.5 |
BdA | Landsat 8 (L8) OLI | 23/04/2014 | 161/75 | 2.3 |
2.4.2. Initial Mapping; Definition and Refinement of Mangrove and Surrounding Land-Cover Categories
Area | Class | Description | Calibration | Validation | Total |
---|---|---|---|---|---|
AAB | Savannah | Dry grass, exposed soil, extremely sparse trees/shrubs | 10 | 6 | 16 |
Woodland | Dry grass and scattered trees/shrubs; canopy <30% closed | 8 | 6 | 14 | |
Active cultivation | Dominated by pre-harvest agriculture (e.g., rice; sugar cane) | 10 | 6 | 16 | |
Closed-canopy terrestrial forest | Stands of trees with well-formed canopies >60% closed | 12 | 6 | 18 | |
Open-canopy terrestrial forest | Stands of trees/shrubs with canopies 30%–60% closed | 8 | 6 | 14 | |
Closed-canopy mangrove | Tall, mature stands; canopy >60% closed | 20 | 10 | 30 | |
Open-canopy mangrove I | Short-medium stands of trees/shrubs; canopy 30%–60% closed; moderately influenced by background soil/mud | 15 | 9 | 24 | |
Open-canopy mangrove II | Stunted/short stands, shrub-dominant, very sparse; canopy ≥10% closed | 11 | 6 | 17 | |
Deforested mangrove | Mosaic of stumps, scattered trees; canopy <30% closed | 8 | 6 | 14 | |
Exposed soil | Inactive agri/aquacultural fields; extremely patchy savannah; extremely dry mud-flats | 10 | 5 | 15 | |
Exposed mud | Mangrove/ocean interface; river sediment; wet mud-flats | 8 | 5 | 13 | |
Total | 120 | 71 | 191 | ||
MHJ | Active cultivation | Dominated by pre-harvest agriculture (e.g., rice) | 14 | 7 | 21 |
Closed-canopy terrestrial forest | Stands of trees with well-formed canopies >60% closed | 14 | 7 | 21 | |
Open-canopy terrestrial forest | Stands of trees/shrubs with canopies 30%–60% closed | 16 | 8 | 24 | |
Closed-canopy mangrove I | Tall, mature stands; canopy >80% closed | 22 | 10 | 32 | |
Closed-canopy mangrove II | Tall, mature stands; canopy >60% closed | 22 | 10 | 32 | |
Open-canopy mangrove I | Short-medium stands of trees/shrubs; canopy 30%–70% closed; moderately influenced by background soil/mud | 14 | 7 | 21 | |
Open-canopy mangrove II | Short-medium stands of trees/shrubs; canopy 30%–70% closed; significantly influenced by background soil/mud | 12 | 7 | 19 | |
Open-canopy mangrove III | Stunted/short stands, shrub-dominant, very sparse; canopy <30% closed | 14 | 7 | 21 | |
Exposed soil | Inactive agri/aquacultural fields; sparsely vegetated, soil-dominated areas; dry mud-flats | 21 | 10 | 31 | |
Exposed mud | Mangrove/ocean interface; river sediment; wet mud-flats; inactive aquaculture ponds | 14 | 7 | 21 | |
Total | 163 | 80 | 243 | ||
TMD | Dense mangrove | Tall, mature stands; canopy >70% closed | 16 | 6 | 22 |
Sparse mangrove | Short-medium stands of trees/shrubs; canopy 30%–70% closed; moderately influenced by background soil/mud | 12 | 5 | 17 | |
Bare type I | Exposed soil; scrub mangrove; mud-flats; fallow agriculture; patchy grass/bushland | 14 | 6 | 20 | |
Dense terrestrial forest | High-stature terrestrial trees with well-formed canopies | 12 | 6 | 18 | |
Sparse terrestrial forest | Mixed-stature terrestrial trees with relatively open canopies interspersed with wooded grassland-bushland | 10 | 5 | 15 | |
Wooded grassland-bushland | Grassland and/or bush-land | 10 | 5 | 15 | |
Active agriculture | Dominated by pre-harvest agriculture (e.g., rice) | 3 | 1 | 4 | |
Bare type II | Typically dry soil and/or sand; extremely dry patchy grass/bushland | 10 | 5 | 15 | |
Total | 87 | 39 | 126 | ||
BdA | Spiny forest | Moderate-high stature, relatively closed-canopy stands | 9 | 3 | 12 |
Barren/exposed | Dominance of rock, sand, dry soil; interspersed with sparse vegetation | 9 | 3 | 12 | |
Cultivated/degraded/woodland | Active or fallow cultivation; degraded and/or sparse terrestrial forest; woodland | 9 | 3 | 12 | |
Burnt | Areas which have recently experienced fire | 9 | 3 | 12 | |
Water dominated | Water dominant; mud-flats | 10 | 4 | 14 | |
Closed-canopy mangrove | Tall, mature stands; canopy >60% closed | 9 | 3 | 12 | |
Open-canopy mangrove I | Short-medium stands of trees/shrubs; canopy 30%–70% closed; influenced by background soil/mud | 9 | 3 | 12 | |
Open-canopy mangrove II | Stunted/short stands; shrub-dominant, very sparse; canopy <30% closed | 9 | 3 | 12 | |
Total | 73 | 25 | 98 |
2.4.3. Supervised Image Classification
3. Results and Discussion
3.1. Overview of Existing National-Level Maps and Data-Sets
3.2. Mangrove Distribution and Dynamics: 1990–2010
3.2.1. National-Level Distribution and Dynamics
3.2.2. Ecosystem-Level Dynamics
Mangrove Extent (Hectares) | |||
---|---|---|---|
Mangrove ecosystem | 1990 | 2000 | 2010 |
Mahajamba Bay (MHJ) | 27778 | 27577 | 26677 |
Ambaro-Ambanja Bays (AAB) | 32328 | 30321 | 25664 |
Tsiribihina and Manambolo Deltas (TMD) | 32854 | 24651 | 20242 |
Antsohihy | 17081 | 16065 | 13838 |
Tambohorano | 21140 | 12781 | 13418 |
Sahamalaza | 12107 | 11063 | 10956 |
Mahavavy su Sud | 10615 | 10870 | 10654 |
Mahajanga | 12375 | 11814 | 9574 |
Mangoky | 14684 | 12247 | 9431 |
Morondava-Bosy | 8743 | 7500 | 6123 |
Kamendriky-Tsilambana | 6102 | 6102 | 5924 |
Mahabo-Andramy | 4721 | 5939 | 5905 |
Maintirano | 8937 | 4644 | 5900 |
Boeny | 3870 | 3888 | 3867 |
Baly-Soalala | 3687 | 3683 | 3507 |
Besalampy | 6247 | 5097 | 3287 |
Rigny-Irody | 3224 | 3232 | 3231 |
Morombe | 3652 | 2952 | 3035 |
Mariarano | 2472 | 2412 | 2330 |
Narinda | 2249 | 2058 | 2036 |
Sohany | 2470 | 1984 | 2025 |
Belo sur Mer | 2603 | 2387 | 1917 |
Vilamatsa | 1881 | 1881 | 1847 |
Kabatomena | 2458 | 1882 | 1529 |
Reharaka | 2229 | 1528 | 1406 |
Baie des Assassins (BdA) | 1723 | 1301 | 1362 |
Manampatra | 1405 | 1404 | 1327 |
Morovasa | 1253 | 1199 | 1199 |
Mangolovo | 1415 | 981 | 1172 |
Ambondrombe | 1462 | 1349 | 1109 |
Total | 253,765 | 220,792 | 200,492 |
3.3. AOI-Specific Ecosystem-Level Mapping Results
3.3.1. Spectral Separability and Classification Results
(a) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Area: | Class: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Total | User’s (%) | Commission (%) | ||
AAB: | Savannah (1) | 54 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 58 | 93 | 7 | ||
Woodland (2) | 0 | 39 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 39 | 100 | 0 | |||
Active cultivation (3) | 0 | 0 | 51 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 51 | 100 | 0 | |||
Closed-canopy terrestrial forest (4) | 0 | 0 | 0 | 54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 54 | 100 | 0 | |||
Open-canopy terrestrial forest (5) | 0 | 4 | 0 | 0 | 54 | 0 | 0 | 0 | 0 | 0 | 0 | 58 | 93 | 7 | |||
Closed-canopy mangrove (6) | 0 | 0 | 0 | 0 | 0 | 79 | 9 | 0 | 0 | 0 | 0 | 88 | 90 | 10 | |||
Open-canopy mangrove I (7) | 0 | 0 | 0 | 0 | 0 | 11 | 72 | 0 | 2 | 0 | 0 | 85 | 85 | 15 | |||
Open-canopy mangrove II (8) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 52 | 0 | 0 | 0 | 52 | 100 | 0 | |||
Deforested mangrove (9) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 60 | 0 | 0 | 60 | 100 | 0 | |||
Exposed soil (10) | 0 | 8 | 3 | 0 | 0 | 0 | 0 | 2 | 1 | 53 | 0 | 67 | 79 | 21 | |||
Exposed mud (11) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 54 | 54 | 100 | 0 | |||
Total | 54 | 54 | 54 | 54 | 54 | 90 | 81 | 54 | 63 | 54 | 54 | 666 | |||||
Producer’s (%) | 100 | 72 | 94 | 100 | 100 | 88 | 89 | 96 | 95 | 98 | 100 | Overall Accuracy = 93.4% | |||||
Omission (%) | 0 | 28 | 6 | 0 | 0 | 12 | 11 | 4 | 5 | 2 | 0 | Kappa = 0.9 | |||||
(b) | |||||||||||||||||
Area: | Class: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Total | User’s (%) | Commission (%) | |||
MHJ: | Active cultivation (1) | 63 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 63 | 100 | 0 | |||
Closed-canopy terrestrial forest (2) | 0 | 62 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 62 | 100 | 0 | ||||
Open-canopy terrestrial forest (3) | 0 | 1 | 72 | 0 | 0 | 3 | 0 | 1 | 0 | 0 | 77 | 94 | 6 | ||||
Closed-canopy mangrove I (4) | 0 | 0 | 0 | 90 | 2 | 0 | 0 | 0 | 0 | 0 | 92 | 98 | 2 | ||||
Closed-canopy mangrove II (5) | 0 | 0 | 0 | 0 | 88 | 0 | 0 | 0 | 0 | 0 | 88 | 100 | 0 | ||||
Open-canopy mangrove I (6) | 0 | 0 | 0 | 0 | 0 | 60 | 0 | 0 | 0 | 0 | 60 | 100 | 0 | ||||
Open-canopy mangrove II (7) | 0 | 0 | 0 | 0 | 0 | 0 | 60 | 0 | 0 | 0 | 60 | 100 | 0 | ||||
Open-canopy mangrove III (8) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 62 | 0 | 0 | 62 | 100 | 0 | ||||
Exposed soil (9) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 90 | 100 | 0 | ||||
Exposed mud (10) | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 63 | 66 | 95 | 5 | ||||
Total | 63 | 63 | 72 | 90 | 90 | 63 | 63 | 63 | 90 | 63 | 720 | ||||||
Producer’s (%) | 100 | 98 | 100 | 100 | 98 | 95 | 95 | 98 | 100 | 100 | Overall Accuracy = 98.6% | ||||||
Omission (%) | 0 | 2 | 0 | 0 | 2 | 5 | 5 | 2 | 0 | 0 | Kappa = 0.9 | ||||||
(c) | |||||||||||||||||
Area: | Class: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Total | User’s (%) | Commission (%) | |||||
TMD: | Dense mangrove (1) | 54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 54 | 100 | 0 | |||||
Sparse mangrove (2) | 0 | 45 | 0 | 0 | 0 | 0 | 0 | 0 | 45 | 100 | 0 | ||||||
Bare type I (3) | 0 | 0 | 52 | 0 | 0 | 0 | 0 | 0 | 52 | 100 | 0 | ||||||
Dense forest (4) | 0 | 0 | 0 | 54 | 0 | 0 | 0 | 0 | 54 | 100 | 0 | ||||||
Sparse forest (5) | 0 | 0 | 0 | 0 | 45 | 0 | 0 | 0 | 45 | 100 | 0 | ||||||
Wooded grassland-bushland (6) | 0 | 0 | 0 | 0 | 0 | 45 | 0 | 0 | 45 | 100 | 0 | ||||||
Active agriculture (7) | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 9 | 100 | 0 | ||||||
Bare type II (8) | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 48 | 50 | 96 | 4 | ||||||
Total | 54 | 45 | 54 | 54 | 45 | 45 | 9 | 48 | 354 | ||||||||
Producer’s (%) | 100 | 100 | 96 | 100 | 100 | 100 | 100 | 100 | Overall Accuracy = 99.4% | ||||||||
Omission (%) | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | Kappa = 0.99 | ||||||||
(d) | |||||||||||||||||
Area: | Class: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Total | User’s (%) | Commission (%) | |||||
BdA: | Spiny forest (1) | 27 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 27 | 100 | 0 | |||||
Barren/exposed (2) | 0 | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 30 | 100 | 0 | ||||||
Cultivated/degraded/woodland (3) | 0 | 0 | 27 | 0 | 0 | 0 | 0 | 0 | 27 | 100 | 0 | ||||||
Burnt (4) | 0 | 0 | 0 | 27 | 0 | 0 | 0 | 0 | 27 | 100 | 0 | ||||||
Water dominated (5) | 0 | 0 | 0 | 0 | 42 | 0 | 0 | 0 | 42 | 100 | 0 | ||||||
Closed-canopy mangrove (6) | 0 | 0 | 0 | 0 | 0 | 27 | 0 | 0 | 27 | 100 | 0 | ||||||
Open-canopy mangrove I (7) | 0 | 0 | 0 | 0 | 0 | 0 | 27 | 0 | 27 | 100 | 0 | ||||||
Open-canopy mangrove II (8) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 27 | 27 | 100 | 0 | ||||||
Total | 27 | 30 | 27 | 27 | 42 | 27 | 27 | 27 | 234 | ||||||||
Producer’s (%) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | Overall Accuracy = 100 | ||||||||
Omission (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Kappa = 1 |
3.3.2. Application of Mapping Results
Class | Code | Description | Species Dominance | N | Average Tree Height (m) | Average dbh (cm) | Average Number of Trees (ha−1) |
---|---|---|---|---|---|---|---|
(a) Ambaro-Ambanja Bays (AAB) | |||||||
Closed-canopy mangrove | CC | Intact, tall, mature stands | A. marina | 1 | 8.6 | 14.9 | 1250 |
C. tagal | 3 | 7.3 (± 1.2) | 10.1 (± 0.5) | 2625 (± 318) | |||
R. mucronata | 14 | 7.0 (± 1.3) | 10.1 (± 3.0) | 4719 (± 1133) | |||
S. alba | 1 | 5.6 | 10.6 | 5300 | |||
Mixed species | 2 | 6.7 (± 1.6) | 11.3 (± 2.5) | 1825 (± 248) | |||
Very dense medium-tall stands | R. mucronata | 2 | 4.8 (+ 0.1) | 7.8 (± 1.1) | 5600 (± 1838) | ||
Open-canopy mangrove I | OC I | Medium stands | C. tagal | 7 | 4.6 (± 0.8) | 7.5 (± 1.6) | 3300 (± 8.49) |
R. mucronata | 6 | 4.2 (± 0.6) | 7.3 (± 1.3) | 2160 (± 498) | |||
Mixed species | 2 | 4.8 (± 0.1) | 9.5 (± 2.0) | 1800 (± 141) | |||
Naturally open/very degraded tall | Mixed species | 4 | 5.7 (± 0.3) | 10.1 (± 1.2) | 1525 (± 35) | ||
very dense short stands | C. tagal | 5 | 2.5 (± 0.3) | 5.1 (± 0.9) | 2780 (± 750) | ||
Open-canopy mangrove II | OC II | Stunted, scrub ecosystems | A. marina | 4 | 1.7 (± 0.5) | 4.6 (± 0.2) | 1306 (± 554) |
(b) Mahajamba Bay (MHJ) | |||||||
Closed-canopy mangrove I | CC I | Tall, mature stands; canopy >80% closed | A. marina | 7 | 10.24 (± 0.52) | 13.68 (± 1.01) | 1571 (± 255) |
R. mucronata | 2 | 5.62 (± 0.55) | 7.27 (± 1.69) | 4900 (± 1500) | |||
S. alba | 1 | 9.39 | 8.31 | 5100 | |||
Mixed species | 3 | 12.48 (± 1.40) | 18.18 (± 1.56) | 1108 (± 208) | |||
Closed-canopy mangrove II | CC II | Tall mature stands; canopy >60% closed | A. marina | 10 | 7.68 (± 0.56) | 12.95 (± 1.26) | 895 (± 102) |
Mixed species | 2 | 7.74 (± 0.04) | 12.45 (± 0.08) | 1412 (± 12) | |||
Open-canopy mangrove I | OC I | Short-medium stands; canopy 30%–70% closed; moderately influenced by background soil/mud | A. marina | 6 | 3.32 (± 0.16) | 4.85 (± 0.43) | 1417 (± 226) |
R. mucronata | 1 | 3.21 | 7.39 | 2200 | |||
X. granatum | 1 | 5.41 | 10.84 | 1300 | |||
Mixed species | 5 | 4.33 (± 0.44) | 7.62 (± 0.86) | 1185 (± 237) | |||
Open-canopy mangrove II | OC II | Short-medium stands; canopy 30%–70% closed; significantly influenced by background soil/mud | C. tagal | 2 | 3.39 (± 0.18) | 6.18 (± 0.12) | 963 (± 238) |
R. mucronata | 4 | 4.63 (± 0.30) | 7.85 (± 1.66) | 1388 (± 449) | |||
Open-canopy mangrove III | OC III | Stunted, short stands, very sparse; canopy < 30% closed; dominated by exposed soil/mud | A. marina | 7 | 2.31 (± 0.17) | 3.96 (± 0.18) | 1089 (±134) |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lugo, A.E.; Snedaker, S.C. The ecology of mangroves. Annu. Rev. Ecol. Syst. 1974, 5, 39–64. [Google Scholar] [CrossRef]
- Blasco, F.; Bellan, M.F.; Chaudhury, M.U. Estimating the extent of floods in Bangladesh—Using SPOT data. Remote Sens. Environ. 1992, 39, 167–178. [Google Scholar] [CrossRef]
- Marshall, N. Mangrove conservation in relation to overall environmental considerations. Hydrobiologia 1994, 285, 303–309. [Google Scholar] [CrossRef]
- Primavera, J.H. Socio-economic impacts of shrimp culture. Aquac. Res. 1997, 28, 815–827. [Google Scholar] [CrossRef]
- Kathiresan, K.; Bingham, B. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 2001, 40, 81–251. [Google Scholar]
- Alongi, D.M. Present state and future of world’s mangrove forest. Environ. Conserv. 2002, 29, 331–349. [Google Scholar] [CrossRef]
- Mumby, P.J.; Edwards, A.J.; Arias-Gonzáles, E.; Lindeman, K.C.; Blackwell, P.G.; Gall, A.; Gorczynska, M.I.; Harborne, A.R.; Pescod, C.L.; Renken, H.; et al. Mangrove enhance the biomass of coral reef fish communities in the Caribbean. Nature 2004, 427, 533–536. [Google Scholar] [CrossRef] [PubMed]
- Dahdouh-Guebas, F.; Jayatissa, L.P.; di Nitto, D.; Bosire, J.O.; Lo Seen, D.; Koedam, N. How effective were mangroves as a defence against the recent tsunami? Curr. Biol. 2005, 15, R443–R447. [Google Scholar] [CrossRef] [PubMed]
- Barbier, E.B. Natural barriers to natural disasters: Replanting mangroves after tsunami. Front. Ecol. Environ. 2006, 4, 124–131. [Google Scholar] [CrossRef]
- Food and Agricultural Organization (FAO). The World’s Mangroves 1980–2005; FAO Forestry Paper 153; FAO: Rome, Italy, 2007. [Google Scholar]
- Alongi, D.M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 2008, 76, 1–13. [Google Scholar] [CrossRef]
- Nagelkerken, I.; Blaber, S.J.; Bouillon, S.; Green, P.; Haywood, M.; Kirton, L.G.; Meynecke, J.-O.; Pawlik, J.; Penrose, H.M.; Sasekumar, A.; et al. The habit function of mangroves for terrestrial and marine fauna: A review. Aquat. Bot. 2008, 89, 155–185. [Google Scholar] [CrossRef]
- Alongi, D.M. Carbon payments for mangrove conservation: Ecosystem constraints and uncertainties of sequestration potential. Environ. Sci. Policy 2011, 14, 462–470. [Google Scholar] [CrossRef]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kumianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Kuezner, C.; Bluemel, A.; Gebhardt, S.; Quoc, T.V.; Dech, S. Remote sensing of mangrove ecosystems: A review. Remote Sens. 2011, 3, 878–928. [Google Scholar]
- Pendleton, L.; Donato, D.C.; Murray, B.C.; Crooks, S.; Jenkins, W.A.; Sifleet, S.; Craft, C.; Fourqurean, J.W.; Kauffman, J.B.; Marba, N.; et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 2012, 7, e43542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kauffman, J.B.; Heider, C.; Norfolk, J.; Payton, F. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecol. Appl. 2014, 24, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Thompson, B.S.; Clubbe, C.P.; Primavera, J.H.; Curnick, D.; Koldeway, H.J. Locally assessing the economic viability of blue carbon: A case study from Panay Island, the Philippines. Ecosyst. Serv. 2014, 8, 128–140. [Google Scholar] [CrossRef]
- Giri, C.; Long, J.; Abbas, S.; Mani Murali, R.; Qamer, F.M.; Pengra, B.; Thau, D. Distribution and dynamics of mangrove forests of South Asia. J. Environ. Manag. 2015, 148, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Huxham, M.; Emerton, L.; Kairo, J.; Munyi, F.; Abdirizak, H.; Muriuki, T.; Nunan, F.; Briers, R.A. Applying Climate Compatible Development and economic valuation to coastal management: A case study of Kenya’s mangrove forests. J. Environ. Manag. 2015, 157, 168–181. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, J.B.; Heider, C.; Cole, T.G.; Dwire, K.A.; Donato, D.C. Ecosystem carbon stocks of Micronesian mangrove forests. Wetlands 2011, 31, 343–352. [Google Scholar] [CrossRef]
- Adame, M.F.; Kauffman, J.B.; Medina, I.; Gamboa, J.N.; Torres, O.; Caamal, J.P.; Reza, M.; Herrera-Silveira, J.A. Carbon stocks of tropical coastal wetlands within the Karstic landscape of the Mexican Caribbean. PLoS ONE 2013, 8, e56569. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Dongsheng, G.; Peart, M.R.; Chen, Y.; Peng, Y. Ecosystem carbon stocks of mangrove forest in Yingluo Bay, Guangdon Province of South China. For. Ecol. Manag. 2013, 310, 539–546. [Google Scholar] [CrossRef]
- Kauffman, J.B.; Donato, D.C. Protocols for the Measurement, Monitoring and Reporting of Structure, Biomass and Carbon Stocks in Mangrove Forests; Working Paper 86; CIFOR: Bogor, Indonesia, 2012. [Google Scholar]
- Jones, T.G.; Ratsimba, H.R.; Ravaoarinorotsihoarana, L.; Cripps, G.; Bey, A. Ecological Variability and Carbon Stock Estimates of Mangrove Ecosystems in Northwestern Madagascar. Forests 2014, 5, 177–205. [Google Scholar] [CrossRef]
- Valiela, I.; Bowen, J.L.; York, J.K. Mangrove forests: One of the world’s threatened major tropical environments. Bioscience 2001, 51, 807–815. [Google Scholar] [CrossRef]
- Duke, N.C.; Meynecke, J.O.; Dittmann, S.; Ellison, A.M.; Anger, K.; Berger, U.; Cannicci, S.; Diele, K.; Ewel, K.C.; Field, C.D.; et al. A world without mangroves? Science 2007, 317, 41–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spalding, M.; Kainuma, M.; Collins, L. World Atlas of Mangroves; Earthscan: London, UK, 2010. [Google Scholar]
- Friess, D.A.; Webb, E.L. Variability in mangrove change estimates and implications for the assessment of ecosystem provision. Glob. Ecol. Biogeogr. 2013, 23, 715–725. [Google Scholar] [CrossRef]
- Alongi, D.M. The Impact of Climate Change on Mangrove Forests. Curr. Clim. Chang. Rep. 2015, 1, 30–39. [Google Scholar] [CrossRef]
- Farnsworth, E.J.; Ellison, A.M. The global conservation status of mangroves. Ambio 1997, 26, 328–334. [Google Scholar]
- Primavera, J.H. Development and conservation of Philippine mangroves: Institutional issues. Ecol. Econ. 2000, 35, 91–106. [Google Scholar] [CrossRef]
- Dahdouh-Guebas, F. The use of remote sensing and GIS in the sustainable management of tropical coastal ecosystems. Environ. Dev. Sustain. 2002, 4, 93–112. [Google Scholar] [CrossRef]
- Primavera, J.H. Mangroves, fishponds, and the quest for sustainability. Science 2005, 310, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Gopal, B.; Chauhan, M. Biodiversity and its conservation in the Sundarban Mangrove Ecosystem. Aquat. Sci. 2006, 68, 338–354. [Google Scholar] [CrossRef]
- Primavera, J.H. Overcoming the impacts of aquaculture on the coastal zone. Ocean Coast. Manag. 2006, 49, 531–545. [Google Scholar] [CrossRef]
- Gilman, E.L.; Ellison, J.; Duke, N.C.; Field, C. Threats to mangroves from climate change and adaptation options: A review. Aquat. Bot. 2008, 89, 237–250. [Google Scholar] [CrossRef]
- Walters, B.B.; Rönnbäck, P.; Kovacs, J.M.; Crona, B.; Hussain, S.A.; Badola, R.; Primavera, J.H.; Barbier, E.; Dahdouh-Guebas, F. Ethnobiology, socio-economics and management of mangrove forests: A review. Aquat. Bot. 2008, 89, 220–236. [Google Scholar] [CrossRef]
- Webb, E.L.; Jachowski, N.R.A.; Phelps, J.; Friess, D.A.; Than, M.M.; Ziegler, A.D. Deforestation in the Ayeyarwady Delta and the conservation implications of an internationally-engaged Myanmar. Glob. Environ. Chang. 2014, 24, 321–333. [Google Scholar] [CrossRef]
- Sitoe, A.A.; Mandlate, L.J.C.; Guedes, B.S. Biomass and Carbon Stocks of Sofala Bay Mangrove Forests. Forests 2014, 5, 1967–1981. [Google Scholar] [CrossRef]
- Field, C.D. Impact of expected climate change on mangroves. Hydrobiologia 1995, 295, 75–81. [Google Scholar] [CrossRef]
- Krauss, K.W.; Lovelock, C.E.; McKee, K.L.; Lopez-Hoffman, L.; Ewe, S.M.L.; Sousa, W.P. Environmental drivers in mangrove establishment and early development: A review. Aquat. Bot. 2008, 89, 105–127. [Google Scholar] [CrossRef]
- Chan, H.T.; Baba, S. Manual on Guidelines for Rehabilitation of Coastal Forests Damaged by Natural Hazards in the Asia-Pacific Region; International Society for Mangrove Ecosystems (ISME) and International Tropical Timber Organization (ITTO): Okinawa, Japan, 2009; p. 66. [Google Scholar]
- Suzuki, T.; Zijlema, M.; Burger, B.; Meijer, M.C.; Narayan, S. Wave dissipation by vegetation with layer schematization in SWAN. Coast. Eng. 2012, 59, 64–71. [Google Scholar] [CrossRef]
- Di Nitto, D.; Neukermans, G.; Koedman, N.; Defever, H.; Pattyn, F.; Kairo, J.G.; Dahdouh-Guebas, F. Mangroves facing climate change: Landward migration potential in response to projected scenarios of sea level rise. Biogeosciences 2014, 11, 857–871. [Google Scholar] [CrossRef]
- Polidoro, B.A.; Carpenter, K.E.; Collins, L.; Duke, N.C.; Ellison, A.M.; Ellison, J.C.; Farnsworth, E.J.; Fernando, E.S.; Kathiresan, K.; Koedam, N.E.; et al. Mangrove extinction risk and geographic areas of global concern. PLoS ONE 2010, 5, e10095. [Google Scholar] [CrossRef] [PubMed]
- Daru, B.H.; Yessoufou, K.; Mankga, L.T.; Davies, J. A Global Trend towards the Loss of Evolutionarily Unique Species in Mangrove Ecosystems. PLoS ONE 2013, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Heumann, B.W. Satellite remote sensing of mangrove forests: Recent advances and future opportunities. Prog. Phys. Geogr. 2011, 35, 87–108. [Google Scholar] [CrossRef]
- Manson, F.J.; Loneragan, N.R.; McLeod, I.M.; Kenyon, R.A. Assessing techniques for estimating the extent of mangroves: Topographic maps, aerial photographs, and Landsat TM images. Mar. Freshw. Res. 2001, 52, 787–792. [Google Scholar] [CrossRef]
- Ruiz-Luna, A.; Berlanga-Robles, C.A. Land use, land cover changes and coastal lagoon surface reduction associated with urban growth in northwest Mexico. Landsc. Ecol. 2003, 18, 159–171. [Google Scholar] [CrossRef]
- Cornejo, R.H.; Koedam, N.; Luna, A.R.; Troell, M.; Dahdouh-Guebas, F. Remote sensing and ethno-botanical assessment of the mangrove forest changes in the Navachiste-San Ignacio-Macapule lagoon complex, Sinaloa, Mexico. Ecol. Soc. 2005, 10, 16. [Google Scholar]
- Beland, M.; Goita, K.; Bonn, F.; Pham, T.T.H. Assessment of land-cover changes related to shrimp aquaculture using remote sensing data: A case study in the Giao Thuy District, Vietnam. Int. J. Remote Sens. 2006, 27, 1491–1510. [Google Scholar] [CrossRef]
- Giri, C.; Pengra, B.; Zhu, Z.L.; Singh, A.; Tieszen, L.L. Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuar. Coast. Shelf Sci. 2007, 73, 91–100. [Google Scholar] [CrossRef]
- Giri, C.; Zhu, Z.; Tieszen, L.L.; Singh, A.; Gillette, S.; Kelmelis, J.A. Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia. J. Biogeogr. 2008, 35, 519–528. [Google Scholar] [CrossRef]
- Liu, K.; Li, X.; Shi, X.; Wang, S.G. Monitoring mangrove forest changes using remote sensing and GIS data with decision-tree learning. Wetlands 2008, 28, 336–346. [Google Scholar] [CrossRef]
- Paling, E.I.; Kobryn, H.T.; Humphreys, G. Assessing the extent of mangrove change caused by Cyclone Vance in the eastern Exmouth Gulf, northwestern Australia. Estuar. Coast. Shelf Sci. 2008, 77, 603–613. [Google Scholar] [CrossRef]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Alsaaideh, B.; Al-Hanbali, A.; Tateishi, R.; KoBayashi, T.; Hoan, N.T. Mangrove forests mapping in the southern part of Japan using Landsat ETM+ with DEM. J. Geogr. Inf. Syst. 2013, 5, 369–377. [Google Scholar] [CrossRef]
- Li, M.S.; Mao, L.J.; Shen, W.J.; Liu, S.Q.; Wei, A.I. Change and fragmentation trends of Zhanjiang mangrove forests in southern China using multi-temporal Landsat imagery (1977–2010). Estuar. Coast. Shelf Sci. 2013, 130, 111–120. [Google Scholar] [CrossRef]
- Nguyen, H.; McAlpine, C.; Pullar, D.; Johansen, K.; Duke, N. The relationship of spatial-temporal changes in fringe mangrove extent and adjacent land-use: Case study of Ken Giang coast, Vietnam. Ocean Coast. Manag. 2013, 76, 12–22. [Google Scholar] [CrossRef]
- Jones, T.G.; Ratsimba, H.R.; Ravaoarinorotsihoarana, L.; Glass, L.; Benson, L.; Teoh, M.; Carro, A.; Cripps, G.; Giri, C.; Gandhi, S.; et al. The Dynamics, Ecological Variability and Estimated Carbon Stocks of Mangroves in Mahajamba Bay, Madagascar. J. Mar. Sci. Eng. 2015, 3, 793–820. [Google Scholar] [CrossRef]
- Jones, T.G.; Ratsimba, H.R.; Carro, A.; Ravaoarinorotsihoarana, L.; Glass, L.; Teoh, M.; Benson, L.; Cripps, G.; Giri, C.; Zafindrasilivonona, B.; et al. The mangroves of Ambanja and Ambaro Bays, northwest Madagascar: Historical dynamics, current status and deforestation mitigation strategy. In Estuaries: A Lifeline of Ecosystem Services in Western Indian Ocean; Diop, S., Scheren, P., Eds.; Springer International Publishing: Cham, Switzerland, 2016; in press. [Google Scholar]
- Giri, S.; Mukhopadhyay, A.; Hazra, S.; Mukherjee, S.; Roy, D.; Ghosh, S.; Ghosh, T.; Mitra, D. A study on abundance and distribution of mangrove species in Indian Sundarban using remote sensing technique. J. Coast. Conserv. 2014, 18, 359–367. [Google Scholar] [CrossRef]
- Jhonnerie, R.; Siregar, V.P.; Nababan, B.; Prasetyo, L.B.; Wouthuyzen, S. Random Forest Classification for Mangrove Land Cover Mapping Using Landsat 5 TM and Alos Palsar Imageries. Procedia Environ. Sci. 2015, 24, 215–221. [Google Scholar] [CrossRef]
- Ramdani, F.; Rahman, S.; Setiani, P. Inexpensive Method to Assess mangroves Forest through the Use of Open Source Software and Data Available Freely in Public Domain. J. Geogr. Inf. Syst. 2015, 7, 43–57. [Google Scholar] [CrossRef]
- Moffett, K.B.; Nardin, W.; Silvestri, S.; Wang, C.; Temmerman, S. multiple stable states and catastrophic shifts in coastal wetlands: Progress, challenges, and opportunities in validating theory using remote sensing and other methods. Remote Sens. 2015, 7, 10184–10226. [Google Scholar] [CrossRef]
- Nardin, W.; Locatelli, S.; Pasquarella, V.; Rulli, M.C.; Woodcock, C.E.; Fagherazzi, S. Dynamics of a fringe mangrove forest detected by Landsat images in the Mekong delta, Vietnam. Earth Surf. Process. Landf. 2015. In press. [Google Scholar]
- Giri, C.; Muhlhausen, J. Mangrove forest distributions and dynamics in Madagascar (1975–2005). Sensors 2008, 8, 2104–2117. [Google Scholar] [CrossRef]
- Giri, C. National-Level Mangrove Cover Data-Sets for 1990, 2000 and 2010; United States Geological Survey: Sioux Falls, SD, USA, 2011. [Google Scholar]
- Mayaux, P.; Gond, V.; Bartholome, E. A near-real time forest-cover map of Madagascar derived from SPOT-4 VEGETATION data. Int. J. Remote Sens. 2000, 21, 3139–3144. [Google Scholar] [CrossRef]
- Critical Ecosystem Partnership Fund (CEPF). Madagascar Vegetation Mapping Project; CEPF: Arlington, VA, USA, 2007. [Google Scholar]
- Harper, G.J.; Steininger, M.K.; Tucker, C.J.; Juhn, D.; Hawkins, F. Fifty years of deforestation and forest fragmentation in Madagascar. Environ. Conserv. 2007, 34, 325–333. [Google Scholar] [CrossRef]
- Rasolofoharinoro, M.; Blasco, F.; Bellan, M.F.; Aizpuru, M.; Gauquelin, T.; Denis, J. A remote sensing based methodology for mangrove studies in Madagascar. Int. J. Remote Sens. 1998, 19, 1873–1886. [Google Scholar] [CrossRef]
- Pasqualini, V.; Iltis, J.; Dessay, N.; Lointier, M.; Guelorget, O.; Polidori, L. Mangrove mapping in North-Western Madagascar using SPOT-XS and SIR-C radar data. Hydrobiologia 1999, 413, 127–133. [Google Scholar] [CrossRef]
- Guillet, M.; Renou, E.; Robin, M.; Debaine, F.; Ratsivalaka, S. Suivi et analyse de l’evolution de la mangrove de Mahajamba (Nord-ouest de Madagascar). In Proceedings of the International Pluridisciplinary Conference, Lille, France, 16–18 January 2008.
- Raharimahefa, T.; Kusky, T.M. Environmental monitoring of Bombetoka Bay and the Betsiboka Estuary, Madagascar, using multi-temporal satellite data. J. Earth Sci. 2010, 21, 210–226. [Google Scholar] [CrossRef]
- Rakotomavo, A.; Fromard, F. Dynamics of mangrove forests in the Mangoky River delta, Madagascar, under the influence of natural and human factors. For. Ecol. Manag. 2010, 259, 1161–1169. [Google Scholar] [CrossRef]
- Law No. 97–017 on the Revision of Forestry Legislation; Articles 2 & 41; Government of Madagascar (GoM): Antananarivo, Madagascar, 1997.
- Inter-Ministerial Order No. 4355/97 on the Definition of the Sensitize Areas; Articles 2 & 3; Government of Madagascar (GoM): Antananarivo, Madagascar, 1997.
- Decree No. 98–781 Defining The Conditions of Application of the National Forest Policy; Articles 34 & 35; Government of Madagascar (GoM): Antananarivo, Madagascar, 1998.
- Prohibiting Any Extractive Activity of Wood Resources in Sensitive Areas; Order No. 12.704/2000 of 20 November, 2000; Government of Madagascar (GoM): Antananarivo, Madagascar, 2000.
- Decree No. 2005–849 of 13 December 2005 Revising the General Conditions of Application of Law No. 97–017 of 8 August 1997, Revising Forestry Legislation; Government of Madagascar (GoM): Antananarivo, Madagascar, 2005; Chapter 4.
- Law No. 2008–013 on the Public Domain, Government Gazette of 2008; Article 3(a); Government of Madagascar (GoM): Antananarivo, Madagascar, 2008.
- Government of Madagascar (GoM). Order No. 2055–2009 Creating Biologically Sensitive Shrimp Zones in Zone A in Ambaro Bay; Government of Madagascar (GoM): Antananarivo, Madagascar, 2009.
- Prohibiting Any Exploitation of Mangrove Wood on the National Territory; Inter-Ministerial Order No. 32.100/2014 of 24 October, 2014; Government of Madagascar (GoM): Antananarivo, Madagascar, 2014.
- Jones, T.G. Shining a light on Madagascar’s mangroves. Madag. Conserv. Dev. 2013, 8, 4–6. [Google Scholar]
- Hughes, R.H.; Hughes, J.S. Region 6: Madagascar. In A Directory of African Wetlands, 1st ed.; IUCN: Gland, Switzerland; Cambridge, UK; UNEP: Nairboi, Kenya; WCMC: Cambridge, UK, 1992; pp. 793–806. [Google Scholar]
- Vences, M.; Andreone, F.; Glaw, F.; Raminosoa, N.; Randrianirina, J.E.; Vieites, D.R. Amphibians and reptiles of the Ankaratra Massif: Reproductive diversity, biogeography and conservation of a montane fauna in Madagascar. Ital. J. Zool. 2002, 69, 263–284. [Google Scholar] [CrossRef]
- Rasofolo, M.V. Use of mangroves by traditional fishermen in Madagascar. Mangroves Salt Marshes 1997, 1, 243–253. [Google Scholar] [CrossRef]
- Roy, R.; Purkis, S.; Dunn, S. Mapping Velondriake: The Application of Bathymetric and Marine Habitat Mapping to Support Conservation Planning, Southwest Madagascar; Blue Ventures Internal Report; Blue Ventures: London, UK, 2009. [Google Scholar]
- Tomlinson, P.B. The Botany of Mangroves; Cambridge University Press: Melbourne, Australia, 1986. [Google Scholar]
- Chavez, P.S. Image-based atmospheric corrections: Revisited and improved. Photogramm. Eng. Remote Sens. 1996, 62, 1025–1036. [Google Scholar]
- Kirui, K.B.; Kairo, J.G.; Bosire, J.; Viergever, K.M.; Rudra, S.; Huxham, M.; Briers, R.A. Mapping of mangrove forest land cover change along the Kenya coastline using Landsat imagery. Ocean Coast. Manag. 2013, 83, 19–24. [Google Scholar] [CrossRef]
- Simard, M.; Zhang, K.Q.; Rivera-Monroy, V.H.; Ross, M.S.; Ruiz, P.L.; Castaneda-Moya, E.; Twilley, R.R.; Rodriguez, E. Mapping height and biomass of mangrove forests in Everglades National Park with SRTM elevation data. Photogramm. Eng. Remote Sens. 2006, 72, 299–311. [Google Scholar] [CrossRef]
- Fatoyinbo, T.E.; Simard, M.; Washington-Allen, R.A.; Shugart, H.H. Landscape-scale extent, height, biomass, and carbon estimation of Mozambique’s mangrove forests with Landsat ETM+ and Shuttle Radar Topography Mission elevation data. J. Geophys. Res. Biogeosci. 2008, 113. [Google Scholar] [CrossRef]
- Simard, M.; Rivera-Monroy, V.H.; Mancera-Pineda, J.E.; Castaneda-Moya, E.; Twilley, R.R. A systematic method for 3D mapping of mangrove forests based on Shuttle Radar Topography Mission elevation data, ICEsat/GLAS waveforms and field data: Application to Cienaga Grande de Santa Marta, Colombia. Remote Sens. Environ. 2008, 112, 2131–2144. [Google Scholar] [CrossRef]
- Fatoyinbo, T.E.; Simard, M. Height and biomass of mangroves in Africa from ICESat/GLAS and SRTM. Int. J. Remote Sens. 2013, 34, 668–681. [Google Scholar] [CrossRef]
- Aslan, A.; Rahman, A.F.; Warren, M.; Robeson, S.M.; Darusman, T. Combined use of active and passive remote sensing for mapping distribution and biomass of coastal mangroves. In Proceeding of American Geophysical Union Fall Meeting, San Francisco, CA, USA, 15–19 Decomber 2014.
- Sinclair, T.T.; Hoffer, R.M.; Schreiber, M.M. Reflectance and internal structure of leaves from several crops during a growing season. Agron. J. 1971, 63, 864–868. [Google Scholar] [CrossRef]
- Elvidge, C.D. Visible and near-infrared reflectance characteristics of dry plant materials. Int. J. Remote Sens. 1990, 11, 1775–1795. [Google Scholar] [CrossRef]
- Bhattarai, B.; Giri, C. Assessment of mangrove forests in the Pacific region using Landsat imagery. J. Appl. Remote Sens. 2011, 5, 053509. [Google Scholar] [CrossRef]
- Long, J.B.; Giri, C. Mapping the Philippines’ mangrove forests using Landsat imagery. Sensors 2011, 11, 2972–2981. [Google Scholar] [CrossRef] [PubMed]
- Aschbacher, J.; Ofren, R.; Delsol, J.P.; Suselo, T.B.; Vibulsresth, S.; Charrupat, T. An integrated comparative approach to mangrove vegetation mapping using advanced remote sensing and GIS technologies: Preliminary results. Hydrologica 1995, 295, 285–295. [Google Scholar]
- Gao, J.A. Hybrid method toward accurate mapping of mangroves in a marginal habitat from SPOT Multispectral data. Int. J. Remote Sens. 1998, 19, 1887–1899. [Google Scholar] [CrossRef]
- Green, E.P.; Clark, C.D.; Mumby, P.J.; Edwards, A.J.; Ellis, A.C. Remote sensing techniques for mangrove mapping. Int. J. Remote Sens. 1998, 19, 935–956. [Google Scholar] [CrossRef]
- Gao, J.A. Comparative study on spatial and spectral resolutions of satellite data in mapping mangrove forests. Int. J. Remote Sens. 1999, 20, 2823–2833. [Google Scholar] [CrossRef]
- Saito, H.; Bellan, M.F.; Al-Habshi, A.; Aizpuru, M.; Blasco, F. Mangrove research and coastal ecosystem studies with SPOT-4 HRVIR and TERRA ASTER in Arabian Gulf. Int. J. Remote Sens. 2003, 24, 4073–4092. [Google Scholar] [CrossRef]
- Tong, P.H.; Auda, Y.; Populus, J.; Aizpura, M.; Habshi, A.A.; Blasco, F. Assessment from space of mangroves evolution in the Mekong Delta, in relation to extensive shrimp farming. Int. J. Remote Sens. 2004, 25, 4795–4812. [Google Scholar] [CrossRef]
- Jensen, L.S.; Mueller, T.; Tate, K.R.; Ross, D.J.; Magid, J.; Nielsen, N.E. Soil surface CO2 flux as an index of soil respiration in situ: A comparison of two chamber methods. Soil Biol. Biochem. 1996, 28, 1297–1306. [Google Scholar] [CrossRef]
- Comley, B.W.T.; McGuinness, K.A. Above- and below-ground biomass, and allometry, of four common northern Australian mangroves. Aust. J. Bot. 2005, 53, 431–436. [Google Scholar] [CrossRef]
- Curran, P.J. Remote sensing of foliar chemistry. Remote Sens. Environ. 1989, 30, 271–278. [Google Scholar] [CrossRef]
- Komiyama, A.; Poungparn, S.; Kato, S. Common allometric equations for estimate the tree weight of mangroves. J. Trop. Ecol. 2005, 21, 471–477. [Google Scholar] [CrossRef]
- Schumacher, B. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments; Ecological Risk Assessment Support Center, Office of Research and Development, US Environmental Protection Agency: Washington, DC, USA, 2002.
- De Vos, B.; Letterns, S.; Muys, B.; Deckers, J.A. Walkley-Black analysis of forest soil organic carbon: Recovery, limitations and uncertainty. Soil Use Manag. 2007, 23, 221–229. [Google Scholar] [CrossRef]
- Meersmans, J.; van Wesemael, B.; van Molle, M. Determining soil organic carbon for agricultural soils: A comparison between the Walkley & Black and the dry combustion methods (North Belgium). Soil Use Manag. 2009, 25, 346–353. [Google Scholar]
- Ray, R.; Ganguly, D.; Chowdhury, C.; Dey, M.; Das, S.; Dutta, M.K.; Mandal, S.K.; Majumder, N.; De, T.K.; Mukhopadhyay, S.K.; et al. Carbon sequestration and annual increase of carbon stock in a mangrove forest. Atmos. Environ. 2011, 45, 5016–5024. [Google Scholar] [CrossRef]
- Chen, L.; Zeng, X.; Tam, N.F.Y.; Lu, W.; Luo, Z.; Du, X.; Wang, J. Comparing carbon sequestration and stand structure of monoculture and mixed mangrove plantations of Sonneratia caseolaris and S. apetala in Southern China. For. Ecol. Manag. 2012, 284, 222–229. [Google Scholar] [CrossRef]
- Donato, D.C.; Kauffman, J.B.; Mackenzie, R.A.; Ainsworth, A.; Pfleeger, A.Z. Whole-island carbon stocks in the tropical Pacific: Implications for mangrove conservation and upland restoration. J. Environ. Manag. 2012, 97, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, K.; Imaya, A.; Tabuchi, R.; Kuramoto, S.; Utsugi, H.; Murofushi, T. Belowground C storage of Micronesian mangrove forests. Ecol. Res. 1999, 14, 409–413. [Google Scholar] [CrossRef]
- Jardine, S.L.; Siikamäki, J.V. A global predictive model of carbon in mangrove soils. Environ. Res. Lett. 2014, 9, 104013. [Google Scholar] [CrossRef]
- Liu, H.; Ren, H.; Hui, D.; Wang, W.; Liao, B.; Cao, Q. Carbon stocks and potential carbon storage in the mangrove forests of China. J. Environ. Manag. 2014, 133, 86–93. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, T.G.; Glass, L.; Gandhi, S.; Ravaoarinorotsihoarana, L.; Carro, A.; Benson, L.; Ratsimba, H.R.; Giri, C.; Randriamanatena, D.; Cripps, G. Madagascar’s Mangroves: Quantifying Nation-Wide and Ecosystem Specific Dynamics, and Detailed Contemporary Mapping of Distinct Ecosystems. Remote Sens. 2016, 8, 106. https://doi.org/10.3390/rs8020106
Jones TG, Glass L, Gandhi S, Ravaoarinorotsihoarana L, Carro A, Benson L, Ratsimba HR, Giri C, Randriamanatena D, Cripps G. Madagascar’s Mangroves: Quantifying Nation-Wide and Ecosystem Specific Dynamics, and Detailed Contemporary Mapping of Distinct Ecosystems. Remote Sensing. 2016; 8(2):106. https://doi.org/10.3390/rs8020106
Chicago/Turabian StyleJones, Trevor G., Leah Glass, Samir Gandhi, Lalao Ravaoarinorotsihoarana, Aude Carro, Lisa Benson, Harifidy Rakoto Ratsimba, Chandra Giri, Dannick Randriamanatena, and Garth Cripps. 2016. "Madagascar’s Mangroves: Quantifying Nation-Wide and Ecosystem Specific Dynamics, and Detailed Contemporary Mapping of Distinct Ecosystems" Remote Sensing 8, no. 2: 106. https://doi.org/10.3390/rs8020106
APA StyleJones, T. G., Glass, L., Gandhi, S., Ravaoarinorotsihoarana, L., Carro, A., Benson, L., Ratsimba, H. R., Giri, C., Randriamanatena, D., & Cripps, G. (2016). Madagascar’s Mangroves: Quantifying Nation-Wide and Ecosystem Specific Dynamics, and Detailed Contemporary Mapping of Distinct Ecosystems. Remote Sensing, 8(2), 106. https://doi.org/10.3390/rs8020106