Mapping Urban Land Use by Using Landsat Images and Open Social Data
Abstract
:1. Introduction
2. Study Area and Dataset
2.1. Study Area
2.2. Data Collection
3. Method
3.1. Parcel Generation
3.2. Classification System
3.3. Type Identification
3.3.1. Training Parcels
3.3.2. Processing POIs
3.3.3. Retrieving Physical Features
3.3.4. Determination of Parcel-Based Land Use
3.4. Accuracy Assessment and Uncertainty
4. Results
4.1. Performance of the Land Use Map in Beijing
4.2. The Land Use Pattern of Beijing
4.3. Uncertainty of the Mapped Result
5. Discussion
6. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, L.; Li, C.C.; Ying, Q.; Cheng, X.; Wang, X.Y.; Li, X.Y.; Hu, L.Y.; Liang, L.; Yu, L.; Huang, H.B.; et al. China’s urban expansion from 1990 to 2010 determined with satellite remote sensing. Chin. Sci. Bull. 2012, 57, 2802–2812. [Google Scholar] [CrossRef]
- United Nations. World Urbanization Prospects: The 2014 Revision; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Li, X.; Yeh, A.G.-O. Modelling sustainable urban development by the integration of constrained cellular automata and GIS. Int. J. Geogr. Inf. Sci. 2000, 14, 131–152. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Gong, P. Integrating ensemble-urban cellular automata model with an uncertainty map to improve the performance of a single model. Int. J. Geogr. Inf. Sci. 2015, 29, 762–785. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Yu, L. Aggregative model-based classifier ensemble for improving land-use/cover classification of Landsat TM Images. Int. J. Remote Sens. 2014, 35, 1481–1495. [Google Scholar] [CrossRef]
- Gong, P.; Liang, S.; Carlton, E.J.; Jiang, Q.; Wu, J.; Wang, L. Urbanisation and health in China. Lancet 2012, 379, 843–852. [Google Scholar] [CrossRef]
- Lu, D.; Tian, H.; Zhou, G.; Ge, H. Regional mapping of human settlements in southeastern china with multi sensor remotely sensed data. Remote Sens. Environ. 2008, 112, 3668–3679. [Google Scholar] [CrossRef]
- Bateman, I.J.; Harwood, A.R.; Mace, G.M.; Watson, R.T.; Abson, D.J.; Andrews, B.; Binner, A.; Crowe, A.; Day, B.H.; Dugdale, S.; et al. Bringing ecosystem services into economic decision-making: Land use in the United Kingdom. Science 2013, 341, 45–50. [Google Scholar] [PubMed]
- Li, G.; Fang, C. Global mapping and estimation of ecosystem services values and gross domestic product: A spatially explicit integration of national “green GDP” accounting. Ecol. Indic. 2014, 46, 293–314. [Google Scholar] [CrossRef]
- Li, S.-M. Housing consumption in urban china: A comparative study of Beijing and Guangzhou. Environ. Plan. A 2000, 32, 1115–1134. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, L. Housing inequality in transitional Beijing. Int. J. Urban Reg. Res. 2009, 33, 936–956. [Google Scholar] [CrossRef]
- Shin, H.B. Residential redevelopment and the entrepreneurial local state: The implications of Beijing’s shifting emphasis on urban redevelopment policies. Urban Stud. 2009, 46, 2815–2839. [Google Scholar] [CrossRef]
- Zhao, P.J.; Lu, B. Transportation implications of metropolitan spatial planning in mega-city Beijing. Int. Dev. Plan. Rev. 2009, 31, 235–261. [Google Scholar] [CrossRef]
- Xue, C.; Zheng, X.; Zhang, B.; Yuan, Z. Evolution of a multidimensional architectural landscape under urban regeneration: A case study of Jinan, China. Ecol. Indic. 2015, 55, 12–22. [Google Scholar] [CrossRef]
- Manonmani, R.; Suganya, G.M. Remote sensing and GIS application in change detection study in urban zone using multi temporal satellite. Int. J. Geomat. Geosci. 2010, 1, 60–65. [Google Scholar]
- Falcone, J.A. U.S. Conterminous Wall-To-Wall Anthropogenic Land Use Trends (NWALT), 1974–2012; U.S. Geological Survey Data Series 948; USGS: Reston, VA, USA, 2015. Available online: http://dx.doi.org/10.3133/ds948 (accessed on 31 January 2016).
- Theobald, D.M. Development and applications of a comprehensive land use classification and map for the US. PLoS ONE 2014, 9, e94628. [Google Scholar]
- Donnay, J.; Unwin, D. Modeling geographical distributions in urban areas. In Remote Sensing and Urban Analysis; Donnay, J., Barnsley, M.J., Longley, P.A., Eds.; Taylor & Francis: New York, NY, USA, 2001; pp. 205–224. [Google Scholar]
- Wu, S.-S.; Qiu, X.; Usery, E.L.; Wang, L. Using geometrical, textural, and contextual information of land parcels for classification of detailed urban land use. Ann. Assoc. Am. Geogr. 2008, 99, 76–98. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. Use of Impervious Surface in Urban Land Use Classification. Remote Sens. Environ. 2006, 102, 146–160. [Google Scholar] [CrossRef]
- Gong, P.; Howarth, P.J. The use of structural information for improving land-cover classification accuracies at the rural-urban fringe. Photogramm. Eng. Remote Sens. 1990, 56, 67–73. [Google Scholar]
- Shaban, M.A.; Dikshit, O. Improvement of Classification in Urban Areas by the Use of Textural Features: The Case Study of Lucknow City, Uttar Pradesh. Int. J. Remote Sens. 2001, 22, 565–593. [Google Scholar] [CrossRef]
- Hu, S.; Wang, L. Automated urban land use classification with remote sensing. Int. J. Remote Sens. 2012, 34, 790–803. [Google Scholar] [CrossRef]
- Wu, S.; Silvan, C.; Wang, L. Per-field urban land use classification based on tax parcel boundaries. Int. J. Remote Sens. 2007, 28, 2777–2801. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Gao, S.; Gong, L.; Kang, C.; Zhi, Y.; Chi, G.; Shi, L. Social sensing: A new approach to understanding our socioeconomic environments. Ann. Assoc. Am. Geogr. 2015, 105, 512–530. [Google Scholar] [CrossRef]
- Ratti, C.; Frenchman, D.; Pulselli, R.M.; Williams, S. Mobile landscapes: Using location data from cell phones for urban analysis. Environ. Plan. B: Plan. Des. 2006, 33, 727–748. [Google Scholar] [CrossRef]
- Toole, J.L.; Ulm, M.; González, M.C.; Bauer, D. Inferring land use from mobile phone activity. In Proceedings of the ACM SIGKDD International Workshop on Urban Computing; ACM: Beijing, China, 2012; pp. 1–8. [Google Scholar]
- Pei, T.; Sobolevsky, S.; Ratti, C.; Shaw, S.-L.; Li, T.; Zhou, C. A new insight into land use classification based on aggregated mobile phone data. Int. J. Geogr. Inf. Sci. 2014, 28, 1988–2007. [Google Scholar] [CrossRef]
- Guande, Q.; Xiaolong, L.; Shijian, L.; Gang, P.; Zonghui, W.; Daqing, Z. Measuring social functions of city regions from large-scale taxi behaviors. In Proceedings of the 2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), Seattle, WA, USA, 21–25 March 2011; pp. 384–388.
- Liu, Y.; Wang, F.; Xiao, Y.; Gao, S. Urban land uses and traffic “source-sink areas”: Evidence from GPS-enabled taxi data in Shanghai. Landsc. Urban Plan. 2012, 106, 73–87. [Google Scholar] [CrossRef]
- Gong, Y.; Liu, Y.; Lin, Y.; Yang, J.; Duan, Z.; Li, G. Exploring spatiotemporal characteristics of intra-urban trips using metro smartcard records. In Proceedings of the 2012 20th International Conference on Geoinformatics (GEOINFORMATICS), Hong Kong, China, 15–17 June 2012; pp. 1–7.
- Sevtsuk, A.; Ratti, C. Does urban mobility have a daily routine? Learning from the aggregate data of mobile networks. J. Urban Technol. 2010, 17, 41–60. [Google Scholar] [CrossRef]
- Goodchild, M.F.; Hill, L.L. Introduction to digital gazetteer research. Int. J. Geogr. Inf. Sci. 2008, 22, 1039–1044. [Google Scholar] [CrossRef]
- Crutcher, M.; Zook, M. Placemarks and waterlines: Racialized cyberscapes in post-Katrina Google Earth. GeoForum 2009, 40, 523–534. [Google Scholar] [CrossRef]
- Elwood, S.; Goodchild, M.F.; Sui, D.Z. Researching volunteered geographic information: Spatial data, geographic research, and new social practice. Ann. Assoc. Am. Geogr. 2011, 102, 571–590. [Google Scholar] [CrossRef]
- McKenzie, G.; Janowicz, K.; Adams, B. A weighted multi-attribute method for matching user-generated Points of Interest. Cartogr. Geogr. Inf. Sci. 2014, 41, 125–137. [Google Scholar] [CrossRef]
- Wang, J.; Li, C.C.; Hu, L.Y.; Zhao, Y.Y.; Huang, H.B.; Gong, P. Seasonal land cover dynamics in Beijing derived from Landsat 8 data using a spatio-temporal contextual approach. Remote Sens. 2015, 7, 865–881. [Google Scholar] [CrossRef]
- Long, Y.; Liu, X.J. Automated identification and characterization of parcels (AICP) with OpenStreetMap and Points of Interest. Cornell University Library. 2013. [Google Scholar]
- Erol, H.; Akdeniz, F. A per-field classification method based on mixture distribution models and an application to Landsat Thematic Mapper data. Int. J. Remote Sens. 2005, 26, 1229–1244. [Google Scholar] [CrossRef]
- Yuan, J.; Zheng, Y.; Xie, X. Discovering regions of different functions in a city using human mobility and POIs. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 12 August 2012; pp. 186–194.
- Ministry of housing and urban-rural development (MoHURD). Code for Design of Urban Road Engineering CJJ37.Beijing; China Architecture & Building Press: Beijing, China, 2012.
- Ministry of housing and urban-rural development (MoHURD). The People’s Republic of China on Urban and Rural Planning; China Legal Publishing House: Beijing, China, 2007.
- Xie, Y.T. The planning control of non-urban development land. Urban Plan. Forum 2005, 158, 35–41. [Google Scholar]
- Ministry of housing and urban-rural development (MoHURD). Current Land Use Classification; China National Standardization Management Committee: Beijing, China, 2007.
- Xian, G.; Crane, M. Assessments of urban growth in the Tampa Bay watershed using remote sensing data. Remote Sens. Environ. 2005, 97, 203–215. [Google Scholar] [CrossRef]
- Aguilera, F.; Valenzuela, L.M.; Botequilha-Leitão, A. Landscape metrics in the analysis of urban land use patterns: A case study in a Spanish metropolitan area. Landsc. Urban Plan. 2011, 99, 226–238. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Chapman and Hall: New York, NY, USA, 1986; Volume 26, p. 76. [Google Scholar]
- Li, X.; Gong, P.; Liang, L. A 30-year (1984–2013) record of annual urban dynamics of Beijing city derived from Landsat data. Remote Sens. Environ. 2015, 166, 78–90. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; C.E, W.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Gao, F.; de Colstoun, E.B.; Ma, R.; Weng, Q.; Masek, J.G.; Chen, J.; Pan, Y.; Song, C. Mapping impervious surface expansion using medium-resolution satellite image time series: A case study in the Yangtze river delta, China. Int. J. Remote Sens. 2012, 33, 7609–7628. [Google Scholar] [CrossRef]
- Liu, X.; Hu, G.; Ai, B.; Li, X.; Shi, Q. A Normalized Urban Areas Composite Index (NUACI) based on combination of DMSP-OLS and MODIS for mapping impervious surface area. Remote Sens. 2015, 7, 17168–17189. [Google Scholar] [CrossRef]
- Rozenstein, O.; Karnieli, A. Comparison of methods for land-use classification incorporating remote sensing and GIS inputs. Appl. Geogr. 2011, 31, 533–544. [Google Scholar]
- Kuang, W. Spatio-temporal patterns of intra-urban land use change in Beijing, China between 1984 and 2008. Chin. Geogr. Sci. 2012, 22, 210–220. [Google Scholar] [CrossRef]
- Karlsson, C. Clusters, Functional Regions and Cluster Policies, JIBS and CESIS Electronic Working Paper Series, CESIS: Stockholm, Sweden, 2007.
- Wu, S.S.; Xu, B.; Wang, L. Urban land use classification using variogram-based analysis with an aerial photograph. Photogramm. Eng. Remote Sens. 2006, 72, 813–822. [Google Scholar] [CrossRef]
Land Use Boundary | Level I Classes | Level II Classes | Descriptions |
---|---|---|---|
Non-built-up region (refer to Gong et al. [47]) | Agriculture | Cropland | Farm lands with human activities |
Orchard | Parcels planted with fruit trees or shrubs | ||
Green Space | Forest | Trees with distinct canopy textures | |
Grassland | Grasslands for grazing | ||
Shrubland | Shrubs with textures finer than trees but coarser than grasslands | ||
Waterbody | Waterbody | Natural or artificial waterbodies | |
Undeveloped | Undeveloped | Vacant land, bare land and land under construction | |
Built-up region | Residential | Cottage | Small, single-story houses (rural settlements, traditional dwellings i.e., Hutong, Siheyuan) |
Community | Residential areas with a protective gate and detailed architectural standards (e.g., floor area ratio and greening rate) | ||
Commercial | Retail place | Retail and general merchandise, apparel and accessories, grocery and food sales, eating and drinking, hotel, and recreational facilities (e.g., cinemas and amusement parks) | |
Service building | Mixed function (architecture combining commercial with residential functions), financial services (banks), office buildings | ||
Industrial | Industrial land | Manufacturing, warehousing, equipment sales and service, recycling and scrap, mining facilities | |
Institutional | Medical place | Hospitals | |
Educational/Research place | Educational facilities | ||
Administrative offices | Government services, diplomatic buildings, military facilities | ||
Public service | Railroad facilities, transportation terminals, aviation facilities, meeting and assembly facilities, municipal utilities |
Level I | Num. | Level II | Num. |
---|---|---|---|
Residential | 25 | Cottage | 7 |
Community | 18 | ||
Commercial | 39 | Consuming | 22 |
Services | 17 | ||
Industrial | 14 | Industrial | 14 |
Institutional | 42 | Medical | 10 |
Educational | 11 | ||
Administrative | 8 | ||
Public | 13 |
Level I (Abbr) | A | G | W | U | R | C | Ind | Ins | Total | UA(%) |
---|---|---|---|---|---|---|---|---|---|---|
Agriculture (A) | 25 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 26 | 96% |
Green Space (G) | 0 | 29 | 1 | 3 | 0 | 0 | 0 | 0 | 33 | 88% |
Water Body (W) | 1 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 19 | 95% |
Undeveloped (U) | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 11 | 100% |
Residential (R) | 0 | 0 | 0 | 0 | 47 | 7 | 3 | 7 | 64 | 73% |
Commercial (C) | 0 | 0 | 0 | 0 | 2 | 32 | 1 | 6 | 41 | 78% |
Industrial (Ind) | 0 | 0 | 0 | 0 | 1 | 0 | 14 | 9 | 24 | 58% |
Institutional (Ins) | 0 | 0 | 0 | 0 | 4 | 4 | 1 | 42 | 51 | 82% |
Total | 26 | 29 | 19 | 14 | 55 | 43 | 19 | 64 | 269 | |
PA(%) | 96% | 100% | 95% | 79% | 85% | 74% | 74% | 66% | 81.04% |
Level II (Abbr) | W | Cro | Orc | For | Gra | Shr | U | Cot | Com | Ret | Ser | Ind | Med | Edu | Adm | Pub | Total | UA(%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Water (W) | 18 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19 | 95% |
Cropland (Cro) | 0 | 15 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17 | 88% |
Orchard (Ora) | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 100% |
Forest (For) | 0 | 0 | 0 | 14 | 0 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 78% |
Grassland (Gra) | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 100% |
Shrubland (Shr) | 1 | 0 | 0 | 1 | 0 | 5 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 56% |
Undeveloped (U) | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 100% |
Cottage (Cot) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | 3 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 20 | 65% |
Community (Com) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 23 | 3 | 1 | 2 | 1 | 1 | 3 | 2 | 44 | 52% |
Retail (Ret) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 11 | 4 | 0 | 1 | 2 | 0 | 0 | 20 | 55% |
Service (Ser) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 13 | 1 | 1 | 1 | 1 | 0 | 21 | 62% |
Industrial (Ind) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 14 | 5 | 1 | 1 | 2 | 24 | 58% |
Medical (Med) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 9 | 89% |
Educational (Edu) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 1 | 1 | 12 | 3 | 1 | 21 | 57% |
Administrative (Adm) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 4 | 0 | 6 | 67% |
Public (Pub) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 12 | 15 | 80% |
Total | 19 | 16 | 10 | 15 | 6 | 8 | 14 | 23 | 32 | 20 | 23 | 19 | 18 | 17 | 12 | 17 | 269 | |
PA(%) | 95% | 94% | 90% | 93% | 100% | 63% | 79% | 57% | 72% | 55% | 57% | 74% | 44% | 71% | 33% | 71% | 69.89% |
Percentage (%) | Inside 2nd | 2nd–3rd | 3rd–4th | 4th–5th | 5th–6th | Outside 6th |
---|---|---|---|---|---|---|
Agriculture | 0.98 | 0.73 | 5.69 | 17.53 | 40.46 | 27.15 |
Green space | 7.36 | 2.33 | 0.52 | 1.79 | 9.65 | 67.94 |
Water body | 7.34 | 2.33 | 1.13 | 1.64 | 1.81 | 1.31 |
Undeveloped | 11.24 | 8.55 | 3.38 | 3.51 | 3.89 | 0.35 |
Residential | 41.40 | 48.98 | 46.70 | 43.47 | 15.52 | 1.00 |
Commercial | 28.71 | 32.20 | 23.75 | 8.04 | 1.05 | 0.09 |
Industry | 0.35 | 0.58 | 3.70 | 6.46 | 14.28 | 1.56 |
Intuitional | 2.62 | 4.29 | 15.13 | 17.55 | 13.34 | 0.60 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, T.; Yang, J.; Li, X.; Gong, P. Mapping Urban Land Use by Using Landsat Images and Open Social Data. Remote Sens. 2016, 8, 151. https://doi.org/10.3390/rs8020151
Hu T, Yang J, Li X, Gong P. Mapping Urban Land Use by Using Landsat Images and Open Social Data. Remote Sensing. 2016; 8(2):151. https://doi.org/10.3390/rs8020151
Chicago/Turabian StyleHu, Tengyun, Jun Yang, Xuecao Li, and Peng Gong. 2016. "Mapping Urban Land Use by Using Landsat Images and Open Social Data" Remote Sensing 8, no. 2: 151. https://doi.org/10.3390/rs8020151
APA StyleHu, T., Yang, J., Li, X., & Gong, P. (2016). Mapping Urban Land Use by Using Landsat Images and Open Social Data. Remote Sensing, 8(2), 151. https://doi.org/10.3390/rs8020151